Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 60(33): 18217-18222, 2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-33999493

RESUMEN

Though largely influencing the efficiency of a reaction, the molecular-scale details of the local environment of the reactants are experimentally inaccessible hindering an in-depth understanding of a catalyst's reactivity, a prerequisite to maximizing its efficiency. We introduce a method to follow individual molecules and their largely changing environment during a photochemical reaction. The method is illustrated for a rate-limiting step in a photolytic reaction, the dissociation of CO2 on two catalytically relevant surfaces, Ag(100) and Cu(111). We reveal with a single-molecule resolution how the reactant's surroundings evolve with progressing laser illumination and with it their propensity for dissociation. Counteracting processes lead to a volcano-like reactivity. Our unprecedented local view during a photoinduced reaction opens the avenue for understanding the influence of the products on reaction yields on the nanoscale.

2.
Phys Chem Chem Phys ; 22(2): 497-506, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31825407

RESUMEN

We investigate superstructures formed by CO2 on Ag(100) and Cu(111) from small clusters forming at 21 K up to multilayers grown at 43 K by low temperature scanning tunneling microscopy. On both surfaces, CO2 nucleates only at defects, here at co-adsorbed CO. At the lower adsorption temperature, superstructures of different symmetry coexist on both surfaces at submonolayer coverage, while the superstructures formed at the higher adsorption temperature differ largely for the two surfaces. On Ag(100), the CO2 monolayer exhibits a long-range order interrupted by antiphase domain boundaries. On Cu(111), a random distribution of domain structures of different symmetry leads to a monolayer without long-range order. Surprisingly, the degree of ordering is inverted for the 2nd layer of CO2. On Ag(100), the coexistence of different superstructures in the 2nd layer leads to reduced long-range order. On Cu(111), a hexagonal 2nd layer exhibits long-range order. A layer of a similar superstructure, hexagonal with long-range order, exists as the 3rd layer of Ag(100). Despite the different substrates, a multitude of common structural features of CO2 exist. Hexagonal layers grow with a long-range order on less ordered layers on both surfaces. Our results suggest that the preferred structure of a CO2 layer is hexagonal.

3.
Ultramicroscopy ; 133: 35-40, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23770540

RESUMEN

Low-energy electron diffraction (LEED) is a widely employed technique for the structural characterization of crystalline surfaces and epitaxial adsorbates. For technical reasons the accessible reciprocal space is limited at a given primary electron energy E. This limitation may be overcome by sweeping E to observe higher diffraction orders decisively enhancing the quantitative examination. Yet, in many cases, such as molecular films with rather large unit cells, the adsorbate reflexes become less pronounced at energies high enough to observe substrate reflexes. One possibility to overcome this problem is an intentional inclination of the sample surface during the measurement at the expense of the quantitative interpretability of then severely distorted diffraction patterns. Here, we introduce a correction method for the axially symmetric distortion in LEED images of tilted samples. We provide experimental confirmation for micro-channel plate LEED and spot-profile analysis LEED instruments using the (7×7) reconstructed surface of a Si(111) single crystal as a reference sample. Finally, we demonstrate that the correction of this distortion considerably improves the quantitative analysis of diffraction patterns of adsorbates since substrate and adsorbate reflexes can be evaluated simultaneously. As an illustrative example we have chosen an epitaxial monolayer of 3,4,9,10-perylenetetracarboxylic dianhydride on Ag(111) that is known to form a commensurate superstructure.


Asunto(s)
Electrones , Microscopía Electrónica de Transmisión/métodos , Cristalización/métodos , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA