Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
1.
bioRxiv ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38979212

RESUMEN

Cognitive neuroscience has advanced significantly due to the availability of openly shared datasets. Large sample sizes, large amounts of data per person, and diversity in tasks and data types are all desirable, but are difficult to achieve in a single dataset. Here, we present an open dataset with N = 101 participants and 6 hours of scanning per participant, with 6 multifaceted cognitive tasks including 2 hours of naturalistic movie viewing. This datasets' combination of ample sample size, extensive data per participant, more than 600 hours worth of data, and a wide range of experimental conditions - including cognitive, affective, social, and somatic/interoceptive tasks - positions it uniquely for probing important questions in cognitive neuroscience.

2.
Proc Natl Acad Sci U S A ; 121(25): e2310433121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38857402

RESUMEN

Pleasure and pain are two fundamental, intertwined aspects of human emotions. Pleasurable sensations can reduce subjective feelings of pain and vice versa, and we often perceive the termination of pain as pleasant and the absence of pleasure as unpleasant. This implies the existence of brain systems that integrate them into modality-general representations of affective experiences. Here, we examined representations of affective valence and intensity in an functional MRI (fMRI) study (n = 58) of sustained pleasure and pain. We found that the distinct subpopulations of voxels within the ventromedial and lateral prefrontal cortices, the orbitofrontal cortex, the anterior insula, and the amygdala were involved in decoding affective valence versus intensity. Affective valence and intensity predictive models showed significant decoding performance in an independent test dataset (n = 62). These models were differentially connected to distinct large-scale brain networks-the intensity model to the ventral attention network and the valence model to the limbic and default mode networks. Overall, this study identified the brain representations of affective valence and intensity across pleasure and pain, promoting a systems-level understanding of human affective experiences.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Dolor , Placer , Humanos , Placer/fisiología , Masculino , Femenino , Dolor/fisiopatología , Dolor/psicología , Adulto , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Adulto Joven , Amígdala del Cerebelo/fisiología , Amígdala del Cerebelo/diagnóstico por imagen , Emociones/fisiología , Corteza Prefrontal/fisiología , Corteza Prefrontal/diagnóstico por imagen , Afecto/fisiología
3.
Pain ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38718196

RESUMEN

ABSTRACT: Ecological momentary assessment (EMA) allows for the collection of participant-reported outcomes (PROs), including pain, in the normal environment at high resolution and with reduced recall bias. Ecological momentary assessment is an important component in studies of pain, providing detailed information about the frequency, intensity, and degree of interference of individuals' pain. However, there is no universally agreed on standard for summarizing pain measures from repeated PRO assessment using EMA into a single, clinically meaningful measure of pain. Here, we quantify the accuracy of summaries (eg, mean and median) of pain outcomes obtained from EMA and the effect of thresholding these summaries to obtain binary clinical end points of chronic pain status (yes/no). Data applications and simulations indicate that binarizing empirical estimators (eg, sample mean, random intercept linear mixed model) can perform well. However, linear mixed-effect modeling estimators that account for the nonlinear relationship between average and variability of pain scores perform better for quantifying the true average pain and reduce estimation error by up to 50%, with larger improvements for individuals with more variable pain scores. We also show that binarizing pain scores (eg, <3 and ≥3) can lead to a substantial loss of statistical power (40%-50%). Thus, when examining pain outcomes using EMA, the use of linear mixed models using the entire scale (0-10) is superior to splitting the outcomes into 2 groups (<3 and ≥3) providing greater statistical power and sensitivity.

4.
J Neural Transm (Vienna) ; 131(5): 509-523, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38630190

RESUMEN

Substance use disorders (SUDs) are the most costly and prevalent psychiatric conditions. Recent calls emphasize a need for biomarkers-measurable, stable indicators of normal and abnormal processes and response to treatment or environmental agents-and, in particular, brain-based neuromarkers that will advance understanding of the neurobiological basis of SUDs and clinical practice. To develop neuromarkers, researchers must be grounded in evidence that a putative marker (i) is sensitive and specific to the psychological phenomenon of interest, (ii) constitutes a predictive model, and (iii) generalizes to novel observations (e.g., through internal cross-validation and external application to novel data). These neuromarkers may be used to index risk of developing SUDs (susceptibility), classify individuals with SUDs (diagnostic), assess risk for progression to more severe pathology (prognostic) or index current severity of pathology (monitoring), detect response to treatment (response), and predict individualized treatment outcomes (predictive). Here, we outline guidelines for developing and assessing neuromarkers, we then review recent advances toward neuromarkers in addiction neuroscience centering our discussion around neuromarkers of craving-a core feature of SUDs. In doing so, we specifically focus on the Neurobiological Craving Signature (NCS), which show great promise for meeting the demand of neuromarkers.


Asunto(s)
Biomarcadores , Trastornos Relacionados con Sustancias , Humanos , Biomarcadores/metabolismo , Trastornos Relacionados con Sustancias/diagnóstico , Trastornos Relacionados con Sustancias/metabolismo , Encéfalo/metabolismo , Conducta Adictiva/diagnóstico , Conducta Adictiva/metabolismo
5.
J Neurosci ; 44(26)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38664013

RESUMEN

The periaqueductal gray (PAG) is a small midbrain structure that surrounds the cerebral aqueduct, regulates brain-body communication, and is often studied for its role in "fight-or-flight" and "freezing" responses to threat. We used ultra-high-field 7 T fMRI to resolve the PAG in humans and distinguish it from the cerebral aqueduct, examining its in vivo function during a working memory task (N = 87). Both mild and moderate cognitive demands elicited spatially similar patterns of whole-brain blood oxygenation level-dependent (BOLD) response, and moderate cognitive demand elicited widespread BOLD increases above baseline in the brainstem. Notably, these brainstem increases were not significantly greater than those in the mild demand condition, suggesting that a subthreshold brainstem BOLD increase occurred for mild cognitive demand as well. Subject-specific masks were group aligned to examine PAG response. In PAG, both mild and moderate demands elicited a well-defined response in ventrolateral PAG, a region thought to be functionally related to anticipated painful threat in humans and nonhuman animals-yet, the present task posed only the most minimal (if any) "threat," with the cognitive tasks used being approximately as challenging as remembering a phone number. These findings suggest that the PAG may play a more general role in visceromotor regulation, even in the absence of threat.


Asunto(s)
Imagen por Resonancia Magnética , Memoria a Corto Plazo , Sustancia Gris Periacueductal , Humanos , Sustancia Gris Periacueductal/fisiología , Masculino , Femenino , Memoria a Corto Plazo/fisiología , Adulto , Imagen por Resonancia Magnética/métodos , Adulto Joven , Mapeo Encefálico
7.
Pain ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38466872

RESUMEN

ABSTRACT: Chronic pain remains poorly managed. The integration of immersive technologies (ie, virtual reality [VR]) with neuroscience-based principles may provide effective pain treatment by targeting cognitive and affective neural processes that maintain pain and therefore potentially changing neurobiological circuits associated with pain chronification and amplification. We tested the effectiveness of a novel VR neuroscience-based therapy (VRNT) to improve pain-related outcomes in n = 31 participants with chronic back pain, evaluated against usual care (waitlist control; n = 30) in a 2-arm randomized clinical trial (NCT04468074). We also conducted pre-treatment and post-treatment MRI to test whether VRNT affects brain networks previously linked to chronic pain and treatment effects. Compared with the control condition, VRNT led to significantly reduced pain intensity (g = 0.63) and pain interference (g = 0.84) at post-treatment vs pre-treatment, with effects persisting at 2-week follow-up. These improvements were partially mediated by reduced kinesiophobia and pain catastrophizing. Several secondary clinical outcomes were also improved by VRNT, including disability, quality of life, sleep, and fatigue. In addition, VRNT was associated with increases in dorsomedial prefrontal functional connectivity with the superior somatomotor, anterior prefrontal and visual cortices, and decreased white matter fractional anisotropy in the corpus callosum adjacent to the anterior cingulate, relative to the control condition. Thus, VRNT showed preliminary efficacy in significantly reducing pain and improving overall functioning, possibly through changes in somatosensory and prefrontal brain networks.

8.
Pain ; 165(7): 1434-1449, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38452202

RESUMEN

ABSTRACT: Understanding, measuring, and mitigating pain-related suffering is a key challenge for both clinical care and pain research. However, there is no consensus on what exactly the concept of pain-related suffering includes, and it is often not precisely operationalized in empirical studies. Here, we (1) systematically review the conceptualization of pain-related suffering in the existing literature, (2) develop a definition and a conceptual framework, and (3) use machine learning to cross-validate the results. We identified 111 articles in a systematic search of Web of Science, PubMed, PsychINFO, and PhilPapers for peer-reviewed articles containing conceptual contributions about the experience of pain-related suffering. We developed a new procedure for extracting and synthesizing study information based on the cross-validation of qualitative analysis with an artificial intelligence-based approach grounded in large language models and topic modeling. We derived a definition from the literature that is representative of current theoretical views and describes pain-related suffering as a severely negative, complex, and dynamic experience in response to a perceived threat to an individual's integrity as a self and identity as a person. We also offer a conceptual framework of pain-related suffering distinguishing 8 dimensions: social, physical, personal, spiritual, existential, cultural, cognitive, and affective. Our data show that pain-related suffering is a multidimensional phenomenon that is closely related to but distinct from pain itself. The present analysis provides a roadmap for further theoretical and empirical development.


Asunto(s)
Procesamiento de Lenguaje Natural , Dolor , Humanos , Dolor/psicología , Dolor/diagnóstico , Estrés Psicológico/psicología , Aprendizaje Automático
9.
Nat Neurosci ; 27(5): 975-987, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38519748

RESUMEN

Cognitive reappraisal is fundamental to cognitive therapies and everyday emotion regulation. Analyses using Bayes factors and an axiomatic systems identification approach identified four reappraisal-related components encompassing distributed neural activity patterns across two independent functional magnetic resonance imaging (fMRI) studies (n = 182 and n = 176): (1) an anterior prefrontal system selectively involved in cognitive reappraisal; (2) a fronto-parietal-insular system engaged by both reappraisal and emotion generation, demonstrating a general role in appraisal; (3) a largely subcortical system activated during negative emotion generation but unaffected by reappraisal, including amygdala, hypothalamus and periaqueductal gray; and (4) a posterior cortical system of negative emotion-related regions downregulated by reappraisal. These systems covaried with individual differences in reappraisal success and were differentially related to neurotransmitter binding maps, implicating cannabinoid and serotonin systems in reappraisal. These findings challenge 'limbic'-centric models of reappraisal and provide new systems-level targets for assessing and enhancing emotion regulation.


Asunto(s)
Teorema de Bayes , Mapeo Encefálico , Encéfalo , Regulación Emocional , Imagen por Resonancia Magnética , Humanos , Regulación Emocional/fisiología , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiología , Masculino , Femenino , Mapeo Encefálico/métodos , Adulto , Adulto Joven , Emociones/fisiología
11.
Eur J Pain ; 28(5): 845-854, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38146898

RESUMEN

BACKGROUND: Accurately perceiving other people's pain is important in both daily life and healthcare settings. However, judging other's pain is inherently difficult and can be biased by various social and cultural factors. Here, we examined whether perception of others' pain and pain management recommendations are socially influenced by seeing the opinions of other raters. METHODS: In Experiment 1 (N = 50), participants rated pictures depicting injured hands or feet of pre-selected high, medium and low intensities. Each picture was preceded by cues indicating ratings of 10 previous participants. Cues were randomized to indicate low (SocialLOW) or high (SocialHIGH) pain judgements and were not predictive of actual normative pain intensity. In Experiment 2 (N = 209), participants viewed facial video clips of patients with chronic shoulder pain making painful movements. They estimated patients' pain intensity and provided pain management recommendations. RESULTS: Experiment 1 revealed that perceivers' pain estimates were significantly and substantially higher for stimuli following SocialHIGH than SocialLOW cues (Cohen's d = 1.26, p < 0.001) and paralleled by increased skin conductance responses. Experiment 2 replicated the effect of social cues on pain judgements (d = 0.58, p < 0.001). However, social cues did not influence post-study pain management recommendations, potentially due to memory limitations. CONCLUSIONS: Together, these studies reveal that judgements of others' pain are robustly modulated by information about others' opinions. Future research could test the prevalence and strength of such effects in clinical settings. SIGNIFICANCE: The present study shows that even arbitrary opinions of other raters influence the perception of others' pain. This finding adds new insight into the growing evidence of social and cultural biases in pain estimation.


Asunto(s)
Señales (Psicología) , Dolor , Humanos , Empatía , Percepción del Dolor/fisiología , Percepción Social
13.
bioRxiv ; 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37790543

RESUMEN

Placebo analgesia is a replicable and well-studied phenomenon, yet it remains unclear to what degree it includes modulation of nociceptive processes. Some studies find effects consistent with nociceptive effects, but meta-analyses show that these effects are often small. We analyzed placebo analgesia in a large fMRI study (N = 392), including placebo effects on brain responses to noxious stimuli. Placebo treatment caused robust analgesia in both conditioned thermal and unconditioned mechanical pain. Placebo did not decrease fMRI activity in nociceptive pain regions, including the Neurologic Pain Signature (NPS) and pre-registered spinothalamic pathway regions, with strong support from Bayes Factor analyses. However, placebo treatment affected activity in pre-registered analyses of a second neuromarker, the Stimulus Intensity Independent Pain Signature (SIIPS), and several associated a priori brain regions related to motivation and value, in both thermal and mechanical pain. Individual differences in behavioral analgesia were correlated with neural changes in both thermal and mechanical pain. Our results indicate that processes related to affective and cognitive aspects of pain primarily drive placebo analgesia.

14.
Transl Psychiatry ; 13(1): 292, 2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37660045

RESUMEN

Social anxiety disorder (SAD) is characterized by an excessive fear of social evaluation and a persistently negative view of the self. Here we test the hypothesis that negative biases in brain responses and in social learning of self-related information contribute to the negative self-image and low self-esteem characteristic of SAD. Adult participants diagnosed with social anxiety (N = 21) and matched controls (N = 23) rated their performance and received social feedback following a stressful public speaking task. We investigated how positive versus negative social feedback altered self-evaluation and state self-esteem and used functional Magnetic Resonance Imaging (fMRI) to characterize brain responses to positive versus negative feedback. Compared to controls, participants with SAD updated their self-evaluation and state self-esteem significantly more based on negative compared to positive social feedback. Responses in the frontoparietal network correlated with and mirrored these behavioral effects, with greater responses to positive than negative feedback in non-anxious controls but not in participants with SAD. Responses to social feedback in the anterior insula and other areas mediated the effects of negative versus positive feedback on changes in self-evaluation. In non-anxious participants, frontoparietal brain areas may contribute to a positive social learning bias. In SAD, frontoparietal areas are less recruited overall and less attuned to positive feedback, possibly reflecting differences in attention allocation and cognitive regulation. More negatively biased brain responses and social learning could contribute to maintaining a negative self-image in SAD and other internalizing disorders, thereby offering important new targets for interventions.


Asunto(s)
Fobia Social , Aprendizaje Social , Adulto , Humanos , Fobia Social/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Autoimagen , Autoevaluación (Psicología)
15.
JAMA Netw Open ; 6(9): e2333846, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37768666

RESUMEN

Importance: In primary chronic back pain (CBP), the belief that pain indicates tissue damage is both inaccurate and unhelpful. Reattributing pain to mind or brain processes may support recovery. Objectives: To test whether the reattribution of pain to mind or brain processes was associated with pain relief in pain reprocessing therapy (PRT) and to validate natural language-based tools for measuring patients' symptom attributions. Design, Setting, and Participants: This secondary analysis of clinical trial data analyzed natural language data from patients with primary CBP randomized to PRT, placebo injection control, or usual care control groups and treated in a US university research setting. Eligible participants were adults aged 21 to 70 years with CBP recruited from the community. Enrollment extended from 2017 to 2018, with the current analyses conducted from 2020 to 2022. Interventions: PRT included cognitive, behavioral, and somatic techniques to support reattributing pain to nondangerous, reversible mind or brain causes. Subcutaneous placebo injection and usual care were hypothesized not to affect pain attributions. Main Outcomes and Measures: At pretreatment and posttreatment, participants listed their top 3 perceived causes of pain in their own words (eg, football injury, bad posture, stress); pain intensity was measured as last-week average pain (0 to 10 rating, with 0 indicating no pain and 10 indicating greatest pain). The number of attributions categorized by masked coders as reflecting mind or brain processes were summed to yield mind-brain attribution scores (range, 0-3). An automated scoring algorithm was developed and benchmarked against human coder-derived scores. A data-driven natural language processing (NLP) algorithm identified the dimensional structure of pain attributions. Results: We enrolled 151 adults (81 female [54%], 134 White [89%], mean [SD] age, 41.1 [15.6] years) reporting moderate severity CBP (mean [SD] intensity, 4.10 [1.26]; mean [SD] duration, 10.0 [8.9] years). At pretreatment, 41 attributions (10%) were categorized as mind- or brain-related across intervention conditions. PRT led to significant increases in mind- or brain-related attributions, with 71 posttreatment attributions (51%) in the PRT condition categorized as mind- or brain-related, as compared with 22 (8%) in control conditions (mind-brain attribution scores: PRT vs placebo, g = 1.95 [95% CI, 1.45-2.47]; PRT vs usual care, g = 2.06 [95% CI, 1.57-2.60]). Consistent with hypothesized PRT mechanisms, increases in mind-brain attribution score were associated with reductions in pain intensity at posttreatment (standardized ß = -0.25; t127 = -2.06; P = .04) and mediated the effects of PRT vs control on 1-year follow-up pain intensity (ß = -0.35 [95% CI, -0.07 to -0.63]; P = .05). The automated word-counting algorithm and human coder-derived scores achieved moderate and substantial agreement at pretreatment and posttreatment (Cohen κ = 0.42 and 0.68, respectively). The data-driven NLP algorithm identified a principal dimension of mind and brain vs biomechanical attributions, converging with hypothesis-driven analyses. Conclusions and Relevance: In this secondary analysis of a randomized trial, PRT increased attribution of primary CBP to mind- or brain-related causes. Increased mind-brain attribution was associated with reductions in pain intensity.


Asunto(s)
Dolor de la Región Lumbar , Adulto , Humanos , Femenino , Dolor de la Región Lumbar/terapia , Dolor de Espalda/terapia , Manejo del Dolor , Dimensión del Dolor , Encéfalo
16.
Nat Metab ; 5(9): 1483-1493, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37640944

RESUMEN

It is well-known that food-cue reactivity (FCR) is positively associated with body mass index (BMI)1 and weight change2, but the mechanisms underlying these relationships are incompletely understood. One prominent theory of craving posits that the elaboration of a desired substance through sensory imagery intensifies cravings, thereby promoting consumption3. Olfaction is integral to food perception, yet the ability to imagine odours varies widely4. Here we test in a basic observational study whether this large variation in olfactory imagery drives FCR strength to promote adiposity in 45 adults (23 male). We define odour-imagery ability as the extent to which imagining an odour interferes with the detection of a weak incongruent odour (the 'interference effect'5). As predicted in our preregistration, the interference effect correlates with the neural decoding of imagined, but not real, odours. These perceptual and neural measures of odour imagery are in turn associated with FCR, defined by the rated craving intensity of liked foods and cue-potentiated intake. Finally, odour imagery exerts positive indirect effects on changes in BMI and body-fat percentage over one year via its influences on FCR. These findings establish odour imagery as a driver of FCR that in turn confers risk for weight gain.


Asunto(s)
Adiposidad , Odorantes , Adulto , Humanos , Masculino , Ansia , Obesidad , Aumento de Peso
17.
Transl Psychiatry ; 13(1): 285, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37604880

RESUMEN

Functional somatic syndromes (FSS) include fibromyalgia, irritable bowel syndrome (IBS), and others. In FSS patients, merely viewing negative affective pictures can elicit increased physical symptoms. Our aim was to investigate the neural mechanisms underlying such negative affect-induced physical symptoms in FSS patients. Thirty patients with fibromyalgia and/or IBS and 30 healthy controls (all women) watched neutral, positive and negative affective picture blocks during functional MRI scanning and rated negative affect and physical symptoms after every block. We compared brain-wide activation during negative versus neutral picture viewing in FSS patients versus controls using robust general linear model analysis. Further, we compared neurologic pain signature (NPS), stimulus intensity-independent pain signature (SIIPS) and picture-induced negative emotion signature (PINES) responses to the negative versus neutral affect contrast and investigated whether they mediated between-group differences in affective picture-induced physical symptom reporting. More physical symptoms were reported after viewing negative compared to neutral pictures, and this effect was larger in patients than controls (p = 0.025). Accordingly, patients showed stronger activation in somatosensory regions during negative versus neutral picture viewing. NPS, but not SIIPS nor PINES, responses were higher in patients than controls during negative versus neutral pictures (p = 0.026). These differential NPS responses partially mediated between-group differences in physical symptoms. In conclusion, picture-induced negative affect elicits physical symptoms in FSS patients as a result of activation of somatosensory and nociceptive brain patterns, supporting the idea that affect-driven alterations in processing of somatic signals is a critical mechanism underlying FSS.


Asunto(s)
Fibromialgia , Síndrome del Colon Irritable , Humanos , Femenino , Fibromialgia/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Dolor , Afecto
18.
medRxiv ; 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37546872

RESUMEN

Chronic pain remains poorly managed. The integration of innovative immersive technologies (i.e., virtual reality (VR)) with recent neuroscience-based principles that position the brain as the key organ of chronic pain may provide a more effective pain treatment than traditional behavioral therapies. By targeting cognitive and affective processes that maintain pain and potentially directly changing neurobiological circuits associated with pain chronification and amplification, VR-based pain treatment has the potential for significant and long-lasting pain relief. We tested the effectiveness of a novel VR neuroscience-based therapy (VRNT) to improve pain-related outcomes in n = 31 participants with chronic back pain, evaluated against usual care (n = 30) in a 2-arm randomized clinical trial ( NCT04468074) . We also conducted pre- and post-treatment MRI to test whether VRNT affects brain networks previously linked to chronic pain and treatment effects. Compared to the control condition, VRNT led to significantly reduced pain intensity (g = 0.63) and pain interference (g = 0.84) at post-treatment vs. pre-treatment, with effects persisting at 2-week follow-up. The improvements were partially mediated by reduced kinesiophobia and pain catastrophizing. Several secondary clinical outcomes were also improved, including disability, quality of life, sleep, and fatigue. In addition, VRNT was associated with modest increases in functional connectivity of the somatomotor and default mode networks and decreased white matter fractional anisotropy in the corpus callosum adjacent to anterior cingula, relative to the control condition. This, VRNT showed preliminary efficacy in significantly reducing pain and improving overall functioning, possibly via changes in somatosensory and prefrontal brain networks.

19.
bioRxiv ; 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37546889

RESUMEN

The brain continuously anticipates the energetic needs of the body and prepares to meet those needs before they arise, a process called allostasis. In support of allostasis, the brain continually models the internal state of the body, a process called interoception. Using published tract-tracing studies in non-human animals as a guide, we previously identified a large-scale system supporting allostasis and interoception in the human brain with functional magnetic resonance imaging (fMRI) at 3 Tesla. In the present study, we replicated and extended this system in humans using 7 Tesla fMRI (N = 91), improving the precision of subgenual and pregenual anterior cingulate topography as well as brainstem nuclei mapping. We verified over 90% of the anatomical connections in the hypothesized allostatic-interoceptive system observed in non-human animal research. We also identified functional connectivity hubs verified in tract-tracing studies but not previously detected using 3 Tesla fMRI. Finally, we demonstrated that individuals with stronger fMRI connectivity between system hubs self-reported greater interoceptive awareness, building on construct validity evidence from our earlier paper. Taken together, these results strengthen evidence for the existence of a whole-brain system supporting interoception in the service of allostasis and we consider the implications for mental and physical health.

20.
bioRxiv ; 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37547018

RESUMEN

Pain is a private experience observable through various verbal and non-verbal behavioural manifestations. Despite the importance of understanding the cerebral mechanisms underlying those manifestations, there is currently limited knowledge on the neural correlates of facial expression of pain. Here, we applied a brain decoding approach to functional magnetic resonance imaging (fMRI) data to predict the facial expression of pain during noxious heat stimulation in healthy volunteers. Results revealed the inability of previously developed pain neurosignatures to predict the facial expression of pain. We thus propose a Facial Expression of Pain Signature (FEPS) conveying distinctive information about the brain response to nociceptive stimulations with minimal overlap with other pain-relevant brain signatures. The FEPS provides a better characterization of the distributed cerebral representations of non-verbal pain communication. This underscores the complexity of pain phenomenology by reinforcing the view that neurosignatures conceived as biomarkers must be interpreted in relation to the specific pain manifestation predicted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA