Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(27): 29290-29299, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39005806

RESUMEN

A critical prelude to any community odor assessment should be the prioritization of specific chemical odorants that are most responsible for targeted downwind odors. Unfortunately, and historically, this is a step that has often been bypassed or overlooked. However, correct understanding of the specific impactful volatile organic compounds (VOCs) can inform the follow-on sampling, analytical, and remediation strategies that are most appropriate and efficient, based upon the chemistry behind the issue. With this understanding, the techniques and sampling strategies presented herein should be viewed as a qualitative prelude rather than an addendum to a follow-up routine, automated downwind odor monitoring. Downwind odor characteristics can vary depending upon the size of the upwind source, interim topography, and wind conditions. At one extreme, the downwind odor plume from a relatively large source located on a flat open plain and under stable, near-straight line wind conditions can be rather broad, sustained, and predictable. In contrast, the plume from a small point source (e.g., a roof vent stack) located on irregular topography and under rapidly shifting wind conditions can be intermittent and fleeting ("spikes" or "bursts"). These transient odor events can be surprisingly intense and offensive, despite their fleeting occurrence and perception. This work reports on improving and optimizing an environmental sampling strategy for odorant prioritization from such transient downwind odor conditions. This optimization addresses the challenges of (1) sampling of transient odor "spikes" and (2) prioritizing odors/odorants from multiple, closely colocated point sources under transient event conditions. Prioritizing is defined as identifying the key impactful odorants downwind. Grab air sampling protocol refinement has emerged from actual community environmental odor assessment projects. The challenge of assessing transient odor events has been mitigated by utilizing (a) rapid, odor-cued whole-air grab sampling (i.e., activated by and synchronous with the perceived sensory spikes) into metalized fluorinated ethylene polymer (m-FEP) gas sampling bags; (b) immediate transfer from bags onto solid-phase microextraction (SPME) fibers or sorbent tubes; and (c) maintaining refrigerated storage and shipment conditions between field collection and in-laboratory analysis. Results demonstrated approximately 11-fold increases in target odorant yields for 900 mL air sample capture on sorbent tube transfers from 2 to 3 s "burst" odor event bag captures compared to equivalent direct collections (with sorbent tubes) at the same downwind receptor location but during perceived (stable) odor "lull" periods. An application targeting general odor sampling and point-source differentiation utilizing tracer gases is also presented.

2.
Artículo en Inglés | MEDLINE | ID: mdl-34948693

RESUMEN

Solving environmental odor issues can be confounded by many analytical, technological, and socioeconomic factors. Considerable know-how and technologies can fail to properly identify odorants responsible for the downwind nuisance odor and, thereby, focus on odor mitigation strategies. We propose enabling solutions to environmental odor issues utilizing troubleshooting techniques developed for the food, beverage, and consumer products industries. Our research has shown that the odorant impact-priority ranking process can be definable and relatively simple. The initial challenge is the prioritization of environmental odor character from the perspective of the impacted citizenry downwind. In this research, we utilize a natural model from the animal world to illustrate the rolling unmasking effect (RUE) and discuss it more systematically in the context of the proposed environmental odorant prioritization process. Regardless of the size and reach of an odor source, a simplification of odor character and composition typically develops with increasing dilution downwind. An extreme odor simplification-upon-dilution was demonstrated for the prehensile-tailed porcupine (P.T. porcupine); its downwind odor frontal boundary was dominated by a pair of extremely potent character-defining odorants: (1) 'onion'/'body odor' and (2) 'onion'/'grilled' odorants. In contrast with the outer-boundary simplicity, the near-source assessment presented considerable compositional complexity and composite odor character difference. The ultimate significance of the proposed RUE approach is the illustration of naturally occurring phenomena that explain why some environmental odors and their sources can be challenging to identify and mitigate using an analytical-only approach (focused on compound identities and concentrations). These approaches rarely move beyond comprehensive lists of volatile compounds emitted by the source. The novelty proposed herein lies in identification of those few compounds responsible for the downwind odor impacts and requiring mitigation focus.


Asunto(s)
Olor Corporal , Odorantes , Animales , Industrias
3.
Artículo en Inglés | MEDLINE | ID: mdl-33562692

RESUMEN

Livestock production systems generate nuisance odor and gaseous emissions affecting local communities and regional air quality. There are also concerns about the occupational health and safety of farmworkers. Proven mitigation technologies that are consistent with the socio-economic challenges of animal farming are needed. We have been scaling up the photocatalytic treatment of emissions from lab-scale, aiming at farm-scale readiness. In this paper, we present the design, testing, and commissioning of a mobile laboratory for on-farm research and demonstration of performance in simulated farm conditions before testing to the farm. The mobile lab is capable of treating up to 1.2 m3/s of air with titanium dioxide, TiO2-based photocatalysis, and adjustable UV-A dose based on LED lamps. We summarize the main technical requirements, constraints, approach, and performance metrics for a mobile laboratory, such as the effectiveness (measured as the percent reduction) and cost of photocatalytic treatment of air. The commissioning of all systems with standard gases resulted in ~9% and 34% reduction of ammonia (NH3) and butan-1-ol, respectively. We demonstrated the percent reduction of standard gases increased with increased light intensity and treatment time. These results show that the mobile laboratory was ready for on-farm deployment and evaluating the effectiveness of UV treatment.


Asunto(s)
Contaminación del Aire , Ganado , Agricultura , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , Amoníaco/análisis , Animales , Gases , Laboratorios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA