Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Asunto de la revista
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38324871

RESUMEN

Extended-spectrum beta-lactamase producing and ciprofloxacin-non-susceptible Escherichia coli are clinical and environmental issues. We evaluated the susceptibility profile of fosfomycin in non-susceptible E. coli isolated from urine and the environment. We measured the activity of fosfomycin against 319 and 36 E. coli strains from urine and environmental isolates, respectively, collected from rivers. Fosfomycin resistance profiles were investigated using the minimal inhibitory concentration (MIC), according to the Clinical and Laboratory Standards Institute (CLSI) and the European Committee for Antimicrobial Susceptibility Testing (EUCAST) guidelines. Antibiotic susceptibility testing revealed that 5% and 6.6% of urine samples were non-susceptible to fosfomycin according to CLSI and EUCAST guidelines, respectively. The fosfomycin MIC50/90 was 0.5/4 mg/L. Of the 36 E. coli isolates from river water, 11.1% and 13,8% were non-susceptible to fosfomycin according to CLSI and EUCAST, respectively (range ≤0.25 ≥512 mg/L). All the isolates with MIC ≥512 mg/L for fosfomycin showed the fosA3 gene. Fosfomycin resistance was more frequent in the environment than in clinical samples.


Asunto(s)
Infecciones por Escherichia coli , Fosfomicina , Humanos , Fosfomicina/farmacología , Ciprofloxacina/farmacología , Escherichia coli/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Escherichia coli/tratamiento farmacológico , beta-Lactamasas/genética , Pruebas de Sensibilidad Microbiana
2.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1535300

RESUMEN

ABSTRACT Extended-spectrum beta-lactamase producing and ciprofloxacin-non-susceptible Escherichia coli are clinical and environmental issues. We evaluated the susceptibility profile of fosfomycin in non-susceptible E. coli isolated from urine and the environment. We measured the activity of fosfomycin against 319 and 36 E. coli strains from urine and environmental isolates, respectively, collected from rivers. Fosfomycin resistance profiles were investigated using the minimal inhibitory concentration (MIC), according to the Clinical and Laboratory Standards Institute (CLSI) and the European Committee for Antimicrobial Susceptibility Testing (EUCAST) guidelines. Antibiotic susceptibility testing revealed that 5% and 6.6% of urine samples were non-susceptible to fosfomycin according to CLSI and EUCAST guidelines, respectively. The fosfomycin MIC50/90 was 0.5/4 mg/L. Of the 36 E. coli isolates from river water, 11.1% and 13,8% were non-susceptible to fosfomycin according to CLSI and EUCAST, respectively (range ≤0.25 ≥512 mg/L). All the isolates with MIC ≥512 mg/L for fosfomycin showed the fosA3 gene. Fosfomycin resistance was more frequent in the environment than in clinical samples.

3.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36012441

RESUMEN

Antimicrobial resistance is a public health burden with worldwide impacts and was recently identified as one of the major causes of death in 2019. Fosfomycin is an antibiotic commonly used to treat urinary tract infections, and resistance to it in Enterobacteriaceae is mainly due to the metalloenzyme FosA3 encoded by the fosA3 gene. In this work, we adapted a CRISPR-Cas9 system named pRE-FOSA3 to restore the sensitivity of a fosA3+ Escherichia coli strain. The fosA3+ E. coli strain was generated by transforming synthetic fosA3 into a nonpathogenic E. coli TOP10. To mediate the fosA3 disruption, two guide RNAs (gRNAs) were selected that used conserved regions within the fosA3 sequence of more than 700 fosA3+ E. coli isolates, and the resensitization plasmid pRE-FOSA3 was assembled by cloning the gRNA into pCas9. gRNA_195 exhibited 100% efficiency in resensitizing the bacteria to fosfomycin. Additionally, the edited strain lost the ampicillin resistance encoded in the same plasmid containing the synthetic fosA3 gene, despite not being the CRISPR-Cas9 target, indicating plasmid clearance. The in vitro analysis presented here points to a path that can be explored to assist the development of effective alternative methods of treatment against fosA3+ bacteria.


Asunto(s)
Infecciones por Escherichia coli , Fosfomicina , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Escherichia coli , Infecciones por Escherichia coli/microbiología , Fosfomicina/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , ARN Guía de Kinetoplastida , beta-Lactamasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA