Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Mater Horiz ; 9(11): 2773-2784, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36069965

RESUMEN

Radiochromic films are used as position-sensitive dose meters in e.g. medical physics and radiation processing. The currently available films like those based on lithium-10,12-pentacosdiynoate or leucomalachite green are either toxic or non-reusable, or both. There is thus a great need for a sustainable solution for radiochromic detection. In the present work, we present a suitable candidate: hackmanite with the general formula Na8Al6Si6O24(Cl,S)2. This material is known as a natural intelligent material capable of changing color when exposed to ultraviolet radiation or X-rays. Here, we show for the first time that hackmanites are also radiochromic when exposed to alpha particles, beta particles (positrons) or gamma radiation. Combining experimental and computational data we elucidate the mechanism of gamma-induced radiochromism in hackmanites. We show that hackmanites can be used for gamma dose mapping in high dose applications as well as a memory material that has the one-of-a-kind ability to remember earlier gamma exposure. In addition to satisfying the requirements of sustainability, hackmanites are non-toxic and the films made of hackmanite are reusable thus showing great potential to replace the currently available radiochromic films.


Asunto(s)
Dosimetría por Película , Rayos Ultravioleta , Rayos gamma , Rayos X
2.
Proc Natl Acad Sci U S A ; 119(23): e2202487119, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35653570

RESUMEN

SignificanceNatural photochromic minerals have been reported by geologists for decades. However, the understanding of the photochromism mechanism has a key question still unanswered: What in their structure gives rise to the photochromism's reversibility? By combining experimental and computational methods specifically developed to investigate this photochromism, this work provides the answer to this fundamental question. The specific crystal structure of these minerals allows an unusual motion of the sodium atoms stabilizing the electronic states associated to the colored forms. With a complete understanding of the photochromism mechanism in hand, it is now possible to design new families of stable and tunable photochromic inorganic materials-based devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA