Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 629(8010): 219-227, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570683

RESUMEN

The Integrator complex can terminate RNA polymerase II (Pol II) in the promoter-proximal region of genes. Previous work has shed light on how Integrator binds to the paused elongation complex consisting of Pol II, the DRB sensitivity-inducing factor (DSIF) and the negative elongation factor (NELF) and how it cleaves the nascent RNA transcript1, but has not explained how Integrator removes Pol II from the DNA template. Here we present three cryo-electron microscopy structures of the complete Integrator-PP2A complex in different functional states. The structure of the pre-termination complex reveals a previously unresolved, scorpion-tail-shaped INTS10-INTS13-INTS14-INTS15 module that may use its 'sting' to open the DSIF DNA clamp and facilitate termination. The structure of the post-termination complex shows that the previously unresolved subunit INTS3 and associated sensor of single-stranded DNA complex (SOSS) factors prevent Pol II rebinding to Integrator after termination. The structure of the free Integrator-PP2A complex in an inactive closed conformation2 reveals that INTS6 blocks the PP2A phosphatase active site. These results lead to a model for how Integrator terminates Pol II transcription in three steps that involve major rearrangements.


Asunto(s)
Microscopía por Crioelectrón , Modelos Moleculares , Proteína Fosfatasa 2 , ARN Polimerasa II , ARN Polimerasa II/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/ultraestructura , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/química , Proteína Fosfatasa 2/ultraestructura , Terminación de la Transcripción Genética , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/química , Unión Proteica , Factores de Elongación Transcripcional/metabolismo , Factores de Elongación Transcripcional/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/ultraestructura , Subunidades de Proteína/metabolismo , Subunidades de Proteína/química
2.
Commun Biol ; 6(1): 26, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36631659

RESUMEN

F1Fo ATP synthase functions as a biological generator and makes a major contribution to cellular energy production. Proton flow generates rotation in the Fo motor that is transferred to the F1 motor to catalyze ATP production, with flexible F1/Fo coupling required for efficient catalysis. F1Fo ATP synthase can also operate in reverse, hydrolyzing ATP and pumping protons, and in bacteria this function can be regulated by an inhibitory ε subunit. Here we present cryo-EM data showing E. coli F1Fo ATP synthase in different rotational and inhibited sub-states, observed following incubation with 10 mM MgATP. Our structures demonstrate how structural transitions within the inhibitory ε subunit induce torsional movement in the central stalk, thereby enabling its rotation within the Fο motor. This highlights the importance of the central rotor for flexible coupling of the F1 and Fo motors and provides further insight into the regulatory mechanism mediated by subunit ε.


Asunto(s)
Adenosina Trifosfato , Escherichia coli
3.
Nucleic Acids Res ; 50(5): 2889-2904, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35150565

RESUMEN

Regulated transcription termination provides an efficient and responsive means to control gene expression. In bacteria, rho-independent termination occurs through the formation of an intrinsic RNA terminator loop, which disrupts the RNA polymerase elongation complex, resulting in its dissociation from the DNA template. Bacteria have a number of pathways for overriding termination, one of which is the formation of mutually exclusive RNA motifs. ANTAR domains are a class of antiterminator that bind and stabilize dual hexaloop RNA motifs within the nascent RNA chain to prevent terminator loop formation. We have determined the structures of the dimeric ANTAR domain protein EutV, from Enterococcus faecialis, in the absence of and in complex with the dual hexaloop RNA target. The structures illustrate conformational changes that occur upon RNA binding and reveal that the molecular interactions between the ANTAR domains and RNA are restricted to a single hexaloop of the motif. An ANTAR domain dimer must contact each hexaloop of the dual hexaloop motif individually to prevent termination in eubacteria. Our findings thereby redefine the minimal ANTAR domain binding motif to a single hexaloop and revise the current model for ANTAR-mediated antitermination. These insights will inform and facilitate the discovery of novel ANTAR domain RNA targets.


Asunto(s)
Proteínas Bacterianas/química , Enterococcus faecalis/metabolismo , Proteínas de Unión al ARN/química , Terminación de la Transcripción Genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Bacteriano/genética , Regiones Terminadoras Genéticas , Transcripción Genética
4.
Biochemistry ; 60(9): 648-662, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33620209

RESUMEN

Almost all eukaryotic proteins receive diverse post-translational modifications (PTMs) that modulate protein activity. Many histone PTMs are well characterized, heavily influence gene regulation, and are often predictors of distinct transcriptional programs. Although our understanding of the histone PTM network has matured, much is yet to be understood about the roles of transcription factor (TF) PTMs, which might well represent a similarly complex and dynamic network of functional regulation. Members of the bromodomain and extra-terminal domain (BET) family of proteins recognize acetyllysine residues and relay the signals encoded by these modifications. Here, we have investigated the acetylation dependence of several functionally relevant BET-TF interactions in vitro using surface plasmon resonance, nuclear magnetic resonance, and X-ray crystallography. We show that motifs known to be acetylated in TFs E2F1 and MyoD1 can interact with all bromodomains of BRD2, BRD3, and BRD4. The interactions are dependent on diacetylation of the motifs and show a preference for the first BET bromodomain. Structural mapping of the interactions confirms a conserved mode of binding for the two TFs to the acetyllysine binding pocket of the BET bromodomains, mimicking that of other already established functionally important histone- and TF-BET interactions. We also examined a motif from the TF RelA that is known to be acetylated but were unable to observe any interaction, regardless of the acetylation state of the sequence. Our findings overall advance our understanding of BET-TF interactions and suggest a physical link between the important diacetylated motifs found in E2F1 and MyoD1 and the BET-family proteins.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Factor de Transcripción E2F1/metabolismo , Proteína MioD/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Proteínas de Ciclo Celular/química , Cristalografía por Rayos X , Factor de Transcripción E2F1/química , Histonas/química , Humanos , Lisina/química , Modelos Moleculares , Proteína MioD/química , Conformación Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Factores de Transcripción/química
5.
Protein Sci ; 30(2): 464-476, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33247496

RESUMEN

Chemical modifications of histone tails influence genome accessibility and the transcriptional state of eukaryotic cells. Lysine acetylation is one of the most common modifications and acetyllysine-binding bromodomains (BDs) provide a means for acetyllysine marks to be translated into meaningful cellular responses. Here, we have investigated the mechanism underlying the reported association between the Bromodomain and Extra Terminal (BET) family of BD proteins and the essential histone variant H2A.Z. We use NMR spectroscopy to demonstrate a physical interaction between the N-terminal tail of H2A.Z and the BDs of BRD2, BRD3, and BRD4, and show that the interaction is dependent on lysine acetylation in H2A.Z. The BDs preferentially engage a diacetylated H2A.Z-K4acK7ac motif that is reminiscent of sequences found in other biologically important BET BD target proteins, including histones and transcription factors. A H2A.Z-K7acK11ac motif can also bind BET BDs-with a preference for the second BD of each protein. Chemical shift perturbation mapping of the interactions, together with an X-ray crystal structure of BRD2-BD1 bound to H2A.Z-K4acK7ac, shows that H2A.Z binds the canonical AcK binding pocket of the BDs. This mechanism mirrors the conserved binding mode that is unique to the BET BDs, in which two acetylation marks are read simultaneously by a single BD. Our findings provide structural corroboration of biochemical and cell biological data that link H2A.Z and BET-family proteins, suggesting that the function of H2A.Z is enacted through interactions with these chromatin readers.


Asunto(s)
Proteínas de Ciclo Celular/química , Histonas/química , Factores de Transcripción/química , Acetilación , Cristalografía por Rayos X , Humanos , Unión Proteica , Dominios Proteicos , Relación Estructura-Actividad
6.
Proc Natl Acad Sci U S A ; 117(43): 26728-26738, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33046654

RESUMEN

Cyclic peptide library screening technologies show immense promise for identifying drug leads and chemical probes for challenging targets. However, the structural and functional diversity encoded within such libraries is largely undefined. We have systematically profiled the affinity, selectivity, and structural features of library-derived cyclic peptides selected to recognize three closely related targets: the acetyllysine-binding bromodomain proteins BRD2, -3, and -4. We report affinities as low as 100 pM and specificities of up to 106-fold. Crystal structures of 13 peptide-bromodomain complexes reveal remarkable diversity in both structure and binding mode, including both α-helical and ß-sheet structures as well as bivalent binding modes. The peptides can also exhibit a high degree of structural preorganization. Our data demonstrate the enormous potential within these libraries to provide diverse binding modes against a single target, which underpins their capacity to yield highly potent and selective ligands.


Asunto(s)
Biblioteca de Péptidos , Péptidos Cíclicos , Sitios de Unión , Descubrimiento de Drogas , Humanos , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Unión Proteica , Dominios Proteicos , Factores de Transcripción/química , Factores de Transcripción/metabolismo
7.
Nat Commun ; 11(1): 2615, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457314

RESUMEN

F1Fo ATP synthase functions as a biological rotary generator that makes a major contribution to cellular energy production. It comprises two molecular motors coupled together by a central and a peripheral stalk. Proton flow through the Fo motor generates rotation of the central stalk, inducing conformational changes in the F1 motor that catalyzes ATP production. Here we present nine cryo-EM structures of E. coli ATP synthase to 3.1-3.4 Å resolution, in four discrete rotational sub-states, which provide a comprehensive structural model for this widely studied bacterial molecular machine. We observe torsional flexing of the entire complex and a rotational sub-step of Fo associated with long-range conformational changes that indicates how this flexibility accommodates the mismatch between the 3- and 10-fold symmetries of the F1 and Fo motors. We also identify density likely corresponding to lipid molecules that may contribute to the rotor/stator interaction within the Fo motor.


Asunto(s)
Proteínas de Escherichia coli/química , ATPasas de Translocación de Protón/química , Adenosina Difosfato/metabolismo , Microscopía por Crioelectrón , Proteínas de Escherichia coli/metabolismo , Lípidos/química , Modelos Moleculares , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/metabolismo , Rotación , Relación Estructura-Actividad
8.
Mol Microbiol ; 113(2): 381-398, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31742788

RESUMEN

Commensal bacteria serve as an important line of defense against colonisation by opportunisitic pathogens, but the underlying molecular mechanisms remain poorly explored. Here, we show that strains of a commensal bacterium, Haemophilus haemolyticus, make hemophilin, a heme-binding protein that inhibits growth of the opportunistic pathogen, non-typeable Haemophilus influenzae (NTHi) in culture. We purified the NTHi-inhibitory protein from H. haemolyticus and identified the hemophilin gene using proteomics and a gene knockout. An x-ray crystal structure of recombinant hemophilin shows that the protein does not belong to any of the known heme-binding protein folds, suggesting that it evolved independently. Biochemical characterisation shows that heme can be captured in the ferrous or ferric state, and with a variety of small heme-ligands bound, suggesting that hemophilin could function under a range of physiological conditions. Hemophilin knockout bacteria show a limited capacity to utilise free heme for growth. Our data suggest that hemophilin is a hemophore and that inhibition of NTHi occurs by heme starvation, raising the possibility that competition from hemophilin-producing H. haemolyticus could antagonise NTHi colonisation in the respiratory tract.


Asunto(s)
Haemophilus influenzae/efectos de los fármacos , Haemophilus/metabolismo , Proteínas de Unión al Hemo , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/farmacología , Infecciones por Haemophilus/microbiología , Infecciones por Haemophilus/prevención & control , Haemophilus influenzae/crecimiento & desarrollo , Hemo/metabolismo , Proteínas de Unión al Hemo/química , Proteínas de Unión al Hemo/aislamiento & purificación , Proteínas de Unión al Hemo/farmacología , Humanos
9.
Bioimpacts ; 8(3): 167-176, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30211076

RESUMEN

Introduction: DOF proteins are a family of plant-specific transcription factors with a conserved zinc finger (ZF) DNA-binding domain. Although several studies have demonstrated their specific DNA binding, quantitative affinity data is not available for the binding of DOF domains to their binding sites. Methods: ZF domains of DOF2.1, DOF3.4, and DOF5.8 from Arabidopsis thaliana were expressed and purified. Their DNA binding affinities were assessed using gel retardation assays and microscale thermophoresis with two different oligonucleotide probes containing one and two copies of recognition sequence AAAG. Results: DOF zinc finger domains (DOF-ZFs) were shown to form independently folded structures. Assessments using microscale thermophoresis demonstrated that DOF-ZFs interact more tightly (~ 100 fold) with double-motif probe than the single-motif probe. The overall Kd values for the DOF3.4-ZF and DOF5.8-ZF to the double-motif probe were ~2.3±1 and 2.5±1 µM, respectively. Conclusion: Studied DOF-ZF domains formed stable complexes with the double-motif probe. Although DOF3.4-ZF and DOF5.8-ZF do not dimerize with an appreciable affinity in the absence of DNA (judging from size-exclusion and multiangle laser light scattering data), it is possible that these ZFs form protein-protein contacts when bound to this oligonucleotide, consistent with previous reports that DOF proteins can homo- and hetero-dimerize.

10.
Proc Natl Acad Sci U S A ; 114(37): 9942-9947, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28847966

RESUMEN

RNA has been found to interact with chromatin and modulate gene transcription. In human cells, little is known about how long noncoding RNAs (lncRNAs) interact with target loci in the context of chromatin. We find here, using the phosphatase and tensin homolog (PTEN) pseudogene as a model system, that antisense lncRNAs interact first with a 5' UTR-containing promoter-spanning transcript, which is then followed by the recruitment of DNA methyltransferase 3a (DNMT3a), ultimately resulting in the transcriptional and epigenetic control of gene expression. Moreover, we find that the lncRNA and promoter-spanning transcript interaction are based on a combination of structural and sequence components of the antisense lncRNA. These observations suggest, on the basis of this one example, that evolutionary pressures may be placed on RNA structure more so than sequence conservation. Collectively, the observations presented here suggest a much more complex and vibrant RNA regulatory world may be operative in the regulation of gene expression.


Asunto(s)
Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/fisiología , Cromatina/genética , Ensamble y Desensamble de Cromatina , ADN Metiltransferasa 3A , Exones , Células HEK293 , Humanos , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas/genética , Seudogenes , Elementos Reguladores de la Transcripción/genética , Elementos Reguladores de la Transcripción/fisiología , Análisis de Secuencia de ARN/métodos , Homología de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA