Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Nat Commun ; 15(1): 6959, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138207

RESUMEN

Ceramic aerogels are promising materials for thermal insulation and protection under harsh environments. Yet current synthesis methods fail to provide an energy-, time-, and cost-effective route for high-throughput production and large-scale applications, especially for non-oxide ceramic aerogels. Here we reported a way to synthesize SiC aerogels within seconds and over liter scale, with a demonstrated throughput of ~16 L min-1 in a typical lab experiment. The key lies in renovated combustion synthesis and a fast expansion from powder reactants to aerogel products over 1000% in volume. The synthesis process is self-sustainable and requires minimal energy input. The product is very cheap, with an estimated price of ~$0.7 L-1 (~$7 kg-1). The obtained SiC aerogels have excellent thermo-mechanical properties, including low thermal conductivity, high elasticity, and damage tolerance. Our invention not only offers a practical pathway for large-scale applications of ceramic aerogels, but also calls for rethinking of combustion synthesis in one-step conversion from raw chemicals to bulk products ready for practical applications.

2.
Angew Chem Int Ed Engl ; 63(33): e202408629, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38831685

RESUMEN

The rate performance, power density, and energy efficiency of electrochemical devices are often limited by ionic conductivities in electrolyte and electrode materials. Framework Prussian blue analogs and dense niobium oxides have been identified as high-rate electrodes for sodium- and lithium-ion batteries, respectively, yet the origin of the extremely high solid-state Na+/Li+ transport is not fully understood. Of critical importance is the fact that their ultra-low activation energy and anomalous pre-exponent factor cannot be satisfactorily rationalized from conventional theory of solid-state diffusion in the crystal lattice. Here, assisted by density-functional-theory calculations, we argued that the true origin is a unique surface-like diffusion mechanism of the intercalation ions. In a surface-like migration event, a mobile ion moves along the channel wall via a low coordination number and low migration barrier experiencing minimal steric hindrance. It is similar to surface diffusion in the conventional picture and contrasts with lattice diffusion from one interstitial/vacancy site to another one with high coordination number, crowded saddle-point geometry and high migration barrier. We found that the shifting from solid-state lattice diffusion to surface-like diffusion is determined by the size difference between the mobile ion and the diffusion channel, and a lowest migration energy barrier can be reached by mediating the channel size. The analogy to gas diffusion in molecular sieves shall be discussed. Additionally, the effects of defects and crystal water in Prussian blue analogs were also discussed for better understanding their rate performances in experimental scenarios.

4.
ACS Omega ; 9(23): 24819-24830, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38882087

RESUMEN

The impacts of the composition and properties of tar products on their utilization are of great importance, while the consequences of varying tar separation conditions on distillation fractions remain underexplored. Solid impurities in special tar products (e.g., subsurface in situ pyrolysis-derived tar-like substances) can contribute to the separation as well. In the present study, low-temperature coal tar (LTCT) was used as an analogue to pyrolysis product, mixed with semi-coke and coal dust, representing pyrolytic byproducts and nonpyrolytic substances, respectively. The LTCT mixtures were tested with vacuum distillation at various pressures and temperatures. The results revealed the role of pressure in fraction distribution across temperatures, with higher pressure concentrating fractions at lower temperatures. The impact of solid impurities on distillation primarily stemmed from adsorption. Minimal concentrations of solid impurities carried coal dust/semi-coke into the distillation, but higher levels retained them in the residue. The adsorption of coal dust was quite high at lower temperatures and waned as temperature increased, unlike semi-coke, which had consistent adsorption throughout the distillation. The present study can advance the understanding of vacuum distillation for tar products in the presence of solid impurities, offering a framework for the effective distillation/utilization of coal tar. By probing separation conditions, tar properties, and solid impurity effects, the present research will refine strategies for optimizing coal tar use, crucial for enhancing energy security and sustainable progress in China.

5.
Biology (Basel) ; 13(5)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38785806

RESUMEN

This study aimed to evaluate the effects of dietary protein levels on growth performance, serum indices, body amino acid composition, and intestinal gene expression in juvenile hybrid sturgeon (Acipenser baerii × A. schrenckii). Hybrid sturgeons (initial weight 29.21 ± 2.04 g) were fed isolipidic diets containing 30%, 33%, 36%, 39%, 42% or 45% crude protein for 12 weeks (n = 18 tanks, 30 fish/tank). Results showed significant differences between treatments, where weight gain and protein efficiency ratio peaked optimally between 35.9% and 38.3% dietary protein. Serum parameters such as glucose, alanine aminotransferase, aspartate aminotransferase, superoxide dismutase, and lipid peroxidation levels varied significantly with changes in dietary protein levels. Specifically, the highest enzymatic activities and growth parameters were observed in groups fed with 33% to 39% protein, enhancing whole-body concentrations of lysine, leucine, phenylalanine, proline, and glutamic acid. Immune parameters such as immunoglobulin M and lysozyme activity also showed peak levels at higher protein concentrations, particularly notable at 42% for lysozyme and 36% for both component 3 and immunoglobulin M. Gene expression related to immune and growth pathways, including MyD88, TLR1, IL-8, IL-6, NF-κB, and IL1ß, was significantly upregulated at protein levels of 33% to 36%, with a noted peak in expression at 39% for TLR1, IL-10, and TOR signaling genes, before diminishing at higher protein levels. Overall, the dietary protein requirement for juvenile hybrid sturgeon ranges from 35.9% to 38.3% crude protein.

6.
Small ; 20(34): e2400796, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38607275

RESUMEN

Solar-driven interfacial evaporation (SDIE) is a highly promising approach to achieve sustainable desalination and tackle the global freshwater crisis. Despite advancements in this field, achieving balanced thermal localization and salt resistance remains a challenge. Herein, the study presents a 3D hierarchical porous ceramic platform for SDIE applications. The utilized alumina foam ceramics (AFCs) exhibit remarkable corrosion resistance and chemical stability, ensuring a prolonged operational lifespan in seawater or brines. The millimeter-scale air-filled pores in AFCs prevent thermal losses through conduction with bulk water, resulting in heat-localized interfaces. The hydrophilic nature of macroporous AFC skeletons facilitates rapid water replenishment on the evaporating surface for effective salt-resistant desalination. Benefiting from its self-radiation adsorption and side-assisted evaporation capabilities, the AFC-based evaporators exhibit high indoor evaporation rates of 2.99 and 3.54 kg m-2 h-1 under one-sided and three-sided illumination under 1.0 sun, respectively. The AFC-based evaporator maintains a high evaporation rate of ≈2.77 kg m-2 h-1 throughout the 21-day long-term test. Furthermore, it achieves a daily water productivity of ≈10.44 kg m-2 in outdoor operations. This work demonstrates the potential of 3D hierarchical porous ceramics in addressing the trade-off between heat localization and salt resistance, and contributes to the development of durable solar steam generators.

7.
Adv Sci (Weinh) ; 11(24): e2309834, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582503

RESUMEN

Advanced ceramic materials and devices call for better reliability and damage tolerance. In addition to their strong bonding nature, there are examples demonstrating superior mechanical properties of nanostructure ceramics, such as damage-tolerant ceramic aerogels that can withstand high deformation without cracking and local plasticity in dense nanocrystalline ceramics. The recent progresses shall be reviewed in this perspective article. Three topics including highly elastic nano-fibrous ceramic aerogels, load-bearing nanoceramics with improved mechanical properties, and implementing machine learning-assisted simulations toolbox in understanding the relationship among structure, deformation mechanisms, and microstructure-properties shall be discussed. It is hoped that the perspectives present here can help the discovery, synthesis, and processing of future structural ceramic materials that are insensitive to processing flaws and local damages in service.

8.
ACS Omega ; 9(6): 7132-7142, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38371767

RESUMEN

The recovery of low-grade waste heat from power plants greatly benefits energy conservation and emission reduction during electricity generation, while the waste heat utilization directly from desulfurization slurry is a significantly promising method to deeply recover such low-grade energy and has been developed in practical application. However, the pipe materials are subjected to erosion and corrosion challenges due to the high level of solid compositions and the presence of harmful ions, such as Cl-1, which requires further evaluation under the condition of slurry heat exchange. The present study aimed at an experimental study on the erosion-corrosion characteristics of desulfurization slurry on three types of stainless steel, including type 304, 316L, and 2205. Both mass loss and micromorphology features were analyzed with possible mechanisms elucidated. The erosion-corrosion rate is weak at low temperatures, while the increase in the slurry temperature clearly promotes its rate. The influence of the temperature on the corrosion resistance of 304 is much greater than that of 2205. With an increase in duration time, the weight loss rate of stainless steel in the desulfurization slurry declines, and the changing trend of metal mass slightly slows down. The present study offers a better understanding of the erosion-corrosion behaviors of three types of stainless steel under flow and heat transfer conditions of a desulfurization slurry.

9.
Angew Chem Int Ed Engl ; 63(11): e202320036, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38191990

RESUMEN

The striking aesthetic appeal of fullerene-like clusters has captured the interest of researchers. Nevertheless, the assembly of fullerene-like polyoxovadanadate (POV) cages remains a significant challenge due to the scarcity of suitable pentagonal motif. Herein, we have successfully synthesized the first fullerene-like all-inorganic POV cage, {(V2 O)V30 Nb12 O102 (H2 O)12 } (V30 Nb12 ), by introducing Nb into the POVs. V30 Nb12 is assembled by 12 heterometallic {(Nb)V5 } pentagons through sharing V centers with Ih symmetry, reminiscent of C60 . To our knowledge, the fullerene-like V30 Nb12 not only represents the highest-nuclearity POV cage but also stands as the first niobovanadate cluster. Notably, V30 Nb12 exhibits excellent solution stability, as confirmed by ESI-MS, FT-IR and UV/Vis spectra. As there is no protection organic ligand on its outer surface, V30 Nb12 can be further modified with Cu-complexes to form a fullerene-like cluster based zigzag chain (Cu-V30 Nb12 ).

10.
Nanomicro Lett ; 16(1): 82, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38214786

RESUMEN

Aqueous zinc-ion batteries are promising due to inherent safety, low cost, low toxicity, and high volumetric capacity. However, issues of dendrites and side reactions between zinc metal anode and the electrolyte need to be solved for extended storage and cycle life. Here, we proposed that an electrolyte additive with an intermediate chelation strength of zinc ion-strong enough to exclude water molecules from the zinc metal-electrolyte interface and not too strong to cause a significant energy barrier for zinc ion dissociation-can benefit the electrochemical stability by suppressing hydrogen evolution reaction, overpotential growth, and dendrite formation. Penta-sodium diethylene-triaminepentaacetic acid salt was selected for such a purpose. It has a suitable chelating ability in aqueous solutions to adjust solvation sheath and can be readily polarized under electrical loading conditions to further improve the passivation. Zn||Zn symmetric cells can be stably operated over 3500 h at 1 mA cm-2. Zn||NH4V4O10 full cells with the additive show great cycling stability with 84.6% capacity retention after 500 cycles at 1 A g-1. Since the additive not only reduces H2 evolution and corrosion but also modifies Zn2+ diffusion and deposition, highlyreversible Zn electrodes can be achieved as verified by the experimental results. Our work offers a practical approach to the logical design of reliable electrolytes for high-performance aqueous batteries.

11.
Soft Robot ; 11(2): 230-243, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37768717

RESUMEN

Soft grippers with good passive compliance can effectively adapt to the shape of a target object and have better safe grasping performance than rigid grippers. However, for soft or fragile objects, passive compliance is insufficient to prevent grippers from crushing the target. Thus, to complete nondestructive grasping tasks, precision force sensing and control are immensely important for soft grippers. In this article, we proposed an online learning self-tuning nonlinearity impedance controller for a tactile self-sensing two-finger soft gripper so that its grasping force can be controlled accurately. For the soft gripper, its grasping force is sensed by a liquid lens-based optical tactile sensing unit that contains a self-sensing fingertip and a liquid lens module and has many advantages of a rapid response time (about 0.04 s), stable output, good sensitivity (>0.4985 V/N), resolution (0.03 N), linearity (R2 > 0.96), and low cost (power consumption: 5 mW, preparation cost

12.
Nat Commun ; 14(1): 8174, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071396

RESUMEN

The deterministic creation and modification of domain walls in ferroelectric films have attracted broad interest due to their unprecedented potential as the active element in non-volatile memory, logic computation and energy-harvesting technologies. However, the correlation between charged and antiphase states, and their hybridization into a single domain wall still remain elusive. Here we demonstrate the facile fabrication of antiphase boundaries in BiFeO3 thin films using a He-ion implantation process. Cross-sectional electron microscopy, spectroscopy and piezoresponse force measurement reveal the creation of a continuous in-plane charged antiphase boundaries around the implanted depth and a variety of atomic bonding configurations at the antiphase interface, showing the atomically sharp 180° polarization reversal across the boundary. Therefore, this work not only inspires a domain-wall fabrication strategy using He-ion implantation, which is compatible with the wafer-scale patterning, but also provides atomic-scale structural insights for its future utilization in domain-wall nanoelectronics.

13.
Molecules ; 28(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37764484

RESUMEN

Developing robust and cost-effective electrocatalysts to boost hydrogen evolution reactions (HERs) and oxygen evolution reactions (OERs) is crucially important to electrocatalytic water splitting. Herein, bifunctional electrocatalysts, by coupling Co nanoparticles and N-doped carbon nanotubes/graphitic nanosheets (Co@NCNTs/NG), were successfully synthesized via facile high-temperature pyrolysis and evaluated for water splitting. The morphology and particle size of products were influenced by the precursor type of the cobalt source (cobalt oxide or cobalt nitrate). The pyrolysis product prepared using cobalt oxide as a cobalt source (Co@NCNTs/NG-1) exhibited the smaller particle size and higher specific surface area than that of the pyrolysis products prepared using cobalt nitrate as a cobalt source (Co@NCNTs/NG-2). Notably, Co@NCNTs/NG-1 displayed much lower potential -0.222 V vs. RHE for HER and 1.547 V vs. RHE for OER at the benchmark current density of 10 mA cm-2 than that of Co@NCNTs/NG-2, which indicates the higher bifunctional catalytic activities of Co@NCNTs/NG-1. The water-splitting device using Co@NCNTs/NG-1 as both an anode and cathode demonstrated a potential of 1.92 V to attain 10 mA cm-2 with outstanding stability for 100 h. This work provides a facile pyrolysis strategy to explore highly efficient and stable bifunctional electrocatalysts for water splitting.

14.
Artículo en Inglés | MEDLINE | ID: mdl-37394130

RESUMEN

Ammonia is one of the most serious environmental stressors which severely affect fishery production. Ammonia toxicity to fish has a tight relationship with oxidative stress, inflammation and ferroptosis (a type of programmed cell death characterized by iron-dependent lipid peroxidation), but the temporal response of the above three in brain remains unclear. In the present study, yellow catfish were exposed to three concentrations of ammonia: low concentration (TA-N ˂ 0.01 mg L-1, LA), middle concentration (TA-N 5.70 mg L-1, MA), high concentration (TA-N 28.50 mg L-1, HA) for 96 h. Brain was selected as target tissues for analysis. Results showed that ammonia stress resulted in firstly increased contents of hydroxyl radical at 1 h, total iron at 12 h, malondialdehyde at 48 h, respectively, and decreased contents of GSH at 3 h. The initial high expression levels of ferroptosis (GPX4, system xc-, TFR1) and inflammatory-related factors (NF-ƙB p65, TNF, COX-2, and LOX-15B), antioxidant enzymes genes (SOD and CAT) were observed at first hour upon MA or HA stress. Combining all, it suggested that brain ferroptosis and inflammation were the first to be activated at the initial stage of ammonia stress, and then that provoked oxidative stress.


Asunto(s)
Bagres , Ferroptosis , Animales , Amoníaco/toxicidad , Amoníaco/metabolismo , Bagres/metabolismo , Estrés Oxidativo , Inflamación/inducido químicamente , Encéfalo
15.
Angew Chem Int Ed Engl ; 62(27): e202305099, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37129174

RESUMEN

Garnet oxides such as Li6.4 La3 Zr1.4 Ta0.6 O12 (LLZTO) are promising solid electrolyte materials for all-solid-state lithium-metal batteries because of high ionic conductivity, low electronic leakage, and wide electrochemical stability window. While LLZTO has been frequently discussed to be stable against lithium metal anode, it is challenging to achieve and maintain good solid-on-solid wetting at the metal/ceramic interface in both processing and extended electrochemical cycling. Here we address the challenge by a powder-form magnesium nitride additive, which reacts with the lithium metal anode to produce well-dispersed lithium nitride. The in situ formed lithium nitride promotes reactive wetting at the Li/LLZTO interface, which lowers interfacial resistance, increases critical current density (CCD), and improves cycling stability of the electrochemical cells. The additive recipe has been diversified to titanium nitride, zirconium nitride, tantalum nitride, and niobium nitride, thus supporting the general concept of reactive dispersion-plus-wetting. Such a design can be extended to other solid-state devices for better functioning and extended cycle life.

17.
Biology (Basel) ; 12(4)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37106691

RESUMEN

This study estimated the effect of substituting fishmeal completely with cottonseed protein concentrate (CPC) in the diet of sturgeon (Acipenser schrenckii) on growth, digestive physiology, and hepatic gene expression. A control diet containing fishmeal and an experimental diet based on CPC was designed. The study was conducted for 56 days in indoor recirculating aquaculture systems. The results showed that weight gain, feed efficiency, and whole-body essential amino acids (EAAs) all decreased significantly in the experimental group, while whole-body non-essential amino acids (NEAAs) and serum transaminase activity increased (p < 0.05). The activity of digestive enzymes in the mid-intestine was significantly reduced (p < 0.05), and liver histology revealed fatty infiltration of hepatocytes. The hepatic transcriptome revealed an upregulation of genes linked to metabolism, including steroid biosynthesis, pyruvate metabolism, fatty acid metabolism, and amino acid biosynthesis. These findings indicate that fully replacing fishmeal with CPC harms A. schrenckii growth and physiology. This study provides valuable data for the development of improved aquafeeds and the use of molecular methods to evaluate the diet performance of sturgeon.

18.
Front Nutr ; 10: 1008822, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960199

RESUMEN

This study aimed to investigate the effects of phenylalanine on the growth, digestive capacity, antioxidant capability, and intestinal health of triploid rainbow trout (Oncorhynchus mykiss) fed a low fish meal diet (15%). Five isonitrogenous and isoenergetic diets with different dietary phenylalanine levels (1.82, 2.03, 2.29, 2.64, and 3.01%) were fed to triplicate groups of 20 fish (initial mean body weight of 36.76 ± 3.13 g). The weight gain rate and specific growth rate were significantly lower (p < 0.05) in the 3.01% group. The trypsin activity in the 2.03% group was significantly higher than that in the control group (p < 0.05). Amylase activity peaked in the 2.64% treatment group. Serum superoxide dismutase, catalase, and lysozyme had the highest values in the 2.03% treatment group. Liver superoxide dismutase and catalase reached their maximum values in the 2.03% treatment group, and lysozyme had the highest value in the 2.29% treatment group. Malondialdehyde levels in both the liver and serum were at their lowest in the 2.29% treatment group. Interleukin factors IL-1ß and IL-6 both reached a minimum in the 2.03% group and were significantly lower than in the control group, while IL-10 reached a maximum in the 2.03% group (p < 0.05). The tight junction protein-related genes occludin, claudin-1, and ZO-1 all attained their highest levels in the 2.03% treatment group and were significantly higher compared to the control group (p < 0.05). The intestinal villi length and muscle layer thickness were also improved in the 2.03% group (p < 0.05). In conclusion, dietary phenylalanine effectively improved the growth, digestion, absorption capacity, antioxidant capacity, and intestinal health of O. mykiss. Using a quadratic curve model analysis based on WGR, the dietary phenylalanine requirement of triploid O. mykiss fed a low fish meal diet (15%) was 2.13%.

19.
Biology (Basel) ; 12(2)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36829424

RESUMEN

This study aimed to determine the effects of dietary sodium butyrate (NaB) on the growth and gut health of triploid Oncorhynchus mykiss juveniles (8.86 ± 0.36 g) fed a low fish meal diet for 8 weeks, including the inflammatory response, histomorphology, and the composition and functional prediction of microbiota. Five isonitrogenous and isoenergetic practical diets (15.00% fish meal and 21.60% soybean meal) were supplemented with 0.00% (G1), 0.10% (G2), 0.20% (G3), 0.30% (G4), and 0.40% NaB (G5), respectively. After the feeding trial, the mortality for G3 challenged with Aeromonas salmonicida for 7 days was lower than that for G1 and G5. The optimal NaB requirement for triploid O. mykiss based on weight gain rate (WGR) and the specific growth rate (SGR) was estimated to be 0.22% and 0.20%, respectively. The activities of intestinal digestive enzymes increased in fish fed a NaB diet compared to G1 (p < 0.05). G1 also showed obvious signs of inflammation, but this inflammation was significantly alleviated with dietary NaB supplementation. In comparison, G3 exhibited a more complete intestinal mucosal morphology. Dietary 0.20% NaB may play an anti-inflammatory role by inhibiting the NF-κB-P65 inflammatory signaling pathway. Additionally, the relative abundance of probiotics was altered by dietary NaB. In conclusion, dietary 0.20% NaB improved the intestinal health of triploid O. mykiss fed a low fish meal diet.

20.
Nanomaterials (Basel) ; 13(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36839083

RESUMEN

Carbon-encapsulated transition metal catalysts have caught the interest of researchers in the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) due to their distinctive architectures and highly tunable electronic structures. In this work, we synthesized N-doped carbon encapsulated with CoNi nanoalloy particles (CoNi@NC) as the electrocatalysts. The metal-organic skeleton ZIF-67 nanocubes were first synthesized, and then Ni2+ ions were inserted to generate CoNi-ZIF precursors by a simple ion-exchange route, which was followed by pyrolysis and with urea for the introduction of nitrogen (N) at a low temperature to synthesize CoNi@NC composites. The results reveal that ZIF-67 pyrolysis can dope more N atoms in the carbon skeleton and that the pyrolysis temperature influences the ORR and OER performances. The sample prepared by CoNi@NC pyrolysis at 650 °C has a high N content (9.70%) and a large specific surface area (167 m2 g-1), with a positive ORR onset potential (Eonset) of 0.89 V vs. RHE and half-wave potential (E1/2) of 0.81 V vs. RHE in 0.1 M KOH, and the overpotential of the OER measured in 1 M KOH was only 286 mV at 10 mA cm-2. The highly efficient bifunctional ORR/OER electrocatalysts synthesized by this method can offer some insights into the design and synthesis of complex metal-organic frameworks (MOFs) hybrid structures and their derivatives as functional materials in energy storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA