Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 367
Filtrar
1.
Front Microbiol ; 15: 1428958, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993495

RESUMEN

Starting in 2015, the widespread prevalence of hydropericardium-hepatitis syndrome (HHS) has led to considerable financial losses within China's poultry farming industry. In this study, pathogenicity assessments, whole-genome sequencing, and analyses were conducted on 10 new isolates of the novel genotype FAdV-4 during a HHS outbreak in Guangxi Province, China, from 2019 to 2020. The results indicated that strains GX2019-010 to GX2019-013 and GX2019-015 to GX2019-018 were highly virulent, while strain GX2020-019 exhibited moderate virulence. Strain GX2019-014 was characterized as a wild-type strain with low virulence, displaying no pathogenic effects when 0.5 mL containing 106 TCID50 virus was inoculated into the muscle of specific pathogen-free (SPF) chickens at 4 weeks of age, while 107 TCID50 and 108 TCID50 resulted in mortality rates of 80 and 100%, respectively. The whole genomes of strains GX2019-010 to GX2019-013, GX2019-015 to GX2019-018, and GX2020-019 showed high homology with other Chinese newly emerging highly pathogenic FAdV-4 strains, whereas GX2019-014 was closer to nonmutant strains and shared the same residues with known nonpathogenic strains (B1-7, KR5, and ON1) at positions 219AA and 380AA of the Fiber-2 protein. Our work enriches the research on prevalent strains of FAdV-4 in China, expands the knowledge on the virulence diversity of the novel genotype FAdV-4, and provides valuable reference material for further investigations into the key virulence-associated genetic loci of FAdV-4.

3.
Front Vet Sci ; 11: 1419312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015104

RESUMEN

H5, H7, and H9 are pivotal avian influenza virus (AIV) subtypes that cause substantial economic losses and pose potential threats to public health worldwide. In this study, a novel triplex fluorescence reverse transcription-loop-mediated isothermal amplification (TLAMP) assay was developed in which traditional LAMP techniques were combined with probes for detection. Through this innovative approach, H5, H7, and H9 subtypes of AIV can be simultaneously identified and differentiated, thereby offering crucial technical support for prevention and control efforts. Three primer sets and composite probes were designed based on conserved regions of the haemagglutinin gene for each subtype. The probes were labelled with distinct fluorophores at their 3' ends, which were detached to release the fluorescence signal during the amplification process. The detection results were interpreted based on the colour of the TLAMP products. Then, the reaction conditions were optimized, and three primer sets and probes were combined in the same reaction system, resulting in a TLAMP detection assay for the differential diagnosis of AIV subtypes. Sensitivity testing with in vitro-transcribed RNA revealed that the detection limit of the TLAMP assay was 205 copies per reaction for H5, 360 copies for H7, and 545 copies for H9. The TLAMP assay demonstrated excellent specificity, no cross-reactivity with related avian viruses, and 100% consistency with a previously published quantitative polymerase chain reaction (qPCR) assay. Therefore, due to its simplicity, rapidity, sensitivity, and specificity, this TLAMP assay is suitable for epidemiological investigations and is a valuable tool for detecting and distinguishing H5, H7, and H9 subtypes of AIV in clinical samples.

4.
Chem Soc Rev ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38962926

RESUMEN

Rechargeable sodium-ion batteries (SIBs) have emerged as an advanced electrochemical energy storage technology with potential to alleviate the dependence on lithium resources. Similar to Li-ion batteries, the cathode materials play a decisive role in the cost and energy output of SIBs. Among various cathode materials, Na layered transition-metal (TM) oxides have become an appealing choice owing to their facile synthesis, high Na storage capacity/voltage that are suitable for use in high-energy SIBs, and high adaptivity to the large-scale manufacture of Li layered oxide analogues. However, going from the lab to the market, the practical use of Na layered oxide cathodes is limited by the ambiguous understanding of the fundamental structure-performance correlation of cathode materials and lack of customized material design strategies to meet the diverse demands in practical storage applications. In this review, we attempt to clarify the fundamental misunderstandings by elaborating the correlations between the electron configuration of the critical capacity-contributing elements (e.g., TM cations and oxygen anion) in oxides and their influence on the Na (de)intercalation (electro)chemistry and storage properties of the cathode. Subsequently, we discuss the issues that hinder the practical use of layered oxide cathodes, their origins and the corresponding strategies to address their issues and accelerate the target-oriented research and development of cathode materials. Finally, we discuss several new Na layered cathode materials that show prospects for next-generation SIBs, including layered oxides with anion redox and high entropy and highlight the use of layered oxides as cathodes for solid-state SIBs with higher energy and safety. In summary, we aim to offer insights into the rational design of high-performance Na layered oxide cathode materials towards the practical realization of sustainable electrochemical energy storage at a low cost.

5.
Angew Chem Int Ed Engl ; : e202409435, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38945832

RESUMEN

Visualizing lithium (Li) ions and understanding Li plating/stripping processes as well as evolution of solid electrolyte interface (SEI) are critical for optimizing all-solid-state Li metal batteries (ASSLMB). However, the buried solid-solid interfaces present a challenge for detection which preclude the employment of multiple analysis techniques. Herein, by employing complementary in situ characterizations, morphological/chemical evolution, Li plating/stripping dynamics and SEI dynamics were efficiently decoupled and Li ion behavior at interface between different solid-state electrolytes (SSE) was successfully detected. The innovative combining experiments of in situ atomic force microscopy and in situ X-ray photoelectron spectroscopy on Li metal anode revealed interfacial morphological/chemical evolution and decoupled Li plating/stripping process from SEI evolution. Though Li plating speed in Li10GeP2S12 (LGPS) was higher than Li3PS4 (LPS), speed of SSE decomposition was similar and ~85% interfacial SSE turned into SEI during plating and remained unchanged in stripping. To leverage strengths of different SSEs, an LPS-LGPS-LPS sandwich electrolyte was developed, demonstrating enhanced ionic conductivity and improved interfacial stability with less SSE decomposition (25%). Using in situ Kelvin Probe Force Microscopy, Li-ion behavior at interface between different SSEs was effectively visualized, uncovering distribution of Li ions at LGPS|LPS interface under different potentials.

6.
Materials (Basel) ; 17(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38893805

RESUMEN

To investigate the effects of nano-SiO2 (NS) and polyvinyl alcohol (PVA) fibers on the durability and mechanical properties of cementitious composites subjected to saline freeze-thaw cycling, a series of PVA fiber-reinforced cementitious composite (PFRCC) specimens were prepared using various fiber contents, and a series of NS and PVA fiber-reinforced cementitious composite (NPFRCC) specimens were prepared using various combinations of NS and fiber contents. Durability and fracture toughness tests were subsequently conducted on the specimens after different numbers of saline freeze-thaw cycles. The results indicate that the degradation of material properties can be divided into slow and accelerated damage stages before/after 50 freeze-thaw cycles. The durability and fracture toughness of the specimen series tended to increase, then decrease with increasing NS and PVA contents, suggesting optimum levels. When the PVA fiber content was 0.5%, PFRCC specimens had the best durability after saline freeze-thaw cycles; when the NS and PVA fiber contents were 1.0% and 0.5%, respectively, NPFRCC specimens had the best durability and fracture properties, and the initiation toughness, destabilization toughness, and fracture energy after 100 saline freeze-thaw cycles were 120.69%, 160.02%, and 451.31%, respectively. The results of this study may guide future exploration of the durability and mechanical properties of concrete subjected to freeze-thaw action.

7.
Materials (Basel) ; 17(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38793528

RESUMEN

The objective of this paper is to investigate the effect of calcium nitrite (CN) on improving the mechanical properties and microstructures of early-frozen cement paste. Cement pastes containing 1%, 1.5%, 2%, 2.5%, and 3% CN were prepared. One batch of samples was frozen at -6 °C for 7 days and then cured at 20 °C, and the other batch of samples was directly cured at 20 °C as a control. The compressive strength, ultrasonic pulse velocity, and resistivity of all specimens at different target ages were measured under these two curing conditions. The hydration products and microstructures of typical samples were observed using XRD and scanning SEM. The results showed that the addition of 1.5% CN could promote cement hydration and enhance slurry densification, thereby increasing the compressive strength, ultrasonic pulse velocity, and electrical resistivity of the slurry, and positively affecting the early freezing resistance of the slurry. However, when the CN dosage exceeded 1.5%, the internal structure of the slurry was loose and porous due to the generation of a large amount of nitrite-AFm, which negatively affects the properties of the cement paste. In addition, the effectiveness of CN is only limited to temperature environments above -6 °C. Concrete antifreeze suitable for lower temperatures still requires further research.

8.
J Am Chem Soc ; 146(21): 14889-14897, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38747066

RESUMEN

Ni-rich cathodes are some of the most promising candidates for advanced lithium-ion batteries, but their available capacities have been stagnant due to the intrinsic Li+ storage sites. Extending the voltage window down can induce the phase transition from O3 to 1T of LiNiO2-derived cathodes to accommodate excess Li+ and dramatically increase the capacity. By setting the discharge cutoff voltage of LiNi0.6Co0.2Mn0.2O2 to 1.4 V, we can reach an extremely high capacity of 393 mAh g-1 and an energy density of 1070 Wh kg-1 here. However, the phase transition causes fast capacity decay and related structural evolution is rarely understood, hindering the utilization of this feature. We find that the overlithiated phase transition is self-limiting, which will transform into solid-solution reaction with cycling and make the cathode degradation slow down. This is attributed to the migration of abundant transition metal ions into lithium layers induced by the overlithiation, allowing the intercalation of overstoichiometric Li+ into the crystal without the O3 framework change. Based on this, the wide-potential cycling stability is further improved via a facile charge-discharge protocol. This work provides deep insight into the overstoichiometric Li+ storage behaviors in conventional layered cathodes and opens a new avenue toward high-energy batteries.

9.
J Am Chem Soc ; 146(20): 14079-14085, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38720291

RESUMEN

Insights into the formation mechanisms of two-dimensional covalent organic frameworks (2D COFs) at both the in-plane and interlayer levels are essential for improving material quality and synthetic methodology. Here, we report the controllable preparation of 2D COF films via on-surface synthesis and investigate the growth mechanism using atomic force microscopy. Monolayer, bilayer, and layer-plus-island multilayer COF films were successfully constructed on hexagonal boron nitride in a controlled manner. The porphyrin-based COF films grow in the Stranski-Krastanov mode, i.e., a uniform bilayer COF film can be formed through layer-by-layer growth in the initial stage followed by island growth starting from the third layer. Furthermore, fluorescence quenching caused by π-π stacking interactions between 2D COF neighboring layers was revealed. These results provide new perspectives on the synthesis of high-quality 2D COF films with controllable thickness and morphology, paving the way for a diverse range of applications.

10.
Heliyon ; 10(7): e28953, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38596129

RESUMEN

Ecological fishery management requires high-precision fishery information to support resource management and marine spatial planning. In this paper, the Automatic Identification System (AIS) was adopted to extract the spatial information on the fishing grounds of light purse seine vessels in the Northwest Pacific Ocean. The spatial distributions of fishing grounds mapped by the data mining, kernel density analysis and hotspot analysis methods were compared. The spatial similarity index was applied to determine the spatial consistency between the computed spatial information and fisheries resource information. Finally, the spatial information derived by the best method was used to investigate the characteristics of fishing activity. The results showed that: the speed of light purse seine vessels related to operations was lower than 1.6 knots. The spatial information extracted by the three methods was consistent with the catch data distribution, and the spatial similarity between the fishing effort and catch data was the highest. The spatial variation in fishing activity was similar to that in the chub mackerel migration route. AIS data could be used to provide high-resolution fishery information. Light purse seine fishing vessels typically operate and travel along the exclusive economic zone boundary, and increased attention must be given to fishing vessel operation supervision. A comprehensive supervision system can be employed to monitor the operations of fishing vessels more effectively. The results of this study can provide technical support for the management of fishing activities and conservation of marine resources in this region using AIS data.

11.
J Am Chem Soc ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598684

RESUMEN

Cross-coupling reactions represent an indispensable tool in chemical synthesis. An intriguing challenge in this field is to achieve selective cross-coupling between two precursors with similar reactivity or, to the limit, the identical molecules. Here we report an unexpected dehydrobrominative cross-coupling between 1,3,5-tris(2-bromophenyl)benzene molecules on silver surfaces. Using scanning tunneling microscopy, we examine the reaction process at the single-molecular level, quantify the selectivity of the dehydrobrominative cross-coupling, and reveal the modulation of selectivity by substrate lattice-related catalytic activity or molecular assembly effect. Theoretical calculations indicate that the dehydrobrominative cross-coupling proceeds via regioselective C-H bond activation of debrominated TBPB and subsequent highly selective C-C coupling of the radical-based intermediates. The reaction kinetics plays an important role in the selectivity for the cross-coupling. This work not only expands the toolbox for chemical synthesis but also provides important mechanistic insights into the selectivity of coupling reactions on the surface.

12.
Viruses ; 16(3)2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38543696

RESUMEN

Interferon-inducible transmembrane protein 3 (IFITM3) is an antiviral factor that plays an important role in the host innate immune response against viruses. Previous studies have shown that IFITM3 is upregulated in various tissues and organs after avian reovirus (ARV) infection, which suggests that IFITM3 may be involved in the antiviral response after ARV infection. In this study, the chicken IFITM3 gene was cloned and analyzed bioinformatically. Then, the role of chicken IFITM3 in ARV infection was further explored. The results showed that the molecular weight of the chicken IFITM3 protein was approximately 13 kDa. This protein was found to be localized mainly in the cytoplasm, and its protein structure contained the CD225 domain. The homology analysis and phylogenetic tree analysis showed that the IFITM3 genes of different species exhibited great variation during genetic evolution, and chicken IFITM3 shared the highest homology with that of Anas platyrhynchos and displayed relatively low homology with those of birds such as Anser cygnoides and Serinus canaria. An analysis of the distribution of chicken IFITM3 in tissues and organs revealed that the IFITM3 gene was expressed at its highest level in the intestine and in large quantities in immune organs, such as the bursa of Fabricius, thymus and spleen. Further studies showed that the overexpression of IFITM3 in chicken embryo fibroblasts (DF-1) could inhibit the replication of ARV, whereas the inhibition of IFITM3 expression in DF-1 cells promoted ARV replication. In addition, chicken IFITM3 may exert negative feedback regulatory effects on the expression of TBK1, IFN-γ and IRF1 during ARV infection, and it is speculated that IFITM3 may participate in the innate immune response after ARV infection by negatively regulating the expression of TBK1, IFN-γ and IRF1. The results of this study further enrich the understanding of the role and function of chicken IFITM3 in ARV infection and provide a theoretical basis for an in-depth understanding of the antiviral mechanism of host resistance to ARV infection.


Asunto(s)
Interferones , Orthoreovirus Aviar , Animales , Embrión de Pollo , Interferones/genética , Pollos , Orthoreovirus Aviar/genética , Filogenia , Antivirales , Expresión Génica , Replicación Viral
13.
Sci Adv ; 10(13): eadl4842, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38552028

RESUMEN

The high-capacity advantage of lithium metal anode was compromised by common use of copper as the collector. Furthermore, lithium pulverization associated with "dead" Li accumulation and electrode cracking deteriorates the long-term cyclability of lithium metal batteries, especially under realistic test conditions. Here, we report an ultralight, integrated anode of polyimide-Ag/Li with dual anti-pulverization functionality. The silver layer was initially chemically bonded to the polyimide surface and then spontaneously diffused in Li solid solution and self-evolved into a fully lithiophilic Li-Ag phase, mitigating dendrites growth or dead Li. Further, the strong van der Waals interaction between the bottommost Li-Ag and polyimide affords electrode structural integrity and electrical continuity, thus circumventing electrode pulverization. Compared to the cutting-edge anode-free cells, the batteries pairing LiNi0.8Mn0.1Co0.1O2 with polyimide-Ag/Li afford a nearly 10% increase in specific energy, with safer characteristics and better cycling stability under realistic conditions of 1× excess Li and high areal-loading cathode (4 milliampere hour per square centimeter).

14.
Cancer Lett ; 590: 216801, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38479552

RESUMEN

The mesenchymal subtype of glioblastoma (GBM) cells characterized by aggressive invasion and therapeutic resistance is thought to be dependent on cell-intrinsic alteration and extrinsic cellular crosstalk. Tumor-associated macrophages (TAMs) are pivotal in tumor progression, chemo-resistance, angiogenesis, and stemness maintenance. However, the impact of TAMs on the shifts in glioma stem cells (GSCs) states remains largely uncovered. Herein, we showed that the triggering receptor expressed on myeloid cells-1 (TREM1) preferentially expressed by M2-like TAMs and induced GSCs into mesenchymal-like states by modulating the secretion of TGFß2, which activated the TGFßR/SMAD2/3 signaling in GSCs. Furthermore, we demonstrated that TREM1 was transcriptionally regulated by HIF1a under the hypoxic environment and thus promoted an immunosuppressive type of TAMs via activating the TLR2/AKT/mTOR/c-MYC axis. Collectively, this study reveals that cellular communication between TAMs and GSCs through the TREM1-mediated TGFß2/TGFßR axis is involved in the mesenchymal-like transitions of GSCs. Our study provides valuable insights into the regulatory mechanisms between the tumor immune microenvironment and the malignant characteristics of GBM, which can lead to potential novel strategies targeting TAMs for tumor control.


Asunto(s)
Células Madre Neoplásicas , Receptor Activador Expresado en Células Mieloides 1 , Microambiente Tumoral , Macrófagos Asociados a Tumores , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/inmunología , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Receptor Activador Expresado en Células Mieloides 1/genética , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Animales , Línea Celular Tumoral , Transducción de Señal , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/inmunología , Glioma/patología , Glioma/genética , Glioma/metabolismo , Glioma/inmunología , Ratones , Glioblastoma/patología , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/inmunología , Factor de Crecimiento Transformador beta2/metabolismo , Factor de Crecimiento Transformador beta2/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Regulación Neoplásica de la Expresión Génica , Proteína Smad2/metabolismo , Proteína Smad2/genética
15.
NPJ Parkinsons Dis ; 10(1): 16, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195780

RESUMEN

The clinical applications of the association of cortical thickness and white matter fiber with freezing of gait (FoG) are limited in patients with Parkinson's disease (PD). In this retrospective study, using white matter fiber from diffusion-weighted imaging and cortical thickness from structural-weighted imaging of magnetic resonance imaging, we investigated whether a machine learning-based model can help assess the risk of FoG at the individual level in patients with PD. Data from the Parkinson's Disease Progression Marker Initiative database were used as the discovery cohort, whereas those from the Fujian Medical University Union Hospital Parkinson's Disease database were used as the external validation cohort. Clinical variables, white matter fiber, and cortical thickness were selected by random forest regression. The selected features were used to train the support vector machine(SVM) learning models. The median area under the receiver operating characteristic curve (AUC) was calculated. Model performance was validated using the external validation cohort. In the discovery cohort, 25 patients with PD were defined as FoG converters (15 men, mean age 62.1 years), whereas 60 were defined as FoG nonconverters (38 men, mean age 58.5 years). In the external validation cohort, 18 patients with PD were defined as FoG converters (8 men, mean age 66.9 years), whereas 37 were defined as FoG nonconverters (21 men, mean age 65.1 years). In the discovery cohort, the model trained with clinical variables, cortical thickness, and white matter fiber exhibited better performance (AUC, 0.67-0.88). More importantly, SVM-radial kernel models trained using random over-sampling examples, incorporating white matter fiber, cortical thickness, and clinical variables exhibited better performance (AUC, 0.88). This model trained using the above mentioned features was successfully validated in an external validation cohort (AUC, 0.91). Furthermore, the following minimal feature sets that were used: fractional anisotropy value and mean diffusivity value for right thalamic radiation, age at baseline, and cortical thickness for left precentral gyrus and right dorsal posterior cingulate gyrus. Therefore, machine learning-based models using white matter fiber and cortical thickness can help predict the risk of FoG conversion at the individual level in patients with PD, with improved performance when combined with clinical variables.

16.
Sci Rep ; 14(1): 261, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168000

RESUMEN

An enzyme-free sandwich amperometric immunosensor based on bimetallic Pt/Ag nanoparticle (Pt/AgNPs)-functionalized chitosan (Chi)-modified multiwalled carbon nanotubes (MWCNTs) as dual signal amplifiers and Chi-modified MWCNTs (MWCNTs-Chi) as substrate materials was developed for ultrasensitive detection of fowl adenovirus group I (FAdV-I). MWCNTs have a large specific surface area, and many accessible active sites were formed after modification with Chi. Hence, MWCNTs-Chi, as a substrate material for modifying glassy carbon electrodes (GCEs), could immobilize more antibodies (fowl adenovirus group I-monoclonal antibody, FAdV-I/MAb). Multiple Pt/AgNPs were attached to the surface of MWCNTs-Chi to generate MWCNTs-Chi-Pt/AgNPs with high catalytic ability for the reaction of H2O2 and modified active sites for fowl adenovirus group I-polyclonal antibody (FAdV-I/PAb) binding. Amperometric i-t measurements were employed to characterize the recognizability of FAdV-I. Under optimal conditions, and the developed immunosensor exhibited a wide linear range (100.93 EID50 mL-1 to 103.43 EID50 mL-1), a low detection limit (100.67 EID50 mL-1) and good selectivity, reproducibility and stability. This immunosensor can be used in clinical sample detection.


Asunto(s)
Técnicas Biosensibles , Antígenos de Grupos Sanguíneos , Nanopartículas del Metal , Nanotubos de Carbono , Nanotubos de Carbono/química , Nanopartículas del Metal/química , Técnicas Electroquímicas , Reproducibilidad de los Resultados , Peróxido de Hidrógeno , Inmunoensayo , Plata , Antígenos Fúngicos , Anticuerpos Monoclonales , Adenoviridae , Límite de Detección , Oro/química
17.
Angew Chem Int Ed Engl ; 63(5): e202316087, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38093609

RESUMEN

Solid-state lithium-sulfur batteries have shown prospects as safe, high-energy electrochemical storage technology for powering regional electrified transportation. Owing to limited ion mobility in crystalline polymer electrolytes, the battery is incapable of operating at subzero temperature. Addition of liquid plasticizer into the polymer electrolyte improves the Li-ion conductivity yet sacrifices the mechanical strength and interfacial stability with both electrodes. In this work, we showed that by introducing a spherical hyperbranched solid polymer plasticizer into a Li+ -conductive linear polymer matrix, an integrated dynamic cross-linked polymer network was built to maintain fully amorphous in a wide temperature range down to subzero. A quasi-solid polymer electrolyte with a solid mass content >90 % was prepared from the cross-linked polymer network, and demonstrated fast Li+ conduction at a low temperature, high mechanical strength, and stable interfacial chemistry. As a result, solid-state lithium-sulfur batteries employing the new electrolyte delivered high reversible capacity and long cycle life at 25 °C, 0 °C and -10 °C to serve energy storage at complex environmental conditions.

18.
ACS Sens ; 8(12): 4810-4817, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38060821

RESUMEN

Artificial olfactory systems are receiving increasing attention because of their potential applications in humanoid robots, artificial noses, and the next generation of human-computer interactions. However, simulating the human olfactory system, which recognizes, remembers, and automatically takes protective measures against gases, remains a challenge. In this paper, a WO3-TiO2@Ag NPs (silver nanoparticle) gas sensor was prepared by the sol-gel method, and an Al/pectin:AgNP/ITO memristor was prepared by spin coating and vacuum evaporation. The gas sensor has been combined with the memristor to simulate physical damage to humans in a dangerous gas environment for a long time, and an artificial olfactory system is constructed by field-programmable gate array external control. The WO3-TiO2@Ag NPs gas sensor can sense and identify ethanol vapor through changes in resistance, and the signal transmitted to the pectin-based memristor can switch the resistance state of the memristor to store gas information. Furthermore, the activation of the memristor can also trigger rotation of the fan to purify the gas and reduce damage caused by excessive exposure to dangerous gases. This artificial olfactory system provides a promising strategy for the development of artificial intelligence and human-computer interaction systems.


Asunto(s)
Inteligencia Artificial , Nanopartículas del Metal , Humanos , Plata , Gases , Pectinas
19.
Viruses ; 15(12)2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38140587

RESUMEN

Avian reovirus (ARV) infection is prevalent in farmed poultry and causes viral arthritis and severe immunosuppression. The spleen plays a very important part in protecting hosts against infectious pathogens. In this research, transcriptome and translatome sequencing technology were combined to investigate the mechanisms of transcriptional and translational regulation in the spleen after ARV infection. On a genome-wide scale, ARV infection can significantly reduce the translation efficiency (TE) of splenic genes. Differentially expressed translational efficiency genes (DTEGs) were identified, including 15 upregulated DTEGs and 396 downregulated DTEGs. These DTEGs were mainly enriched in immune regulation signaling pathways, which indicates that ARV infection reduces the innate immune response in the spleen. In addition, combined analyses revealed that the innate immune response involves the effects of transcriptional and translational regulation. Moreover, we discovered the key gene IL4I1, the most significantly upregulated gene at both the transcriptional and translational levels. Further studies in DF1 cells showed that overexpression of IL4I1 could inhibit the replication of ARV, while inhibiting the expression of endogenous IL4I1 with siRNA promoted the replication of ARV. Overexpression of IL4I1 significantly downregulated the mRNA expression of IFN-ß, LGP2, TBK1 and NF-κB; however, the expression of these genes was significantly upregulated after inhibition of IL4I1, suggesting that IL4I1 may be a negative feedback effect of innate immune signaling pathways. In addition, there may be an interaction between IL4I1 and ARV σA protein, and we speculate that the IL4I1 protein plays a regulatory role by interacting with the σA protein. This study not only provides a new perspective on the regulatory mechanisms of the innate immune response after ARV infection but also enriches the knowledge of the host defense mechanisms against ARV invasion and the outcome of ARV evasion of the host's innate immune response.


Asunto(s)
Pollos , Orthoreovirus Aviar , Animales , Transcriptoma , Orthoreovirus Aviar/genética , Bazo , Inmunidad Innata , Transducción de Señal , Perfilación de la Expresión Génica
20.
J Am Chem Soc ; 145(47): 25643-25652, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37970704

RESUMEN

Anode-free rechargeable sodium batteries represent one of the ultimate choices for the 'beyond-lithium' electrochemical storage technology with high energy. Operated based on the sole use of active Na ions from the cathode, the anode-free battery is usually reported with quite a limited cycle life due to unstable electrolyte chemistry that hinders efficient Na plating/stripping at the anode and high-voltage operation of the layered oxide cathode. A rational design of the electrolyte toward improving its compatibility with the electrodes is key to realize the battery. Here, we show that by refining the volume ratio of two conventional linear ether solvents, a binary electrolyte forms a cation solvation structure that facilitates flat, dendrite-free, planar growth of Na metal on the anode current collector and that is adaptive to high-voltage Na (de)intercalation of P2-/O3-type layered oxide cathodes and oxidative decomposition of the Na2C2O4 supplement. Inorganic fluorides, such as NaF, show a major influence on the electroplating pattern of Na metal and effective passivation of plated metal at the anode-electrolyte interface. Anode-free batteries based on the refined electrolyte have demonstrated high coulombic efficiency, long cycle life, and the ability to claim a cell-level specific energy of >300 Wh/kg.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA