Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38541465

RESUMEN

Concurrently achieving high growth rate and high quality in single-crystal diamonds (SCDs) is significantly challenging. The growth rate of SCDs synthesized by microwave plasma chemical vapor deposition (MPCVD) was enhanced by introducing N2 into the typical CH4-H2 gas mixtures. The impact of nitrogen vacancy (NV) center concentration on growth rate, surface morphology, and lattice binding structure was investigated. The SCDs were characterized through Raman spectroscopy, photoluminescence (PL) spectroscopy, and X-ray photoelectron spectroscopy. It was found that the saturation growth rate was increased up to 45 µm/h by incorporating 0.8-1.2% N2 into the gas atmosphere, which is 4.5 times higher than the case without nitrogen addition. Nitrogen addition altered the growth mode from step-flow to bidimensional nucleation, leading to clustered steps and a rough surface morphology, followed by macroscopically pyramidal hillock formation. The elevation of nitrogen content results in a simultaneous escalation of internal stress and defects. XPS analysis confirmed chemical bonding between nitrogen and carbon, as well as non-diamond carbon phase formation at 0.8% of nitrogen doping. Furthermore, the emission intensity of NV-related defects from PL spectra changed synchronously with N2 concentrations (0-1.5%) during diamond growth, indicating that the formation of NV centers activated the diamond lattice and facilitated nitrogen incorporation into it, thereby accelerating chemical reaction rates for achieving high-growth-rate SCDs.

2.
Beilstein J Nanotechnol ; 11: 1419-1431, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33014682

RESUMEN

Cost-efficiency, durability, and reliability of catalysts, as well as their operational lifetime, are the main challenges in chemical energy conversion. Here, we present a novel, one-step approach for the synthesis of Pt/C hybrid material by plasma-enhanced chemical vapor deposition (PE-CVD). The platinum loading, degree of oxidation, and the very narrow particle size distribution are precisely adjusted in the Pt/C hybrid material due to the simultaneous deposition of platinum and carbon during the process. The as-synthesized Pt/C hybrid materials are promising electrocatalysts for use in fuel cell applications as they show significantly improved electrochemical long-term stability compared to the industrial standard HiSPEC 4000. The PE-CVD process is furthermore expected to be extendable to the general deposition of metal-containing carbon materials from other commercially available metal acetylacetonate precursors.

3.
Sci Rep ; 10(1): 12533, 2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32719320

RESUMEN

A method for defect characterization is presented that allows to measure the activation energy, capture cross-section, and defect density in dielectric materials. This is exemplarily performed on aluminum oxide thin films deposited on hydrogen-terminated diamond. During the measurement, samples were illuminated using a 405 nm laser, charging the defects while simultaneously measuring the surface conductivity of the diamond at different temperatures. By applying the standard boxcar evaluation known from deep-level transient spectroscopy, we found five different defect levels in [Formula: see text]. One can be identified as substitutional silicon in aluminum oxide, while the others are most likely connected to either aluminum interstitials or carbon and nitrogen impurities.

4.
Nanotechnology ; 30(36): 365302, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31151124

RESUMEN

We report on mask-less, high resolution etching of diamond surfaces, featuring sizes down to 10 nm. We use a scanning electron microscope (SEM) together with water vapor, which was injected by a needle directly onto the sample surface. Using this versatile and low-damage technique, trenches with different depths were etched. Cross sections of each trench were obtained by focused ion beam milling and used to calculate the achieved aspect ratios. The developed technique opens up the possibility of mask- and resist-less patterning of diamond for nano-optical and electronic applications.

5.
Beilstein J Nanotechnol ; 9: 1895-1905, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30013883

RESUMEN

In this work, the deposition of carbon nanowalls (CNWs) by inductively coupled plasma enhanced chemical vapor deposition (ICP-PECVD) is investigated. The CNWs are electrically conducting and show a large specific surface area, which is a key characteristic to make them interesting for sensors, catalytic applications or energy-storage systems. It was recently discovered that CNW films can be deposited by the use of the single-source metal-organic precursor aluminium acetylacetonate. This precursor is relatively unknown in combination with the ICP-PECVD deposition method in literature and, thus, based on our previous publication is further investigated in this work to better understand the influence of the various deposition parameters on the growth. Silicon, stainless steel, nickel and copper are used as substrate materials. The CNWs deposited are characterized by scanning electron microscopy (SEM), Raman spectroscopy and Auger electron spectroscopy (AES). The combination of bias voltage, the temperature of the substrate and the substrate material had a strong influence on the morphology of the graphitic carbon nanowall structures. With regard to these results, a first growth model for the deposition of CNWs by ICP-PECVD and aluminium acetylacetonate is proposed. This model explains the formation of four different morphologies (nanorods as well as thorny, straight and curled CNWs) by taking the surface diffusion into account. The surface diffusion depends on the particle energies and the substrate material and thus explains the influence of these parameters.

6.
Springerplus ; 5: 568, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27247865

RESUMEN

The simultaneous growth of both nanodiamonds and graphene on copper samples is described for the first time. A PE-CVD process is used to synthesize graphene layers and nanodiamond clusters from a hydrogen/methane gas mixture as it is typically done successfully in thermal CVD processes for graphene synthesis. However, the standard thermal CVD process is not without problems since the deposition of graphene is affected by the evaporation of a notable amount of copper caused by the slow temperature increase typical for thermal CVD resulting in a long process time. In sharp contrast, the synthesis of graphene by PE-CVD can circumvent this problem by substantially shortening the process time at holding out the prospect of a lower substrate temperature. The reduced thermal load and the possibility to industrially scale-up the PE-CVD process makes it a very attractive alternative to the thermal CVD process with respect to the graphene production in the future. Nanodiamonds are synthesized in PE-CVD reactors for a long time because these processes offer a high degree of control over the film's nanostructure and simultaneously providing a significant high deposition rate. To model the co-deposition process, the three relevant macroscopic parameters (pressure, gas mixture and microwave power) are correlated with three relevant process properties (plasma ball size, substrate temperature and C2/Hα-ratio) and the influence on the quality of the deposited carbon allotropes is investigated. For the evaluation of the graphene as well as the nanodiamond quality, Raman spectroscopy used whereas the plasma properties are measured by optical methods. It is found that the diamond nucleation can be influenced by the C2/Hα-ratio in the plasma, while the graphene quality remains mostly unchanged by this parameter. Moreover it is derived from the experimental data that the direct plasma contact with the copper surface is beneficial for the nucleation of the diamond while the growth and quality of the graphene benefits from a larger distance to the plasma. Therefore, this work presents a basis for a method to tailor the deposition of graphene-diamond hybrid films using a MW PE-CVD process or to suppress the diamond deposition entirely if desired.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA