RESUMEN
Synthetic pesticides are widely applied in modern agriculture, where they are used against diseases, pests, and weeds to secure crop yield and quality. However, their intensive application has led to widespread contamination of the environment, including soils. Due to their inherent toxicity, they might pose a risk to soil health by causing harm to non-target organisms and disrupting ecosystem services in both agricultural and other exposed soils. Following the Swiss National Action Plan on the reduction of pesticide risks, Agroscope has conducted several soil monitoring studies that are briefly presented here. All of them resort to different multi-residue trace analytical approaches to simultaneously quantify up to about 150 modern pesticides by either accelerated solvent, or Quick, Easy, Cheap, Efficient, Rugged, Safe (QuEChERS) extraction, followed by separation and detection with liquid chromatography-triple quadrupole mass spectrometry. While partly still in progress, our investigations led to the following major findings this far: Multiple pesticides are commonly present in soils, with individual concentrations in agricultural soils often reaching up to a few tens of µg/kg. Pesticide occurrence and concentrations in agricultural soils primarily depend on land use, land use history and cultivated crops. Pesticides can prevail much longer than predicted by their half-lives, and were found in soils even decades after conversion from conventional to organic farming. Corresponding residual fractions can be in the order of a few percent of the originally applied amounts. We further found negative associations of pesticide residues with the abundance of beneficial soil life, underpinning their potential risk to the fertility of agricultural soils. Traces of pesticides are also detected in soils to which they were never applied, indicating contamination, e.g., via spray drift or atmospheric deposition. These results confirm the general notion of both scientists and legislators that prospective risk assessments (RA; as executed during registration and use authorization) should be confirmed and adjusted by retrospective RA (e.g., by environmental monitoring studies of currently used compounds) to jointly lead to an overall reduced environmental risk of pesticides.
Asunto(s)
Plaguicidas , Suelo , Suiza , Ecosistema , Estudios Prospectivos , Estudios Retrospectivos , AgriculturaRESUMEN
Pesticides constitute an integral part of today's agriculture. Their widespread use leads to ubiquitous contamination of the environment, including soils. Soils are a precious resource providing vital functions to society - thus, it is of utmost importance to thoroughly assess the risk posed by widespread pesticide contamination. The exposure of non-target organisms to pesticides in soils is challenging to quantify since only a fraction of the total pesticide concentration is bioavailable. Here we measured and compared the bioavailable and total concentrations of three fungicides - boscalid, azoxystrobin, and epoxiconazole - and evaluated which concentration best predicts effects on nine microbial markers. The experiments were performed in three different soils at five time points over two months employing nearly 900 microcosms with a model plant. The total and bioavailable concentrations of azoxystrobin and boscalid decreased steadily during the trial to levels of 25 % and 8 % of the original concentration, respectively, while the concentration of epoxiconazole in soil nearly remained unchanged. The bioavailable fraction generally showed a slightly faster and more pronounced decline. The microbial markers varied in their sensitivity to the three fungicides. Specific microbial markers, such as arbuscular mycorrhizal fungi, and bacterial and archaeal ammonia oxidizers, were most sensitive to each of the fungicide treatments, making them suitable indicators for pesticide effects. Even though the responses were predominantly negative, they were also transient, and the impact was no longer evident after two months. Finally, the bioavailable fraction did not better predict the relationships between exposure and effect than the total concentration. This study demonstrates that key microbial groups are temporarily susceptible to a single fungicide application, pointing to the risk that repeated use of pesticides may disrupt vital soil functions such as nutrient cycling in agroecosystems.
Asunto(s)
Fungicidas Industriales , Micorrizas , Plaguicidas , Contaminantes del Suelo , Suelo , Microbiología del Suelo , Plaguicidas/análisis , Micorrizas/químicaRESUMEN
The intensive use of pesticides and their subsequent distribution to the environment and non-target organisms is of increasing concern. So far, little is known about the occurrence of pesticides in soils of untreated areasâsuch as ecological refugesâas well as the processes contributing to this unwanted pesticide contamination. In this study, we analyzed the presence and abundance of 46 different pesticides in soils from extensively managed grassland sites, as well as organically and conventionally managed vegetable fields (60 fields in total). Pesticides were found in all soils, including the extensive grassland sites, demonstrating a widespread background contamination of soils with pesticides. The results suggest that after conversion from conventional to organic farming, the organic fields reach pesticide levels as low as those of grassland sites not until 20 years later. Furthermore, the different pesticide composition patterns in grassland sites and organically managed fields facilitated differentiation between long-term persistence of residues and diffuse contamination processes, that is, short-scale redistribution (spray drift) and long-scale dispersion (atmospheric deposition), to offsite contamination.
Asunto(s)
Plaguicidas , Suelo , Agricultura , Pradera , Plaguicidas/análisis , Suelo/química , VerdurasRESUMEN
Arbuscular mycorrhizal fungi (AMF) provide essential nutrients to crops and are critically impacted by fertilization in agricultural ecosystems. Understanding shifts in AMF communities in and around crop roots under different fertilization regimes can provide important lessons for improving agricultural production and sustainability. Here, we compared the responses of AMF communities in the rhizosphere (RS) and root endosphere (ES) of wheat (Triticum aestivum) to different fertilization treatments, nonfertilization (control), mineral fertilization only (NPK), mineral fertilization plus wheat straw (NPKS), and mineral fertilization plus cow manure (NPKM). We employed high-throughput amplicon sequencing and investigated the diversity, community composition, and network structure of AMF communities to assess their responses to fertilization. Our results elucidated that AMF communities in the RS and ES respond differently to fertilization schemes. Long-term NPK application decreased the RS AMF alpha diversity significantly, whereas additional organic amendments (straw or manure) had no effect. In contrast, NPK fertilization increased the ES AMF alpha diversity significantly, while additional organic amendments decreased it significantly. The effect of different fertilization schemes on AMF network complexity in the RS and ES were similar to their effects on alpha diversity. Changes to AMF communities in the RS and ES correlated mainly with the pH and phosphorus level of the rhizosphere soil under long-term inorganic and organic fertilization regimes. We suggest that the AMF community in the roots should be given more consideration when studying the effects of fertilization regimes on AMF in agroecosystems. IMPORTANCE Arbuscular mycorrhizal fungi are an integral component of rhizospheres, bridging the soil and plant systems and are highly sensitive to fertilization. However, surprisingly little is known about how the response differs between the roots and the surrounding soil. Decreasing arbuscular mycorrhizal fungal diversity under fertilization has been reported, implying a potential reduction in the mutualism between plants and arbuscular mycorrhizal fungi. However, we found opposing responses to long-term fertilization managements of arbuscular mycorrhizal fungi in the wheat roots and rhizosphere soil. These results suggested that changes in the arbuscular mycorrhizal fungal community in soils do not reflect those in the roots, highlighting that the root arbuscular mycorrhizal fungal community is pertinent to understand arbuscular mycorrhizal fungi and their crop hosts' responses to anthropogenic influences.
Asunto(s)
Fertilizantes/análisis , Hongos/aislamiento & purificación , Micobioma , Micorrizas/aislamiento & purificación , Triticum/crecimiento & desarrollo , Hongos/clasificación , Hongos/genética , Estiércol/análisis , Minerales/análisis , Minerales/metabolismo , Micorrizas/clasificación , Micorrizas/genética , Fósforo/análisis , Fósforo/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Rizosfera , Suelo/química , Microbiología del Suelo , Triticum/metabolismoRESUMEN
Routinely, fungal-fungal interactions (FFI) are studied on agar surfaces. However, this format restricts high-resolution dynamic imaging. To gain experimental access to FFI at the hyphal level in real-time, we developed a microfluidic platform, a FFI device. This device utilises microchannel geometry to enhance the visibility of hyphal growth and provides control channels to allow comparisons between localised and systemic effects. We demonstrate its function by investigating the FFI between the biological control agent (BCA) Clonostachys rosea and the plant pathogen Fusarium graminearum. Microscope image analyses confirm the inhibitory effect of the necrotrophic BCA and we show that a loss of fluorescence in parasitised hyphae of GFP-tagged F. graminearum coincides with the detection of GFP in mycelium of C. rosea. The versatility of our device to operate under both water-saturated and nutrient-rich as well as dry and nutrient-deficient conditions, coupled with its spatio-temporal output, opens new opportunities to study relationships between fungi.
Asunto(s)
Fusarium/fisiología , Hifa/fisiología , Hypocreales/fisiología , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Microscopía Fluorescente , Control Biológico de Vectores , Fusarium/genética , Fusarium/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hypocreales/genética , Hypocreales/metabolismo , Viabilidad Microbiana , Factores de TiempoRESUMEN
Pesticides are applied in large quantities to agroecosystems worldwide. To date, few studies assessed the occurrence of pesticides in organically managed agricultural soils, and it is unresolved whether these pesticide residues affect soil life. We screened 100 fields under organic and conventional management with an analytical method containing 46 pesticides (16 herbicides, 8 herbicide transformation products, 17 fungicides, seven insecticides). Pesticides were found in all sites, including 40 organic fields. The number of pesticide residues was two times and the concentration nine times higher in conventional compared to organic fields. Pesticide number and concentrations significantly decreased with the duration of organic management. Even after 20 years of organic agriculture, up to 16 different pesticide residues were present. Microbial biomass and specifically the abundance of arbuscular mycorrhizal fungi, a widespread group of beneficial plant symbionts, were significantly negatively linked to the amount of pesticide residues in soil. This indicates that pesticide residues, in addition to abiotic factors such as pH, are a key factor determining microbial soil life in agroecosystems. This comprehensive study demonstrates that pesticides are a hidden reality in agricultural soils, and our results suggest that they have harmful effects on beneficial soil life.
Asunto(s)
Residuos de Plaguicidas , Plaguicidas , Contaminantes del Suelo , Agricultura , Residuos de Plaguicidas/análisis , Plaguicidas/análisis , Suelo , Contaminantes del Suelo/análisisRESUMEN
Soils store significant amounts of carbon (C) and thus can play a critical role for mitigating climate change. Crop roots represent the main C source in agricultural soils and are particularly important for long-term C storage in agroecosystems. To evaluate the potential of different farming systems to contribute to soil C sequestration and thus climate change mitigation, it is of great importance to gain a better understanding of the factors influencing root C allocation and distribution. So far, it is still unclear how root C allocation varies among farming systems and whether the choice of management practices can help to enhance root C inputs. In this study, we compared root C allocation in three main arable farming systems, namely organic, no-till, and conventional farming. We assessed root biomass, vertical root distribution to 0.75 m soil depth, and root-shoot ratios in 24 winter wheat fields. We further evaluated the relative importance of the farming system compared to site conditions and quantified the contribution of individual management practices and pedoclimatic drivers. Farming system explained one third of the variation in topsoil root biomass and root-shoot ratios, both being strongly positively related to weed biomass and soil organic C content and negatively to mineral nitrogen fertilization intensity. Root C allocation was significantly higher in organic farming as illustrated by an increase in root biomass (+40%) and root-shoot ratios (+60%) compared to conventional farming. By contrast, the overall impact of no-till was low. The importance of pedoclimatic conditions increased substantially with soil depth and deep root biomass was largely controlled by precipitation and soil texture, while the impact of management was close to zero. Our findings highlight the potential of organic farming in promoting root C inputs to topsoils and thereby contributing to soil organic matter build-up and improved soil quality in agroecosystems.
Asunto(s)
Carbono , Agricultura Orgánica , Agricultura , Nitrógeno/análisis , SueloRESUMEN
Terrestrial ecosystems are composed of above- and belowground community, which have been researched separately for many years even though the two subsystems clearly interact with each other. And it is still less understood how the above- and belowground ecosystems co-response to the changing precipitation in this changing world. To understand the interdependence and co-responses of plant-arbuscular mycorrhizal (AM) fungi symbioses to this facet of climate change, we examined the plant and AM fungal diversity and abundance along both, a transect from east to west of the desert which exhibits an annual precipitation gradient and a topographical transect of a typical sand dune which exhibits a gradient of soil moisture but equal precipitation, in a temperate desert in Central Asia. The results showed that community structure and biomass of plants and AM fungi along both transects were positively correlated and related to either precipitation or soil moisture, strongly support the Habitat Hypothesis. We found a soil moisture threshold between 0.64% and 0.86%, below which the variability of plant coverage, plant species richness, spore density and Shannon-wiener diversity index of both plant and AM fungal communities increased sharply yielding in an average threshold of 0.73% for the stability of plant-AMF symbioses. Our results highlight that increasing precipitation contributes to above- and belowground, and particularly to the overall AM-symbiotic stability in a desert ecosystem. This emphasizes the susceptibility and the importance plant-AMF symbioses for ecosystem stability to climate changes across different scales.
RESUMEN
Root-associated microbes play a key role in plant performance and productivity, making them important players in agroecosystems. So far, very few studies have assessed the impact of different farming systems on the root microbiota and it is still unclear whether agricultural intensification influences the structure and complexity of microbial communities. We investigated the impact of conventional, no-till, and organic farming on wheat root fungal communities using PacBio SMRT sequencing on samples collected from 60 farmlands in Switzerland. Organic farming harbored a much more complex fungal network with significantly higher connectivity than conventional and no-till farming systems. The abundance of keystone taxa was the highest under organic farming where agricultural intensification was the lowest. We also found a strong negative association (R2 = 0.366; P < 0.0001) between agricultural intensification and root fungal network connectivity. The occurrence of keystone taxa was best explained by soil phosphorus levels, bulk density, pH, and mycorrhizal colonization. The majority of keystone taxa are known to form arbuscular mycorrhizal associations with plants and belong to the orders Glomerales, Paraglomerales, and Diversisporales. Supporting this, the abundance of mycorrhizal fungi in roots and soils was also significantly higher under organic farming. To our knowledge, this is the first study to report mycorrhizal keystone taxa for agroecosystems, and we demonstrate that agricultural intensification reduces network complexity and the abundance of keystone taxa in the root microbiome.
Asunto(s)
Glomeromycota/clasificación , Micorrizas/clasificación , Raíces de Plantas/microbiología , Microbiología del Suelo , Agricultura , Glomeromycota/genética , Glomeromycota/aislamiento & purificación , Consorcios Microbianos , Micorrizas/genética , Micorrizas/aislamiento & purificación , Fósforo/metabolismo , Suelo/química , Suiza , Triticum/microbiologíaRESUMEN
Leguminous cover crop and living mulch species show not only great potential for providing multiple beneficial services to agro-ecosystems, but may also present pathological risks for other crops in rotations through shared pathogens, especially those of the genus Fusarium. Disease severity on roots of subterranean clover, white clover, winter and summer vetch grown as cover crop and living mulch species across five European sites as well as the frequency, distribution and aggressiveness to pea of Fusarium spp. recovered from the roots were assessed in 2013 and 2014. Disease symptoms were very low at all sites. Nevertheless, out of 1480 asymptomatic roots, 670 isolates of 14 Fusarium spp. were recovered. The most frequently isolated species in both years from all hosts were F. oxysporum and F. avenaceum accounting for 69% of total isolation percentage. They were common at the Swiss, Italian and German sites, whereas at the Swedish site F. oxysporum dominated and F. avenaceum occurred only rarely. The agressiveness and effect on pea biomass were tested in greenhouse assays for 72 isolates of six Fusarium species. Isolates of F. avenaceum caused severe root rot symptoms with mean severity index (DI) of 82 and 74% mean biomass reduction compared to the non-inoculated control. Fusarium oxysporum and F. solani isolates were higly variable in agressiveness and their impact on pea biomass. DI varied between 15 and 50 and biomass changes relative to the non-inoculated control -40% to +10%. Isolates of F. tricinctum, F. acuminatum and F. equiseti were non to weakly agressive often enhancing pea biomass. This study shows that some of the major pea pathogens are characterized by high ecological plasticity and have the ability to endophytically colonize the hosts studied that thus may serve as inoculum reservoir for susceptible main legume grain crops such as pea.
Asunto(s)
Productos Agrícolas/microbiología , Fabaceae/microbiología , Fusarium/aislamiento & purificación , Pisum sativum/microbiología , Raíces de Plantas/microbiologíaRESUMEN
Fusarium head blight, caused by fungi from the genus Fusarium, is one of the most harmful cereal diseases, resulting not only in severe yield losses but also in mycotoxin contaminated and health-threatening grains. Fusarium head blight is caused by a diverse set of species that have different host ranges, mycotoxin profiles and responses to agricultural practices. Thus, understanding the composition of Fusarium communities in the field is crucial for estimating their impact and also for the development of effective control measures. Up to now, most molecular tools that monitor Fusarium communities on plants are limited to certain species and do not distinguish other plant associated fungi. To close these gaps, we developed a sequencing-based community profiling methodology for crop-associated fungi with a focus on the genus Fusarium. By analyzing a 1600 bp long amplicon spanning the highly variable segments ITS and D1-D3 of the ribosomal operon by PacBio SMRT sequencing, we were able to robustly quantify Fusarium down to species level through clustering against reference sequences. The newly developed methodology was successfully validated in mock communities and provided similar results as the culture-based assessment of Fusarium communities by seed health tests in grain samples from different crop species. Finally, we exemplified the newly developed methodology in a field experiment with a wheat-maize crop sequence under different cover crop and tillage regimes. We analyzed wheat straw residues, cover crop shoots and maize grains and we could reveal that the cover crop hairy vetch (Vicia villosa) acts as a potent alternative host for Fusarium (OTU F.ave/tri) showing an eightfold higher relative abundance compared with other cover crop treatments. Moreover, as the newly developed methodology also allows to trace other crop-associated fungi, we found that vetch and green fallow hosted further fungal plant pathogens including Zymoseptoria tritici. Thus, besides their beneficial traits, cover crops can also entail phytopathological risks by acting as alternative hosts for Fusarium and other noxious plant pathogens. The newly developed sequencing based methodology is a powerful diagnostic tool to trace Fusarium in combination with other fungi associated to different crop species.
RESUMEN
We have recently identified two genes coding for inorganic phosphate transporters (Pht) in sorghum (Sorghum bicolor) and flax (Linum usitatissimum) that were induced in roots colonized by arbuscular mycorrhizal (AM) fungi. Mycorrhizal acquisition of inorganic phosphorus (Pi) was strongly affected by the combination of plant and AM fungal species, but the expression level of these genes coding for AM-inducible Pi transporters did not explain differences in plant phosphorus acquisition where flax and sorghum are sharing a common mycorrhizal network. In the present study, we investigated the possible role of fungal Pi transporters in the regulation of mycorrhizal Pi acquisition by measuring their expression in roots of flax and sorghum. One Pi transporter of Rhizophagus irregularis (RiPT5) showed a positive correlation with mycorrhizal Pi acquisition of sorghum. This indicates that a possible involvement in the regulation of mycorrhizal Pi acquisition. In general, expression of AMF Pi transporters was more related to mycorrhizal Pi acquisition of sorghum than of flax, indicating plant species-specific differences in the regulation of mycorrhizal Pi acquisition.
Asunto(s)
Lino/metabolismo , Proteínas Fúngicas/fisiología , Micorrizas/metabolismo , Proteínas de Transporte de Fosfato/fisiología , Fosfatos/metabolismo , Sorghum/metabolismo , Lino/microbiología , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Fósforo/metabolismo , Sorghum/microbiología , Especificidad de la EspecieRESUMEN
In a preceding microcosm study, we found huge differences in phosphorus (P) acquisition in sorghum (Sorghum bicolor) and flax (Linum usitatissimum) sharing a common mycorrhizal network (CMN). Is the transcriptional regulation of arbuscular mycorrhizal (AM)-induced inorganic orthophosphate (Pi) transporters responsible for these differences? We characterized and analyzed the expression of Pi transporters of the Pht1 family in both plant species, and identified two new AM-inducible Pi transporters in flax. Mycorrhizal Pi acquisition was strongly affected by the combination of plant and AM fungal species. A corresponding change in the expression of two AM-inducible Pht1 transporters was noticed in both plants (SbPT9, SbPT10, LuPT5 and LuPT8), but the effect was very weak. Overall, the expression level of these genes did not explain why flax took up more Pi from the CMN than did sorghum. The post-transcriptional regulation of the transporters and their biochemical properties may be more important for their function than the fine-tuning of their gene expression.
Asunto(s)
Lino/genética , Lino/microbiología , Micorrizas/fisiología , Proteínas de Transporte de Fosfato/genética , Fósforo/metabolismo , Sorghum/genética , Sorghum/microbiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Anotación de Secuencia Molecular , Familia de Multigenes , Especificidad de Órganos/genética , Proteínas de Transporte de Fosfato/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/microbiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
Arbuscular mycorrhizal (AM) fungi are one of the most important groups of plant symbionts. These fungi provide mineral nutrients to plants in exchange for carbon. Although substantial amounts of resources are exchanged, the factors that regulate trade in the AM symbiosis are poorly understood. Recent evidence for the reciprocally regulated exchange of resources by AM fungi and plants has led to the suggestion that these symbioses operate according to biological market dynamics, in which interactions are viewed from an economic perspective, and the most beneficial partners are favoured. Here we present five arguments that challenge the importance of reciprocally regulated exchange, and thereby market dynamics, for resource exchange in the AM symbiosis, and suggest that such reciprocity is only found in a subset of symbionts, under specific conditions. We instead propose that resource exchange in the AM symbiosis is determined by competition for surplus resources, functional diversity and sink strength.
RESUMEN
Arbuscular mycorrhizal (AM) fungi contribute to plant nitrogen (N) acquisition. Recent studies demonstrated the transport of N in the form of ammonium during AM symbiosis. Here, we hypothesize that induction of specific ammonium transporter (AMT) genes in Sorghum bicolor during AM colonization might play a key role in the functionality of the symbiosis. For the first time, combining a split-root experiment and microdissection technology, we were able to assess the precise expression pattern of two AM-inducible AMTs, SbAMT3;1 and SbAMT4. Immunolocalization was used to localize the protein of SbAMT3;1. The expression of SbAMT3;1 and SbAMT4 was greatly induced locally in root cells containing arbuscules and in adjacent cells. However, a split-root experiment revealed that this induction was not systemic. By contrast, a strictly AM-induced phosphate transporter (SbPt11) was expressed systemically in the split-root experiment. However, a gradient of expression was apparent. Immunolocalization analyses demonstrated that SbAMT3;1 was present only in cells containing developing arbuscules. Our results show that the SbAMT3;1 and SbAMT4 genes are expressed in root cortical cells, which makes them ready to accommodate arbuscules, a process of considerable importance in view of the short life span of arbuscules. Additionally, SbAMT3;1 might play an important role in N transfer during AM symbiosis.
Asunto(s)
Proteínas de Transporte de Catión/genética , Micorrizas/fisiología , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Sorghum/genética , Sorghum/microbiología , Simbiosis , Secuencia de Aminoácidos , Compuestos de Amonio/farmacocinética , Proteínas de Transporte de Catión/metabolismo , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Microdisección/métodos , Datos de Secuencia Molecular , Familia de Multigenes , Nitrógeno/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Sorghum/metabolismo , Levaduras/genéticaRESUMEN
Plants commonly live in a symbiotic association with arbuscular mycorrhizal fungi (AMF). They invest photosynthetic products to feed their fungal partners, which, in return, provide mineral nutrients foraged in the soil by their intricate hyphal networks. Intriguingly, AMF can link neighboring plants, forming common mycorrhizal networks (CMNs). What are the terms of trade in such CMNs between plants and their shared fungal partners? To address this question, we set up microcosms containing a pair of test plants, interlinked by a CMN of Glomus intraradices or Glomus mosseae. The plants were flax (Linum usitatissimum; a C(3) plant) and sorghum (Sorghum bicolor; a C(4) plant), which display distinctly different (13)C/(12)C isotope compositions. This allowed us to differentially assess the carbon investment of the two plants into the CMN through stable isotope tracing. In parallel, we determined the plants' "return of investment" (i.e. the acquisition of nutrients via CMN) using (15)N and (33)P as tracers. Depending on the AMF species, we found a strong asymmetry in the terms of trade: flax invested little carbon but gained up to 94% of the nitrogen and phosphorus provided by the CMN, which highly facilitated growth, whereas the neighboring sorghum invested massive amounts of carbon with little return but was barely affected in growth. Overall biomass production in the mixed culture surpassed the mean of the two monocultures. Thus, CMNs may contribute to interplant facilitation and the productivity boosts often found with intercropping compared with conventional monocropping.
Asunto(s)
Carbono/metabolismo , Lino/microbiología , Micorrizas/crecimiento & desarrollo , Sorghum/microbiología , Biomarcadores/análisis , Isótopos de Carbono/análisis , Técnicas de Cultivo/métodos , Lino/metabolismo , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Micorrizas/metabolismo , Fijación del Nitrógeno , Isótopos de Nitrógeno/análisis , Fósforo/metabolismo , Isótopos de Fósforo/análisis , Suelo/química , Microbiología del Suelo , Sorghum/metabolismo , Especificidad de la Especie , SimbiosisRESUMEN
Most achlorophyllous mycoheterotrophic (MH) plants obtain carbon (C) from mycorrhizal networks and indirectly exploit nearby autotrophic plants. We compared overlooked tropical rainforest MH plants associating with arbuscular mycorrhizal fungi (AMF) to well-reported temperate MH plants associating with ectomycorrhizal basidiomycetes. We investigated (13)C and (15)N abundances of MH plants, green plants, and AMF spores in Caribbean rainforests. Whereas temperate MH plants and fungi have higher δ(13)C than canopy trees, these organisms displayed similar δ(13)C values in rainforests, suggesting differences in C exchanges. Although temperate green and MH plants differ in δ(15)N, they display similar (15)N abundances, and likely nitrogen (N) sources, in rainforests. Contrasting with the high N concentrations shared by temperate MH plants and their fungi, rainforest MH plants had lower N concentrations than AMF, suggesting differences in C/N of exchanged nutrients. We provide a framework for isotopic studies on AMF networks and suggest that MH plants in tropical and temperate regions evolved different physiologies to adapt in diverging environments.