Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 167: 171-177, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27718429

RESUMEN

The role of Cu(II) in the reduction of N-nitrosodimethylamine (NDMA) with zero-valent metals was investigated by determining the effects of Cu(II) on the removal, kinetics, products, and mechanism. NDMA removal was enhanced, and all reactions followed a pseudo-first-order kinetic model except for the Fe and Fe/0.1 mM Cu(II) systems. The iron mass-normalized pseudo-first-order rate constants (kMFe) increased with the Cu(II) concentration. The zinc mass-normalized pseudo-first-order rate constants (kMZn) were identical to those with the Cu(II) concentrations from 0.1 mM to 1.0 mM and were higher with 2.0 mM Cu(II). The types of products detected were unchanged. Some unknown products were also found. NDMA was reduced to 1,1-dimethylhydrazine (unsymmetrical dimethylhydrazine, UDMH). Then, UDMH was reduced into dimethylamine (DMA) by the Fe/Cu(II) and Zn/Cu(II) systems. Catalytic hydrogenation was proposed as the reduction mechanism. Several copper species, such as Cu(OH)2 in the Fe/Cu(II) system and Cu2O and Cu(OH)2 in the Zn/Cu(II) system enhanced NDMA reduction. Differences between the Fe/Cu(II) and Zn/Cu(II) systems were caused by the reduction potentials and surface conditions of the different metals and the copper species in the various systems.


Asunto(s)
Cobre/química , Dimetilnitrosamina/química , Hierro/química , Contaminantes Químicos del Agua/química , Zinc/química , Dimetilaminas/química , Dimetilhidrazinas/química , Cinética , Oxidación-Reducción , Purificación del Agua
2.
Huan Jing Ke Xue ; 36(8): 3026-31, 2015 Aug.
Artículo en Chino | MEDLINE | ID: mdl-26592036

RESUMEN

The solidification/stabilization (S/S) of chromite ore processing residue (COPR) was performed using zero-valent iron (ZVI) and lime-activated ground granulated blast furnace slag (GGBFS). The degree of Cr immobilization was evaluated using the leaching procedure, mineral composition analysis and morphology analysis. Semi-dynamic leaching tests were implemented to investigate the potential for reusing the final treatment product as a readily available construction material. The results showed that after reduction, all of the S/S treated COPR samples met the pollution control limit of bricks and building block products (Chinese standard HJ/T 301-2007) produced with COPR for total Cr (0.3 mg x L(-1)), the compressive strength of all the S/S samples could meet the compressive strength standard (15 MPa) for producing clay bricks, and Cr existed as the specie that bound to Fe/Mn oxides in the S/S samples. At the same time, all of the S/S treated specimens tested were suitable for utilization at certain levels.


Asunto(s)
Compuestos de Calcio/química , Cromo/análisis , Contaminantes Ambientales/análisis , Residuos Industriales , Hierro/química , Óxidos/química , Silicatos de Aluminio , Arcilla , Industria Procesadora y de Extracción
3.
Water Sci Technol ; 68(1): 134-43, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23823549

RESUMEN

A pilot-scale ballasted flocculation system was used to remove fluoride from one type of industrial wastewater. The system included the formation of calcium fluoride (CaF2) using calcium hydroxide followed by coagulation sedimentation. Calcium fluoride was recycled as nuclei for enhancing CaF2 precipitation and as a ballasting agent for improving fluoride removal and flocculation efficiency. Factors affecting fluoride and turbidity removal efficiencies, including pH in the CaF2-reacting tank and coagulation-mixing tank, sludge recycling ratio, and dosages of FeCl3 and polyacrylamide (PAM), were investigated in the pilot-scale system. The recycled CaF2 precipitates improved CaF2 formation kinetics, enhanced fluoride removal and flocculation performance. Under the optimized condition, the ballast flocculation process reduced fluoride concentration from 288.9 to 10.67 mg/L and the turbidity from 129.6 NTU to below 2.5 NTU.


Asunto(s)
Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Fluoruro de Calcio/análisis , Floculación , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua
4.
Water Res ; 47(1): 216-24, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23084118

RESUMEN

N-Nitrosodimethylamine (NDMA) is known as the disinfection by-product and the pollutant in the source water. Reduction with zero-valent zinc (Zn(0)) was investigated as a potential technology to treat NDMA. The results showed that Zn(0) was effective for NDMA reduction at initial pH 7.0. There were lag period and rapid period during the process, the corresponding zero-order rate constant (k(zero)) was 2.968 ± 0.245 µg L(-1) h(-1) ([Zn(0)](0) = 10g L(-1)),the mass normalized pseudo-first-order rate (k(M)) was 0.1215 ± 0.0171 L g(-1) h(-1). The reactivity of zinc on NDMA removal was consistent with the zinc corrosion rate. NDMA had little effect on the corrosion of zinc. Lower solution pH benefited the reduction of NDMA with Zn(0). The consumption of the oxygen and the localized acidification should be the cause of the shift from lag to rapid reaction period in the aerobic experiments. 1,1-dimethylhydrazine (unsymmetrical dimethylhydrazine, UDMH), dimethylamine (DMA) were detected as the products of NDMA degradation. The nitrogen mass balance at 24 h was 56%, the loss can be due to the formation of ammonium, the degradation of UDMH and other unmeasured products. DMA formed during the degradation of UDMH with Zn(0), the nitrogen loss could be caused by the formation of unmeasured products. Catalytic hydrogenation is proposed to be the mechanism based on the results and the redox properties of zinc and NDMA. One reduction process is: the active hydrogen atoms initially cleave and reduce the N=O bond in NDMA, generating UDMH. Then the N-N bond in UDMH is cleaved to form DMA and ammonium.


Asunto(s)
Dimetilnitrosamina/química , Contaminantes Químicos del Agua/química , Zinc/química , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Oxígeno/química , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA