Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Ecol Evol ; 13(7): e10236, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37415640

RESUMEN

Scavenging is an important part of food acquisition for many carnivore species that switch between scavenging and predation. In landscapes with anthropogenic impact, humans provide food that scavenging species can utilize. We quantified the magnitude of killing versus scavenging by gray wolves (Canis lupus) in Scandinavia where humans impact the ecosystem through hunter harvest, land use practices, and infrastructure. We investigated the cause of death of different animals utilized by wolves, and examined how the proportion of their consumption time spent scavenging was influenced by season, wolf social affiliation, level of inbreeding, density of moose (Alces alces) as their main prey, density of brown bear (Ursus arctos) as an intraguild competitor, and human density. We used data from 39 GPS-collared wolves covering 3198 study days (2001-2019), including 14,205 feeding locations within space-time clusters, and 1362 carcasses utilized by wolves. Most carcasses were wolf-killed (80.5%) while a small part had died from other natural causes (1.9%). The remaining had either anthropogenic mortality causes (4.7%), or the cause of death was unknown (12.9%). Time spent scavenging was higher during winter than during summer and autumn. Solitary wolves spent more time scavenging than pack-living individuals, likely because individual hunting success is lower than pack success. Scavenging time increased with the mean inbreeding coefficient of the adult wolves, possibly indicating that more inbred individuals resort to scavenging, which requires less body strength. There was weak evidence for competition between wolves and brown bears as well as a positive relationship between human density and time spent scavenging. This study shows how both intrinsic and extrinsic factors drive wolf scavenging behavior, and that despite a high level of inbreeding and access to carrion of anthropogenic origin, wolves mainly utilized their own kills.

2.
Genome Res ; 32(3): 449-458, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35135873

RESUMEN

Genetic drift can dramatically change allele frequencies in small populations and lead to reduced levels of genetic diversity, including loss of segregating variants. However, there is a shortage of quantitative studies of how genetic diversity changes over time in natural populations, especially on genome-wide scales. Here, we analyzed whole-genome sequences from 76 wolves of a highly inbred Scandinavian population, founded by only one female and two males, sampled over a period of 30 yr. We obtained chromosome-level haplotypes of all three founders and found that 10%-24% of their diploid genomes had become lost after about 20 yr of inbreeding (which approximately corresponds to five generations). Lost haplotypes spanned large genomic regions, as expected from the amount of recombination during this limited time period. Altogether, 160,000 SNP alleles became lost from the population, which may include adaptive variants as well as wild-type alleles masking recessively deleterious alleles. Although not sampled, we could indirectly infer that the two male founders had megabase-sized runs of homozygosity and that all three founders showed significant haplotype sharing, meaning that there were on average only 4.2 unique haplotypes in the six copies of each autosome that the founders brought into the population. This violates the assumption of unrelated founder haplotypes often made in conservation and management of endangered species. Our study provides a novel view of how whole-genome resequencing of temporally stratified samples can be used to visualize and directly quantify the consequences of genetic drift in a small inbred population.


Asunto(s)
Lobos , Alelos , Animales , Femenino , Frecuencia de los Genes , Variación Genética , Genética de Población , Haplotipos , Endogamia , Masculino , Lobos/genética
3.
Environ Res ; 204(Pt D): 112372, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34774833

RESUMEN

The occurrence of organohalogenated compounds (OHCs) in wildlife has received considerable attention over the last decades. Among the matrices used for OHCs biomonitoring, feathers are particularly useful as they can be collected in a minimally or non-invasive manner. In this study, concentrations of various legacy OHCs -polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs)-, as well as emerging OHCs -per- and polyfluoroalkyl substances (PFAS) and organophosphate ester flame retardants (OPEs)- were determined in feathers of 72 Eurasian eagle-owls (Bubo bubo) from Norway, with the goal of studying spatiotemporal variation using a non-invasive approach. Molted feathers were collected at nest sites from northern, central and southern Norway across four summers (2013-2016). Additionally, two museum-archived feathers from 1979 to 1989 were included. Stable carbon (δ13C) and nitrogen isotopes (δ15N) were used as dietary proxies. In total, 11 PFAS (sum range 8.25-215.90 ng g-1), 15 PCBs (4.19-430.01 ng g-1), 6 OCPs (1.48-220.94 ng g-1), 5 PBDEs (0.21-5.32 ng g-1) and 3 OPEs (4.49-222.21 ng g-1) were quantified. While we observed large variation in the values of both stable isotopes, suggesting a diverse diet of the eagle-owls, only δ13C seemed to explain variation in PFAS concentrations. Geographic area and year were influential factors for δ15N and δ13C. Considerable spatial variation was observed in PFAS levels, with the southern area showing higher levels compared to northern and central Norway. For the rest of OHCs, we observed between-year variations; sum concentrations of PCBs, OCPs, PBDEs and OPEs reached a maximum in 2015 and 2016. Concentrations from 1979 to 1989 were within the ranges observed between 2013 and 2016. Overall, our data indicate high levels of legacy and emerging OHCs in a top predator in Norway, further highlighting the risk posed by OHCs to wildlife.


Asunto(s)
Contaminantes Ambientales , Bifenilos Policlorados , Estrigiformes , Animales , Dieta , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Plumas/química , Éteres Difenilos Halogenados/análisis , Bifenilos Policlorados/análisis
4.
Ecology ; 102(12): e03519, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34449876

RESUMEN

Species assemblages often have a non-random nested organization, which in vertebrate scavenger (carrion-consuming) assemblages is thought to be driven by facilitation in competitive environments. However, not all scavenger species play the same role in maintaining assemblage structure, as some species are obligate scavengers (i.e., vultures) and others are facultative, scavenging opportunistically. We used a database with 177 vertebrate scavenger species from 53 assemblages in 22 countries across five continents to identify which functional traits of scavenger species are key to maintaining the scavenging network structure. We used network analyses to relate ten traits hypothesized to affect assemblage structure with the "role" of each species in the scavenging assemblage in which it appeared. We characterized the role of a species in terms of both the proportion of monitored carcasses on which that species scavenged, or scavenging breadth (i.e., the species "normalized degree"), and the role of that species in the nested structure of the assemblage (i.e., the species "paired nested degree"), therefore identifying possible facilitative interactions among species. We found that species with high olfactory acuity, social foragers, and obligate scavengers had the widest scavenging breadth. We also found that social foragers had a large paired nested degree in scavenger assemblages, probably because their presence is easier to detect by other species to signal carcass occurrence. Our study highlights differences in the functional roles of scavenger species and can be used to identify key species for targeted conservation to maintain the ecological function of scavenger assemblages.


Asunto(s)
Falconiformes , Cadena Alimentaria , Animales , Peces , Fenotipo , Vertebrados
6.
Sci Rep ; 10(1): 21670, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303844

RESUMEN

Predation from large carnivores and human harvest are the two main mortality factors affecting the dynamics of many ungulate populations. We examined long-term moose (Alces alces) harvest data from two countries that share cross-border populations of wolves (Canis lupus) and their main prey moose. We tested how a spatial gradient of increasing wolf territory density affected moose harvest density and age and sex composition of the harvested animals (n = 549,310), along a latitudinal gradient during 1995-2017. In areas containing average-sized wolf territories, harvest density was on average 37% (Norway) and 51% (Sweden) lower than in areas without wolves. In Sweden, calves made up a higher proportion of the moose harvest than in Norway, and this proportion was reduced with increased wolf territory density, while it increased in Norway. The proportion of females in the adult harvest was more strongly reduced in Sweden than in Norway as a response to increased wolf territory density. Moose management in both countries performed actions aimed to increase productivity in the moose population, in order to compensate for the increased mortality caused by wolves. These management actions are empirical examples of an adaptive management in response to the return of large carnivores.


Asunto(s)
Animales Salvajes , Carnívoros , Ciervos , Dinámica Poblacional/tendencias , Conducta Predatoria , Lobos , Distribución Animal , Animales , Ecosistema , Femenino , Cadena Alimentaria , Humanos , Masculino , Noruega , Reproducción , Suecia , Factores de Tiempo
7.
Sci Rep ; 10(1): 9941, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32555291

RESUMEN

Habitat selection of animals depends on factors such as food availability, landscape features, and intra- and interspecific interactions. Individuals can show several behavioral responses to reduce competition for habitat, yet the mechanisms that drive them are poorly understood. This is particularly true for large carnivores, whose fine-scale monitoring is logistically complex and expensive. In Scandinavia, the home-range establishment and kill rates of gray wolves (Canis lupus) are affected by the coexistence with brown bears (Ursus arctos). Here, we applied resource selection functions and a multivariate approach to compare wolf habitat selection within home ranges of wolves that were either sympatric or allopatric with bears. Wolves selected for lower altitudes in winter, particularly in the area where bears and wolves are sympatric, where altitude is generally higher than where they are allopatric. Wolves may follow the winter migration of their staple prey, moose (Alces alces), to lower altitudes. Otherwise, we did not find any effect of bear presence on wolf habitat selection, in contrast with our previous studies. Our new results indicate that the manifestation of a specific driver of habitat selection, namely interspecific competition, can vary at different spatial-temporal scales. This is important to understand the structure of ecological communities and the varying mechanisms underlying interspecific interactions.


Asunto(s)
Ecosistema , Conducta Predatoria , Estaciones del Año , Simpatría , Ursidae/fisiología , Lobos/fisiología , Animales , Geografía , Países Escandinavos y Nórdicos
8.
Glob Chang Biol ; 25(9): 3005-3017, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31127672

RESUMEN

Understanding the distribution of biodiversity across the Earth is one of the most challenging questions in biology. Much research has been directed at explaining the species latitudinal pattern showing that communities are richer in tropical areas; however, despite decades of research, a general consensus has not yet emerged. In addition, global biodiversity patterns are being rapidly altered by human activities. Here, we aim to describe large-scale patterns of species richness and diversity in terrestrial vertebrate scavenger (carrion-consuming) assemblages, which provide key ecosystem functions and services. We used a worldwide dataset comprising 43 sites, where vertebrate scavenger assemblages were identified using 2,485 carcasses monitored between 1991 and 2018. First, we evaluated how scavenger richness (number of species) and diversity (Shannon diversity index) varied among seasons (cold vs. warm, wet vs. dry). Then, we studied the potential effects of human impact and a set of macroecological variables related to climatic conditions on the scavenger assemblages. Vertebrate scavenger richness ranged from species-poor to species rich assemblages (4-30 species). Both scavenger richness and diversity also showed some seasonal variation. However, in general, climatic variables did not drive latitudinal patterns, as scavenger richness and diversity were not affected by temperature or rainfall. Rainfall seasonality slightly increased the number of species in the community, but its effect was weak. Instead, the human impact index included in our study was the main predictor of scavenger richness. Scavenger assemblages in highly human-impacted areas sustained the smallest number of scavenger species, suggesting human activity may be overriding other macroecological processes in shaping scavenger communities. Our results highlight the effect of human impact at a global scale. As species-rich assemblages tend to be more functional, we warn about possible reductions in ecosystem functions and the services provided by scavengers in human-dominated landscapes in the Anthropocene.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Clima , Peces , Humanos , Vertebrados
9.
Sci Rep ; 9(1): 6526, 2019 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-31024020

RESUMEN

Natal habitat preference induction (NHPI) occurs when characteristics of the natal habitat influence the future habitat selection of an animal. However, the influence of NHPI after the dispersal phase has received remarkably little attention. We tested whether exposure to humans in the natal habitat helps understand why some adult wolves Canis lupus may approach human settlements more than other conspecifics, a question of both ecological and management interest. We quantified habitat selection patterns within home ranges using resource selection functions and GPS data from 21 wolf pairs in Scandinavia. We identified the natal territory of each wolf with genetic parental assignment, and we used human-related characteristics within the natal territory to estimate the degree of anthropogenic influence in the early life of each wolf. When the female of the adult wolf pair was born in an area with a high degree of anthropogenic influence, the wolf pair tended to select areas further away from humans, compared to wolf pairs from natal territories with a low degree of anthropogenic influence. Yet the pattern was statistically weak, we suggest that our methodological approach can be useful in other systems to better understand NHPI and to inform management  about human-wildlife interactions.


Asunto(s)
Ecosistema , Lobos/fisiología , Animales , Conducta , Sistemas de Información Geográfica , Geografía , Humanos , Modelos Teóricos , Análisis de Componente Principal , Países Escandinavos y Nórdicos
10.
Data Brief ; 20: 686-690, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30211261

RESUMEN

This dataset article describes the data and sources used to model risks for the recolonizing wolf (Canis lupus) in Sweden and Norway in the article "Integrated spatially-explicit models predict pervasive risks to recolonizing wolves in Scandinavia from human-driven mortality" (Recio et al., 2018). Presences on wolf territories were used to model the potential distribution of the species. Presences of human-driven mortalities including traffic collisions, culling (protective/defensive, and licensed hunting), and illegal killing (i.e. poaching) were used to model predictions on the distribution of these mortalities. Sources for the independent variables used for the models are also described.

11.
PLoS One ; 13(8): e0202653, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30161161

RESUMEN

Brown bears (Ursus arctos) spend about half of the year in winter dens. In order to preserve energy, bears may select denning locations that minimize temperature loss and human disturbance. In expanding animal populations, demographic structure and individual behavior at the expansion front can differ from core areas. We conducted a non-invasive study of male brown bear den sites at the male-biased, low-density western expansion front of the Scandinavian brown bear population, comparing den locations to the available habitat. Compared to the higher-density population core in which intraspecific avoidance may affect den site selection of subordinate bears, we expected resource competition in the periphery to be low, and all bears to be able to select optimal den sites. In addition, bears in the periphery had access to free-ranging domestic sheep during summer. We found that males in the periphery denned on high-elevation slopes, probably providing good drainage, longer periods of consistent, insulating snow cover and fewer melting-freezing events. Forests were the principal denning habitat and no dens were found in alpine areas. The Scandinavian brown bears have a history of intense harvest, including culling at the den. This may have exerted a selection pressure to avoid denning in open alpine habitat which compared to forests provide little cover. The bears denned away from main roads and in steep, rugged terrain, probably limiting human access. The odds for finding a bear den decreased with increasing distance to the population core where females could be found. Previous studies have documented directed movement of male brown bears from the male-biased population periphery toward the core areas during the mating season. In this way, denning males may be trading off between low resource competition and access to sheep in the low-density periphery, and mating opportunities in the higher-density population core.


Asunto(s)
Conducta Animal/fisiología , Ursidae/fisiología , Animales , Ecosistema , Femenino , Actividades Humanas , Humanos , Masculino
12.
Ecol Evol ; 8(23): 11450-11466, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30598748

RESUMEN

Identifying how sympatric species belonging to the same guild coexist is a major question of community ecology and conservation. Habitat segregation between two species might help reduce the effects of interspecific competition and apex predators are of special interest in this context, because their interactions can have consequences for lower trophic levels. However, habitat segregation between sympatric large carnivores has seldom been studied. Based on monitoring of 53 brown bears (Ursus arctos) and seven sympatric adult gray wolves (Canis lupus) equipped with GPS collars in Sweden, we analyzed the degree of interspecific segregation in habitat selection within their home ranges in both late winter and spring, when their diets overlap the most. We used the K-select method, a multivariate approach that relies on the concept of ecological niche, and randomization methods to quantify habitat segregation between bears and wolves. Habitat segregation between bears and wolves was greater than expected by chance. Wolves tended to select for moose occurrence, young forests, and rugged terrain more than bears, which likely reflects the different requirements of an omnivore (bear) and an obligate carnivore (wolf). However, both species generally avoided human-related habitats during daytime. Disentangling the mechanisms that can drive interspecific interactions at different spatial scales is essential for understanding how sympatric large carnivores occur and coexist in human-dominated landscapes, and how coexistence may affect lower trophic levels. The individual variation in habitat selection detected in our study may be a relevant mechanism to overcome intraguild competition and facilitate coexistence.

13.
Nat Ecol Evol ; 2(1): 124-131, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29158554

RESUMEN

Inbreeding (mating between relatives) is a major concern for conservation as it decreases individual fitness and can increase the risk of population extinction. We used whole-genome resequencing of 97 grey wolves (Canis lupus) from the highly inbred Scandinavian wolf population to identify 'identical-by-descent' (IBD) chromosome segments as runs of homozygosity (ROH). This gave the high resolution required to precisely measure realized inbreeding as the IBD fraction of the genome in ROH (F ROH). We found a striking pattern of complete or near-complete homozygosity of entire chromosomes in many individuals. The majority of individual inbreeding was due to long IBD segments (>5 cM) originating from ancestors ≤10 generations ago, with 10 genomic regions showing very few ROH and forming candidate regions for containing loci contributing strongly to inbreeding depression. Inbreeding estimated with an extensive pedigree (F P) was strongly correlated with realized inbreeding measured with the entire genome (r 2 = 0.86). However, inbreeding measured with the whole genome was more strongly correlated with multi-locus heterozygosity estimated with as few as 500 single nucleotide polymorphisms, and with F ROH estimated with as few as 10,000 single nucleotide polymorphisms, than with F P. These results document in fine detail the genomic consequences of intensive inbreeding in a population of conservation concern.


Asunto(s)
Genoma , Endogamia , Lobos/genética , Animales , Noruega , Polimorfismo de Nucleótido Simple , Suecia
14.
R Soc Open Sci ; 5(12): 181379, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30662744

RESUMEN

Natal dispersal is an important mechanism for the viability of populations. The influence of local conditions or experience gained in the natal habitat could improve fitness if dispersing individuals settle in an area with similar habitat characteristics. This process, defined as 'natal habitat-biased dispersal' (NHBD), has been used to explain distribution patterns in large carnivores, but actual studies evaluating it are rare. We tested whether grey wolf Canis lupus territory establishment was influenced by the habitat characteristics of the natal territory using the long-term monitoring of the Scandinavian wolf population. We paired the locations of natal and established territories, accounted for available habitats along the dispersing route, and compared their habitat characteristics for 271 wolves during 1998-2012. Wolves with the shortest dispersal distances established in natal-like habitat types more than expected by chance, whereas wolves that dispersed longer distances did not show NHBD. The pattern was consistent for male and female wolves, with females showing more NHBD than males. Chances to detect NHBD increased with the size of habitat defined as available. This highlights the importance of considering the biological characteristics of the studied species when defining habitat availability. Our methodological approach can prove useful to inform conservation and management to identify habitats to be selected by reintroduced or naturally expanding populations.

16.
Proc Biol Sci ; 284(1848)2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28179516

RESUMEN

Trophic interactions are a fundamental topic in ecology, but we know little about how competition between apex predators affects predation, the mechanism driving top-down forcing in ecosystems. We used long-term datasets from Scandinavia (Europe) and Yellowstone National Park (North America) to evaluate how grey wolf (Canis lupus) kill rate was affected by a sympatric apex predator, the brown bear (Ursus arctos). We used kill interval (i.e. the number of days between consecutive ungulate kills) as a proxy of kill rate. Although brown bears can monopolize wolf kills, we found no support in either study system for the common assumption that they cause wolves to kill more often. On the contrary, our results showed the opposite effect. In Scandinavia, wolf packs sympatric with brown bears killed less often than allopatric packs during both spring (after bear den emergence) and summer. Similarly, the presence of bears at wolf-killed ungulates was associated with wolves killing less often during summer in Yellowstone. The consistency in results between the two systems suggests that brown bear presence actually reduces wolf kill rate. Our results suggest that the influence of predation on lower trophic levels may depend on the composition of predator communities.


Asunto(s)
Conducta Competitiva , Conducta Predatoria , Ursidae , Lobos , Animales , Ciervos , Cadena Alimentaria , América del Norte , Países Escandinavos y Nórdicos
17.
J Anim Ecol ; 86(1): 43-54, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27559712

RESUMEN

For socially monogamous species, breeder bond dissolution has important consequences for population dynamics, but the extent to which extrinsic or intrinsic population factors causes pair dissolution remain poorly understood, especially among carnivores. Using an extensive life-history data set, a survival analysis and competing risks framework, we examined the fate of 153 different wolf (Canis lupus) pairs in the recolonizing Scandinavian wolf population, during 14 winters of snow tracking and DNA monitoring. Wolf pair dissolution was generally linked to a mortality event and was strongly affected by extrinsic (i.e. anthropogenic) causes. No divorce was observed, and among the pair dissolution where causes have been identified, death of one or both wolves was always involved. Median time from pair formation to pair dissolution was three consecutive winters (i.e. approximately 2 years). Pair dissolution was mostly human-related, primarily caused by legal control actions (36·7%), verified poaching (9·2%) and traffic-related causes (2·1%). Intrinsic factors, such as disease and age, accounted for only 7·7% of pair dissolutions. The remaining 44·3% of dissolution events were from unknown causes, but we argue that a large portion could be explained by an additional source of human-caused mortality, cryptic poaching. Extrinsic population factors, such as variables describing the geographical location of the pair, had a stronger effect on risk of pair dissolution compared to anthropogenic landscape characteristics. Population intrinsic factors, such as the inbreeding coefficient of the male pair member, had a negative effect on pair bond duration. The mechanism behind this result remains unknown, but might be explained by lower survival of inbred males or more complex inbreeding effects mediated by behaviour. Our study provides quantitative estimates of breeder bond duration in a social carnivore and highlights the effect of extrinsic (i.e. anthropogenic) and intrinsic factors (i.e. inbreeding) involved in wolf pair bond duration. Unlike the effects of intrinsic and extrinsic factors that are commonly reported on individual survival or population growth, here we provide quantitative estimates of their potential effect on the social unit of the population, the wolf pair.


Asunto(s)
Conservación de los Recursos Naturales , Apareamiento , Lobos/fisiología , Animales , Femenino , Longevidad , Masculino , Noruega , Dinámica Poblacional , Crecimiento Demográfico , Estaciones del Año , Suecia
18.
PLoS One ; 11(12): e0168062, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28030549

RESUMEN

Research on large predator-prey interactions are often limited to the predators' primary prey, with the potential for prey switching in systems with multiple ungulate species rarely investigated. We evaluated wolf (Canis lupus) prey selection at two different spatial scales, i.e., inter- and intra-territorial, using data from 409 ungulate wolf-kills in an expanding wolf population in Scandinavia. This expansion includes a change from a one-prey into a two-prey system with variable densities of one large-sized ungulate; moose (Alces alces) and one small-sized ungulate; roe deer (Capreolus capreolus). Among wolf territories, the proportion of roe deer in wolf kills was related to both pack size and roe deer density, but not to moose density. Pairs of wolves killed a higher proportion of roe deer than did packs, and wolves switched to kill more roe deer as their density increased above a 1:1 ratio in relation to the availability of the two species. At the intra-territorial level, wolves again responded to changes in roe deer density in their prey selection whereas we found no effect of snow depth, time during winter, or other predator-related factors on the wolves' choice to kill moose or roe deer. Moose population density was only weakly related to intra-territorial prey selection. Our results show that the functional response of wolves on moose, the species hitherto considered as the main prey, was strongly dependent on the density of a smaller, alternative, ungulate prey. The impact of wolf predation on the prey species community is therefore likely to change with the composition of the multi-prey species community along with the geographical expansion of the wolf population.


Asunto(s)
Tamaño Corporal , Conducta Predatoria , Lobos , Animales , Ciervos , Densidad de Población , Nieve
19.
Mol Ecol ; 25(19): 4745-56, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27497431

RESUMEN

Natural populations are becoming increasingly fragmented which is expected to affect their viability due to inbreeding depression, reduced genetic diversity and increased sensitivity to demographic and environmental stochasticity. In small and highly inbred populations, the introduction of only a few immigrants may increase vital rates significantly. However, very few studies have quantified the long-term success of immigrants and inbred individuals in natural populations. Following an episode of natural immigration to the isolated, severely inbred Scandinavian wolf (Canis lupus) population, we demonstrate significantly higher pairing and breeding success for offspring to immigrants compared to offspring from native, inbred pairs. We argue that inbreeding depression is the underlying mechanism for the profound difference in breeding success. Highly inbred wolves may have lower survival during natal dispersal as well as competitive disadvantage to find a partner. Our study is one of the first to quantify and compare the reproductive success of first-generation offspring from migrants vs. native, inbred individuals in a natural population. Indeed, our data demonstrate the profound impact single immigrants can have in small, inbred populations, and represent one of very few documented cases of genetic rescue in a population of large carnivores.


Asunto(s)
Genética de Población , Depresión Endogámica , Lobos/genética , Distribución Animal , Animales , Variación Genética , Reproducción , Países Escandinavos y Nórdicos
20.
BMC Vet Res ; 12(1): 156, 2016 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-27459965

RESUMEN

BACKGROUND: Sarcoptic mange, a parasitic disease caused by the mite Sarcoptes scabiei, is regularly reported on wolves Canis lupus in Scandinavia. We describe the distribution and transmission of this parasite within the small but recovering wolf population by analysing 269 necropsy reports and performing a serological survey on 198 serum samples collected from free-ranging wolves between 1998 and 2013. RESULTS: The serological survey among 145 individual captured Scandinavian wolves (53 recaptures) shows a consistent presence of antibodies against sarcoptic mange. Seropositivity among all captured wolves was 10.1 % (CI. 6.4 %-15.1 %). Sarcoptic mange-related mortality reported at necropsy was 5.6 % and due to secondary causes, predominantly starvation. In the southern range of the population, seroprevalence was higher, consistent with higher red fox densities. Female wolves had a lower probability of being seropositive than males, but for both sexes the probability increased with pack size. Recaptured individuals changing from seropositive to seronegative suggest recovery from sarcoptic mange. The lack of seropositive pups (8-10 months, N = 56) and the occurrence of seropositive and seronegative individuals in the same pack indicates interspecific transmission of S. scabiei into this wolf population. CONCLUSIONS: We consider sarcoptic mange to have little effect on the recovery of the Scandinavian wolf population. Heterogenic infection patterns on the pack level in combination with the importance of individual-based factors (sex, pack size) and the north-south gradient for seroprevalence suggests low probability of wolf-to-wolf transmission of S. scabiei in Scandinavia.


Asunto(s)
Escabiosis/veterinaria , Lobos/parasitología , Animales , Anticuerpos/sangre , Femenino , Masculino , Sarcoptes scabiei , Escabiosis/sangre , Escabiosis/epidemiología , Países Escandinavos y Nórdicos/epidemiología , Estudios Seroepidemiológicos , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA