Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Curr Med Imaging ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38258591

RESUMEN

BACKGROUND: Multisystem information, including musculoskeletal information, can be captured from chest CT scans of patients with COVID-19 without further examination. AIMS: This study aims to assess the relationship between chest CT-extracted baseline bone mineral density (BMD) and body composition parameters and the length of hospital stay in these patients. METHODS: A retrospective analysis was performed in a cohort of 88 patients with COVID-19. Correlation analysis and a generalized linear model (GLM) were used to assess the associations between the length of hospital stay and covariates, including age, sex, body mass index (BMI), BMD and body composition variables. RESULTS: The mean length of hospital stay was 27.4±8.7 days. The length of hospital stay was significantly positively associated with age (r=0.202, p=0.046) and the paraspinal muscle fat ratio (r=0.246, p=0.021). The GLM involving age, sex, BMD, paraspinal muscle fat ratio, subcutaneous adipose tissue (SAT) area, visceral adipose tissue (VAT) area, and liver fat fraction (LFF) showed that the length of hospital stay was positively correlated with VAT area (ß coefficients, 95% CI: 9.304, 1.141-17.478, p=0.025). CONCLUSION: The musculoskeletal features extracted from chest CT correlated with the prognosis of COVID-19 patients. Factors including old age, a higher paraspinal muscle fat ratio and a larger VAT area in patients with COVID-19 were associated with longer hospital stays.

2.
Sci Bull (Beijing) ; 69(4): 512-525, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38160175

RESUMEN

In vaccine development, broadly or cross-type neutralizing antibodies (bnAbs or cnAbs) are frequently targeted to enhance protection. Utilizing immunodominant antibodies could help fine-tune vaccine immunogenicity and augment the precision of immunization strategies. However, the methodologies to capitalize on the attributes of bnAbs in vaccine design have not been clearly elucidated. In this study, we discovered a cross-type neutralizing monoclonal antibody, 13H5, against human papillomavirus 6 (HPV6) and HPV11. This nAb exhibited a marked preference for HPV6, demonstrating superior binding activity to virus-like particles (VLPs) and significantly higher prevalence in anti-HPV6 human serum as compared to HPV11 antiserum (90% vs. 31%). Through co-crystal structural analysis of the HPV6 L1 pentamer:13H5 complex, we delineated the epitope as spanning four segments of amino acids (Phe42-Ala47, Gly172-Asp173, Glu255-Val275, and Val337-Tyr351) on the L1 surface loops. Further interaction analysis and site-directed mutagenesis revealed that the Ser341 residue in the HPV6 HI loop plays a critical role in the interaction between 13H5 and L1. Substituting Ser341 with alanine, which is the residue type present in HPV11 L1, almost completely abolished binding activity to 13H5. By swapping amino acids in the HPV11 HI loop with corresponding residues in HPV6 L1 (Ser341, Thr338, and Thr339), we engineered chimeric HPV11-6HI VLPs. Remarkably, the chimeric HPV11-6HI VLPs shifted the high immunodominance of 13H5 from HPV6 to the engineered VLPs and yielded comparable neutralization titers for both HPV6 and HPV11 in mice and non-human primates. This approach paves the way for the design of broadly protective vaccines from antibodies within the main immunization reservoir.


Asunto(s)
Vacunas contra Papillomavirus , Animales , Ratones , Anticuerpos ampliamente neutralizantes , Proteínas de la Cápside/genética , Anticuerpos Antivirales , Papillomavirus Humano 6 , Inmunización , Aminoácidos
3.
J Virol ; 97(3): e0181922, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36815785

RESUMEN

Human papillomaviruses (HPV) are small DNA viruses associated with cervical cancer, warts, and other epithelial tumors. Structural studies have shown that the HPV capsid consists of 360 copies of the major capsid protein, L1, arranged as 72 pentamers in a T=7 icosahedral lattice, coassembling with substoichiometric amounts of the minor capsid protein, L2. However, the residues involved in the coassembly of L1 and L2 remain undefined due to the lack of structure information. Here, we investigated the solvent accessibility surfaces (SASs) of the central cavity residues of the HPV16 L1 pentamer in the crystal structure because those internal exposed residues might mediate the association with L2. Twenty residues in L1 protein were selected to be analyzed, with four residues in the lumen of the L1 pentamer identified as important: F256, R315, Q317, and T340. Mutations to these four residues reduced the PsV (pseudovirus) infection capacity in 293FT cells, and mutations to R315, Q317, and T340 substantially perturb L2 from coassembling into L1 capsid. Compared with wild-type (WT) PsVs, these mutant PsVs also have a reduced ability to become internalized into host cells. Finally, we identified a stretch of negatively charged residues on L2 (amino acids [aa] 337 to 340 [EEIE]), mutations to which completely abrogate L2 assembly into L1 capsid and subsequently impair the endocytosis and infectivity of HPV16 PsVs. These findings shed light on the elusive coassembly between HPV L1 and L2. IMPORTANCE Over 200 types of HPV have been isolated, with several high-risk types correlated with the occurrence of cervical cancer. The HPV major capsid protein, L1, assembles into a T=7 icosahedral viral shell, and associates with the minor capsid protein, L2, which plays a critical role in the HPV life cycle. Despite the important role of the L2 protein, its structure and coassembly with L1 remain elusive. In this study, we analyzed the amino acid residues at the proposed interface between L1 and L2. Certain mutations at these sites decreased the amount of L2 protein assembled into the capsid, which, in turn, led to a decrease in viral infectivity. Knowledge about these residues and the coassembly of L1 and L2 could help to expand our understanding of HPV biology and aid in the development of countermeasures against a wide range of HPV types by targeting the L2 protein.


Asunto(s)
Proteínas de la Cápside , Papillomavirus Humano 16 , Femenino , Humanos , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/patogenicidad , Infecciones por Papillomavirus/virología , Secuencia de Aminoácidos/genética , Mutación , Línea Celular , Estructura Terciaria de Proteína/genética , Modelos Moleculares
4.
NPJ Vaccines ; 7(1): 134, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316367

RESUMEN

In vaccinology, a potent immunogen has two prerequisite attributes-antigenicity and immunogenicity. We have rational designed a triple-type HPV vaccine against HPV58, -33 and -52 covered in Gardasil 9 based on the sequence homology and similar surface loop structure of L1 protein, which is related to cross-type antigenicity. Here, we design another triple-type vaccine against non-vaccine types HPV39, -68 and -70 by immunogenicity optimization considering type specific immunodominant epitopes located in separate region for different types. First, we optimized the expression of wild-type HPV39, -68 and -70 L1-only virus-like particles (VLPs) in E. coli through N-terminal truncation of HPV L1 proteins and non-fusion soluble expression. Second, based on genetic relationships and an L1 homologous loop-swapping rationale, we constructed several triple-type chimeric VLPs for HPV39, -68 and -70, and obtained the lead candidate named H39-68FG-70DE by the immunogenicity optimization using reactivity profile of a panel type-specific monoclonal antibodies. Through comprehensive characterization using various biochemical, VLP-based analyses and immune assays, we show that H39-68FG-70DE assumes similar particulate properties as that of its parental VLPs, along with comparable neutralization immunogenicity for all three HPV types. Overall, this study shows the promise and translatability of an HPV39/68/70 triple-type vaccine, and the possibility of expanding the type-coverage of current HPV vaccines. Our study further expanded the essential criteria on the rational design of a cross-type vaccine, i.e. separate sites with inter-type similar sequence and structure as well as type-specific immunodominant epitope to be clustered together.

5.
Nat Commun ; 11(1): 2841, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32503989

RESUMEN

The capsid of human papillomavirus (HPV) spontaneously arranges into a T = 7 icosahedral particle with 72 L1 pentameric capsomeres associating via disulfide bonds between Cys175 and Cys428. Here, we design a capsomere-hybrid virus-like particle (chVLP) to accommodate multiple types of L1 pentamers by the reciprocal assembly of single C175A and C428A L1 mutants, either of which alone encumbers L1 pentamer particle self-assembly. We show that co-assembly between any pair of C175A and C428A mutants across at least nine HPV genotypes occurs at a preferred equal molar stoichiometry, irrespective of the type or number of L1 sequences. A nine-valent chVLP vaccine-formed through the structural clustering of HPV epitopes-confers neutralization titers that are comparable with that of Gardasil 9 and elicits minor cross-neutralizing antibodies against some heterologous HPV types. These findings may pave the way for a new vaccine design that targets multiple pathogenic variants or cancer cells bearing diverse neoantigens.


Asunto(s)
Proteínas de la Cápside/inmunología , Neoplasias/terapia , Papillomaviridae/inmunología , Infecciones por Papillomavirus/terapia , Vacunas contra Papillomavirus/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Proteínas de la Cápside/administración & dosificación , Proteínas de la Cápside/genética , Diseño de Fármacos , Epítopos/genética , Epítopos/inmunología , Femenino , Humanos , Inmunogenicidad Vacunal , Ratones , Modelos Animales , Mutación , Neoplasias/virología , Pruebas de Neutralización , Papillomaviridae/genética , Infecciones por Papillomavirus/virología , Vacunas contra Papillomavirus/administración & dosificación , Vacunas contra Papillomavirus/genética , Multimerización de Proteína/genética , Multimerización de Proteína/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/genética , Vacunas de Partículas Similares a Virus/inmunología
6.
ISME J ; 14(7): 1847-1856, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32327733

RESUMEN

Chlorine disinfection to drinking water plays an important role in preventing and controlling waterborne disease outbreaks globally. Nevertheless, little is known about why it enriches the antibiotic resistance genes (ARGs) in bacteria after chlorination. Here, ARGs released from killed antibiotic-resistant bacteria (ARB), and culturable chlorine-injured bacteria produced in the chlorination process as the recipient, were investigated to determine their contribution to the horizontal transfer of ARGs during disinfection treatment. We discovered Escherichia coli, Salmonella aberdeen, Pseudomonas aeruginosa and Enterococcus faecalis showed diverse resistance to sodium hypochlorite, and transferable RP4 could be released from killed sensitive donor consistently. Meanwhile, the survival of chlorine-tolerant injured bacteria with enhanced cell membrane permeabilisation and a strong oxidative stress-response demonstrated that a physiologically competent cell could be transferred by RP4 with an improved transformation frequency of up to 550 times compared with the corresponding untreated bacteria. Furthermore, the water quality factors involving chemical oxygen demand (CODMn), ammonium nitrogen and metal ions (Ca2+ and K+) could significantly promote above transformation frequency of released RP4 into injured E. faecalis. Our findings demonstrated that the chlorination process promoted the horizontal transfer of plasmids by natural transformation, which resulted in the exchange of ARGs across bacterial genera and the emergence of new ARB, as well as the transfer of chlorine-injured opportunistic pathogen from non-ARB to ARB. Considering that the transfer elements were quite resistant to degradation through disinfection, this situation poses a potential risk to public health.


Asunto(s)
Cloro , Desinfección , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Antibacterianos/farmacología , Bacterias/genética , Cloro/farmacología , Farmacorresistencia Bacteriana , Farmacorresistencia Microbiana , Genes Bacterianos
7.
Proc Natl Acad Sci U S A ; 116(52): 26933-26940, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31818956

RESUMEN

In adaptive immunity, organisms produce neutralizing antibodies (nAbs) to eliminate invading pathogens. Here, we explored whether viral neutralization could be attained through the physical disruption of a virus upon nAb binding. We report the neutralization mechanism of a potent nAb 8C11 against the hepatitis E virus (HEV), a nonenveloped positive-sense single-stranded RNA virus associated with abundant acute hepatitis. The 8C11 binding flanks the protrusion spike of the HEV viruslike particles (VLPs) and leads to tremendous physical collision between the antibody and the capsid, dissociating the VLPs into homodimer species within 2 h. Cryo-electron microscopy reconstruction of the dissociation intermediates at an earlier (15-min) stage revealed smeared protrusion spikes and a loss of icosahedral symmetry with the capsid core remaining unchanged. This structural disruption leads to the presence of only a few native HEV virions in the ultracentrifugation pellet and exposes the viral genome. Conceptually, we propose a strategy to raise collision-inducing nAbs against single spike moieties that feature in the context of the entire pathogen at positions where the neighboring space cannot afford to accommodate an antibody. This rationale may facilitate unique vaccine development and antimicrobial antibody design.

8.
Emerg Microbes Infect ; 8(1): 1721-1733, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31769733

RESUMEN

Human papillomavirus type 6 (HPV6) is the major etiologic agent of genital warts and recurrent respiratory papillomatosis. Although the commercial HPV vaccines cover HPV6, the neutralization sites and mode for HPV6 are poorly understood. Here, we identify the HPV6 neutralization sites and discriminate the inhibition of virus attachment and entry by three potent neutralizing antibodies (nAbs), 5D3, 17D5, and 15F7. Mutagenesis assays showed that these nAbs predominantly target surface loops BC, DE, and FG of HPV6 L1. Cryo-EM structures of the HPV6 pseudovirus (PsV) and its immune complexes revealed three distinct binding modalities - full-occupation-bound to capsid, top-center-bound-, and top-rim-bound to pentamers - and illustrated a structural atlas for three classes of antibody-bound footprints that are located at center-distal ring, center, and center-proximal ring of pentamer surface for 5D3, 17D5, and 15F7, respectively. Two modes of neutralization were identified: mAb 5D3 and 17D5 block HPV PsV from attaching to the extracellular matrix (ECM) and the cell surface, whereas 15F7 allows PsV attachment but prohibits PsV from entering the cell. These findings highlight three neutralization sites of HPV6 L1 and outline two antibody-mediated neutralization mechanisms against HPV6, which will be relevant for HPV virology and antiviral inhibitor design. HighlightsMajor neutralization sites of HPV6 were mapped on the pseudovirus cryo-EM structuremAb 15F7 binds HPV6 capsid with a novel top-rim binding modality and confers a post-attachment neutralizationmAb 17D5 binds capsid in top-centre manner but unexpectedly prevents virus from attachment to cell surface.


Asunto(s)
Papillomavirus Humano 6/fisiología , Infecciones por Papillomavirus/virología , Acoplamiento Viral , Internalización del Virus , Animales , Anticuerpos Neutralizantes/análisis , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/análisis , Anticuerpos Antivirales/inmunología , Epítopos/genética , Epítopos/inmunología , Papillomavirus Humano 6/genética , Papillomavirus Humano 6/inmunología , Humanos , Ratones , Ratones Endogámicos BALB C , Pruebas de Neutralización , Infecciones por Papillomavirus/inmunología
9.
Nat Commun ; 9(1): 5360, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30560935

RESUMEN

Sequence variability in surface-antigenic sites of pathogenic proteins is an important obstacle in vaccine development. Over 200 distinct genomic sequences have been identified for human papillomavirus (HPV), of which more than 18 are associated with cervical cancer. Here, based on the high structural similarity of L1 surface loops within a group of phylogenetically close HPV types, we design a triple-type chimera of HPV33/58/52 using loop swapping. The chimeric VLPs elicit neutralization titers comparable with a mix of the three wild-type VLPs both in mice and non-human primates. This engineered region of the chimeric protein recapitulates the conformational contours of the antigenic surfaces of the parental-type proteins, offering a basis for this high immunity. Our stratagem is equally successful in developing other triplet-type chimeras (HPV16/35/31, HPV56/66/53, HPV39/68/70, HPV18/45/59), paving the way for the development of an improved HPV prophylactic vaccine against all carcinogenic HPV strains. This technique may also be extrapolated to other microbes.


Asunto(s)
Diseño de Fármacos , Papillomaviridae/inmunología , Infecciones por Papillomavirus/prevención & control , Vacunas contra Papillomavirus/inmunología , Neoplasias del Cuello Uterino/prevención & control , Animales , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Evaluación Preclínica de Medicamentos , Epítopos/genética , Epítopos/inmunología , Femenino , Ingeniería Genética/métodos , Inmunogenicidad Vacunal , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos BALB C , Modelos Animales , Pruebas de Neutralización , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/inmunología , Papillomaviridae/genética , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/virología , Vacunas contra Papillomavirus/genética , Filogenia , Organismos Libres de Patógenos Específicos , Neoplasias del Cuello Uterino/inmunología , Neoplasias del Cuello Uterino/virología
10.
Emerg Microbes Infect ; 7(1): 160, 2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-30254257

RESUMEN

Human papillomavirus (HPV) is the causative agent in genital warts and nearly all cervical, anogenital, and oropharyngeal cancers. Nine HPV types (6, 11, 16, 18, 31, 33, 45, 52, and 58) are associated with about 90% of cervical cancers and 90% of genital warts. HPV neutralization by vaccine-elicited neutralizing antibodies can block viral infection and prevent HPV-associated diseases. However, there is only one commercially available HPV vaccine, Gardasil 9, produced from Saccharomyces cerevisiae that covers all nine types, raising the need for microbial production of broad-spectrum HPV vaccines. Here, we investigated whether N-terminal truncations of the major HPV capsid proteins L1, improve their soluble expression in Escherichia coli. We found that N-terminal truncations promoted the soluble expression of HPV 33 (truncated by 10 amino acids [aa]), 52 (15 aa), and 58 (10 aa). The resultant HPV L1 proteins were purified in pentamer form and extensively characterized with biochemical, biophysical, and immunochemical methods. The pentamers self-assembled into virus-like particles (VLPs) in vitro, and 3D cryo-EM reconstructions revealed that all formed T = 7 icosahedral particles having 50-60-nm diameters. Moreover, we formulated a nine-valent HPV vaccine candidate with aluminum adjuvant and L1 VLPs from four genotypes used in this study and five from previous work. Immunogenicity assays in mice and non-human primates indicated that this HPV nine-valent vaccine candidate elicits neutralizing antibody titers comparable to those induced by Gardasil 9. Our study provides a method for producing a nine-valent HPV vaccine in E. coli and may inform strategies for the soluble expression of other vaccine candidates.


Asunto(s)
Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Escherichia coli/genética , Proteínas Oncogénicas Virales/química , Proteínas Oncogénicas Virales/genética , Papillomaviridae/genética , Infecciones por Papillomavirus/virología , Secuencias de Aminoácidos , Animales , Anticuerpos Antivirales/inmunología , Proteínas de la Cápside/administración & dosificación , Proteínas de la Cápside/inmunología , Escherichia coli/metabolismo , Femenino , Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas Oncogénicas Virales/administración & dosificación , Proteínas Oncogénicas Virales/inmunología , Papillomaviridae/química , Papillomaviridae/inmunología , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/prevención & control , Vacunas contra Papillomavirus/administración & dosificación , Vacunas contra Papillomavirus/química , Vacunas contra Papillomavirus/genética , Vacunas contra Papillomavirus/inmunología , Eliminación de Secuencia
11.
J Virol ; 92(17)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29925655

RESUMEN

Human infection with highly pathogenic avian influenza A viruses causes severe disease and fatalities. We previously identified a potent and broadly neutralizing antibody (bnAb), 13D4, against the H5N1 virus. Here, we report the co-crystal structure of 13D4 in complex with the hemagglutinin (HA) of A/Vietnam/1194/2004 (H5N1). We show that heavy-chain complementarity-determining region 3 (HCDR3) of 13D4 confers broad yet specific neutralization against H5N1, undergoing conformational rearrangement to bind to the receptor binding site (RBS). Further, we show that mutating four critical residues within the RBS-Trp153, Lys156, Lys193, and Leu194-disrupts the binding between 13D4 and HA. Viruses bearing Asn193 instead of Lys/Arg can evade 13D4 neutralization, indicating that Lys193 polymorphism might be, at least in part, involved in the antigenicity of recent H5 genotypes (such as H5N6 and H5N8) as distinguished from H5N1. BnAb 13D4 may offers a template for therapeutic RBS inhibitor design and serve as an indicator of antigenic change for current H5 viruses.IMPORTANCE Infection by highly pathogenic avian influenza A virus remains a threat to public health. Our broadly neutralizing antibody, 13D4, is capable of neutralizing all representative H5N1 viruses and protecting mice against lethal challenge. Structural analysis revealed that 13D4 uses heavy-chain complementarity-determining region 3 (HCDR3) to fit the receptor binding site (RBS) via conformational rearrangement. Four conserved residues within the RBS are critical for the broad potency of 13D4. Importantly, polymorphism of Lys193 on the RBS may be associated with the antigenicity shift from H5N1 to other newly emerging viruses, such as H5N6 and H5N8. Our findings may pave the way for highly pathogenic avian influenza virus vaccine development and therapeutic RBS inhibitor design.


Asunto(s)
Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Sustitución de Aminoácidos , Animales , Cristalografía por Rayos X , Análisis Mutacional de ADN , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Evasión Inmune , Ratones , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/inmunología , Unión Proteica , Conformación Proteica
12.
mBio ; 8(5)2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28951471

RESUMEN

Persistent, high-risk human papillomavirus (HPV) infection is the primary cause of cervical cancer. Neutralizing antibodies elicited by L1-only virus-like particles (VLPs) can block HPV infection; however, the lack of high-resolution structures has limited our understanding of the mode of virus infection and the requirement for type specificity at the molecular level. Here, we describe two antibodies, A12A3 and 28F10, that specifically bind to and neutralize HPV58 and HPV59, respectively, through two distinct binding stoichiometries. We show that the epitopes of A12A3 are clustered in the DE loops of two adjacent HPV58 L1 monomers, whereas 28F10 recognizes the HPV59 FG loop of a single monomer. Via structure-based mutagenesis and analysis of antibody binding, we further identified the residues HPV58 D154, S168, and N170 and HPV59 M267, Q270, E273, Y276, K278, and R283, which play critical roles in virus infection. By substituting these strategic epitope residues into other HPV genotypes, we could then redirect the type-specific binding of the antibodies to these genotypes, thus highlighting the importance of these specific residues, HPV58 R161, S168, and N308 and HPV59 Q270, E273, and D281. Overall, our findings provide molecular insights into potential structural determinants of HPV required for infectivity and type specificity.IMPORTANCE High-risk human papillomaviruses (HPVs) are considered the major causative pathogens of cancers that affect epithelial mucosa, such as cervical cancer. However, because of the lack of high-resolution structural information on the sites of neutralization, we have yet to determine the precise mode of HPV infection and how different types of HPV cause infection. Our crystal structures in this study have uncovered discrete binding stoichiometries for two different antibodies. We show that one A12A3 Fab binds to the center of one HPV58 pentamer, whereas five 28F10 Fabs bind along the top fringe of one HPV59 pentamer. Furthermore, through targeted epitope analysis, we show that 6 to 7 discontinuous residues of the L1 major capsid protein of HPV are determinants, at least in part, for virus infection and type specificity. This knowledge will help us to unravel the process of HPV infection and can potentially be used to drive the development of therapeutics that target neutralization-sensitive sites.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Complejo Antígeno-Anticuerpo/química , Epítopos/inmunología , Papillomaviridae/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/inmunología , Cristalografía por Rayos X , Epítopos/química , Genotipo , Humanos , Mutagénesis , Papillomaviridae/química , Papillomaviridae/genética , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/virología , Unión Proteica
13.
Vaccine ; 35(35 Pt B): 4637-4645, 2017 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-28736197

RESUMEN

Human papillomavirus (HPV) types 16 and 18 account for approximately 70% of cervical cancer worldwide. Neutralizing HPV prophylactic vaccines offer significant benefit, as they block HPV infection and prevent subsequent disease. However, the three licensed HPV vaccines that cover these two genotypes were produced in eukaryotic cells, which is expensive, particularly for low-income countries where HPV is highest. Here, we report a new HPV16 and -18 bivalent candidate vaccine produced from Escherichia coli. We used two strategies of N-terminal truncation of HPV L1 proteins and soluble non-fusion expression to generate HPV16 and HPV18 L1-only virus-like particles (VLPs) in a scalable process. Through comprehensive characterization of the bivalent candidate vaccine, we confirm lot consistency in a pilot scale-up of 30L, 100L and 500L. Using cryo-EM 3D reconstruction, we found that HPV16 and -18VLPs present in a T=7 icosahedral arrangement, similar in shape and size to that of the native virions. This HPV16/18 bivalent vaccine shares comparable immunogenicity with the licensed vaccines. Overall, we show that the production of a HPV16/18 bivalent vaccine from an E. coli expression system is robust and scalable, with potentially good accessibility worldwide as a population-based immunization strategy.


Asunto(s)
Escherichia coli/genética , Papillomavirus Humano 16/inmunología , Papillomavirus Humano 18/inmunología , Vacunas contra Papillomavirus/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Escherichia coli/inmunología , Femenino , Papillomavirus Humano 16/genética , Papillomavirus Humano 18/genética , Humanos , Inmunogenicidad Vacunal , Macaca mulatta , Ratones , Microscopía Electrónica , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/inmunología , Infecciones por Papillomavirus/prevención & control , Vacunas contra Papillomavirus/economía , Vacunas contra Papillomavirus/genética , Neoplasias del Cuello Uterino/prevención & control , Vacunación , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/inmunología
14.
Vaccine ; 35(24): 3222-3231, 2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28483196

RESUMEN

Human papillomavirus (HPV)-6 and HPV11 are the major etiological causes of condylomata acuminate. HPV neutralization by vaccine-elicited neutralizing antibodies can block viral infection and prevent subsequent disease. Currently, two commercially available HPV vaccines cover these two genotypes, expressed by Saccharomyces cerevisiae. Here we describe another HPV6/11 bivalent vaccine candidate derived from Escherichia coli. The soluble expression of N-terminally truncated L1 proteins was optimized to generate HPV6- and HPV11 L1-only virus-like particles (VLPs) as a scalable process. In a pilot scale, we used various biochemical, biophysical and immunochemical approaches to comprehensively characterize the scale and lot consistency of the vaccine candidate at 30L and 100L. Cryo-EM structure analysis showed that these VLPs form a T=7 icosahedral lattice, imitating the L1 capsid of the authentic HPV virion. This HPV6/11 bivalent vaccine confers a neutralization titer and antibody production profile in monkey that is comparable with the quadrivalent vaccine, Gardasil. This study demonstrates the robustness and scalability of a potential HPV6/11 bivalent vaccine using a prokaryotic system for vaccine production.


Asunto(s)
Escherichia coli/genética , Papillomavirus Humano 11/inmunología , Papillomavirus Humano 6/inmunología , Inmunogenicidad Vacunal , Vacunas contra Papillomavirus/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Antígenos Virales/genética , Antígenos Virales/inmunología , Vacuna Tetravalente Recombinante contra el Virus del Papiloma Humano Tipos 6, 11 , 16, 18/administración & dosificación , Vacuna Tetravalente Recombinante contra el Virus del Papiloma Humano Tipos 6, 11 , 16, 18/inmunología , Papillomavirus Humano 11/genética , Papillomavirus Humano 6/genética , Humanos , Ratones , Microscopía Electrónica de Transmisión , Infecciones por Papillomavirus/prevención & control , Vacunas contra Papillomavirus/administración & dosificación , Vacunas contra Papillomavirus/economía , Vacunas contra Papillomavirus/genética , Vacunas de Partículas Similares a Virus/química , Vacunas de Partículas Similares a Virus/genética , Vacunas de Partículas Similares a Virus/ultraestructura
15.
Environ Sci Process Impacts ; 19(5): 720-726, 2017 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-28406501

RESUMEN

Underestimation of Escherichia coli in drinking water, an indicator microorganism of sanitary risk, may result in potential risks of waterborne diseases. However, the detection of disinfectant-injured or genetically modified (GM) E. coli has been largely overlooked so far. To evaluate the accuracy of culture-dependent enumeration with regard to disinfectant-injured and GM E. coli, chlorine- or ozone-injured wild-type (WT) and GM E. coli were prepared and characterized. Then, water samples contaminated with these E. coli strains were assayed by four widely used methods, including lactose tryptose broth-based multiple-tube fermentation (MTF), m-endo-based membrane filtration method (MFM), an enzyme substrate test (EST) known as Colilert, and Petrifilm-based testing slip method (TSM). It was found that MTF was the most effective method to detect disinfectant-injured WT E. coli (with 76.9% trials detecting all these bacteria), while this method could not effectively detect GM E. coli (with uninjured bacteria undetectable and a maximal detection rate of 21.5% for the injured). The EST was the only method which enabled considerable enumeration of uninjured GM E. coli, with a detection rate of over 93%. However, the detection rate declined to lower than 45.4% once the GM E. coli was injured by disinfectants. The MFM was invalid for both disinfectant-injured and GM E. coli. This is the first study to report the failure of these commonly used enumeration methods to simultaneously detect disinfectant-injured and GM E. coli. Thus, it highlights the urgent requirement for the development of a more accurate and versatile enumeration method which allows the detection of disinfectant-injured and GM E. coli on the assessment of microbial quality of drinking water.


Asunto(s)
Técnicas Bacteriológicas/métodos , Desinfectantes/toxicidad , Agua Potable/microbiología , Escherichia coli/crecimiento & desarrollo , Escherichia coli/genética , Microbiología del Agua/normas , Cloro/toxicidad , Agua Potable/normas , Enterobacteriaceae/genética , Enterobacteriaceae/crecimiento & desarrollo , Fermentación , Filtración , Ozono/toxicidad , Sensibilidad y Especificidad , Calidad del Agua
16.
Protein Expr Purif ; 133: 110-120, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28267627

RESUMEN

Human papillomavirus (HPV) is widely accepted to be the major causative pathogen of cervical cancer, warts, and other epithelial tumors. Virus infection and subsequent disease development can be prevented by vaccination with HPV vaccines derived from eukaryotic expression systems. Here, we report the soluble expression of the major capsid protein L1 of HPV31, a dominant carcinogenic HPV genotype, in Escherichia coli. HPV31 L1 protein and its elongated form (L1+) were observed in SDS-PAGE and CE-SDS analysis, generated by the native HPV31 L1 gene with a TAA stop codon. Replacing the TAA with TAG but not TGA could completely terminate protein translation. Mass spectrometry sequencing showed that L1+ comprised L1 with a C-terminal extension of 38 amino acids (aa). RNA folding analysis revealed that the unfaithful L1+ expression may result from translational read-through, as TAG is more stable and accessible than the other stop codons. The 38-aa elongated fragment perturbs self-assembly of HPV31 L1+, as shown in size and morphology analyses. By 3D cryo-electron microscopy structure determination, we show self-assembly of purified HPV31 L1 (TAG) VLPs into T = 7 icosahedral symmetry particles, resembling the native HPV virion. Finally, through additional characterization and antigenicity/immunogenicity assays, we verified that the E.coli-derived HPV31 VLPs are an ideal immunogen for HPV vaccine development. Our findings outline a codon optimization stratagem for protein expression and provide a method for the in-depth investigation of prokaryotic translation regulation.


Asunto(s)
Proteínas de la Cápside , Codón de Terminación , Expresión Génica , Papillomavirus Humano 31/genética , Mutagénesis , Proteínas Oncogénicas Virales , Vacunas contra Papillomavirus , Proteínas de la Cápside/biosíntesis , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Papillomavirus Humano 31/metabolismo , Humanos , Proteínas Oncogénicas Virales/biosíntesis , Proteínas Oncogénicas Virales/química , Proteínas Oncogénicas Virales/genética , Vacunas contra Papillomavirus/biosíntesis , Vacunas contra Papillomavirus/química , Vacunas contra Papillomavirus/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
17.
Structure ; 24(6): 874-85, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27276427

RESUMEN

Cervical cancer is the second most prevalent malignant tumor among women worldwide. High-risk human papillomaviruses (HPVs) are believed to be the major causative pathogens of mucosal epithelial cancers including cervical cancer. The HPV capsid is made up of 360 copies of major (L1) and 72 copies of minor (L2) capsid proteins. To date, limited high-resolution structural information about the HPV capsid has hindered attempts to understand details concerning the mechanisms by which HPV assembles and infects cells. In this study, we have constructed a pseudo-atomic model of the HPV59 L1-only capsid and demonstrate that the C-terminal arm of L1 participates in virus-host interactions. Moreover, when conjugated to a scaffold protein, keyhole limpet hemocyanin (KLH), this arm is immunogenic in vivo. These results provide new insights that will help elucidate HPV biology, and hence pave a way for the design of next-generation HPV vaccines.


Asunto(s)
Proteínas de la Cápside/química , Proteínas de la Cápside/inmunología , Proteínas Oncogénicas Virales/química , Proteínas Oncogénicas Virales/inmunología , Papillomaviridae/fisiología , Neoplasias del Cuello Uterino/inmunología , Línea Celular Tumoral , Microscopía por Crioelectrón , Cristalografía por Rayos X , Femenino , Interacciones Huésped-Patógeno , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Papillomaviridae/inmunología , Conformación Proteica , Neoplasias del Cuello Uterino/virología
18.
Nanotoxicology ; 10(8): 1051-60, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26946995

RESUMEN

Nanomaterial pollution and the spread of antibiotic resistance genes (ARGs) are global public health and environmental concerns. Whether nanomaterials could aid the transfer of ARGs released from dead bacteria into live bacteria to cause spread of ARGs is still unknown. Here, we demonstrated that nano-Al2O3 could significantly promote plasmid-mediated ARGs transformation into Gram-negative Escherichia coli strains and into Gram-positive Staphylococcus aureus; however, bulk Al2O3 did not have this effect. Under suitable conditions, 7.4 × 10(6) transformants of E. coli and 2.9 × 10(5) transformants of S. aureus were obtained from 100 ng of a pBR322-based plasmid when bacteria were treated with nano-Al2O3. Nanoparticles concentrations, plasmid concentrations, bacterial concentrations, interaction time between the nanomaterial and bacterial cells and the vortexing time affected the transformation efficiency. We also explored the mechanisms underlying this phenomenon. Using fluorescence in situ hybridization and scanning electron microscopy, we found that nano-Al2O3 damaged the cell membrane to produce pores, through which plasmid could enter bacterial cells. Results from reactive oxygen species (ROS) assays, genome-wide expression microarray profiling and quantitative real-time polymerase chain reactions suggested that intracellular ROS damaged the cell membrane, and that an SOS response promoted plasmid transformation. Our results indicated the environmental and health risk resulting from nanomaterials helping sensitive bacteria to obtain antibiotic resistance.


Asunto(s)
Óxido de Aluminio/toxicidad , Farmacorresistencia Bacteriana/genética , Escherichia coli/efectos de los fármacos , Genes Bacterianos , Nanoestructuras/toxicidad , Staphylococcus aureus/efectos de los fármacos , Óxido de Aluminio/química , Escherichia coli/genética , Transferencia de Gen Horizontal , Hibridación Fluorescente in Situ , Nanoestructuras/química , Plásmidos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Staphylococcus aureus/genética
19.
Water Res ; 92: 188-98, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26854607

RESUMEN

Extracellular antibiotic resistance genes (eARGs) that help in the transmission and spread of antibiotic-resistant bacteria are emerging environmental contaminants in water, and there is therefore a growing need to assess environmental levels and associated risks of eARGs. However, as they are present in low amounts, it is difficult to detect eARGs in water directly with PCR techniques. Here, we prepared a new type of nucleic acid adsorption particle (NAAP) with high capacity and developed an optimal adsorption-elution method to concentrate eARGs from large volumes of water. With this technique, we were able to achieve an eARG recovery rate of above 95% from 10 L of water samples. Moreover, combining this new method with quantitative real-time PCR (qPCR), the sensitivity of the eARG detection was 10(4) times that of single qPCR, with the detection limit lowered to 100 gene copies (GCs)/L. Our analyses showed that the eARG load, virus load and certain water characteristics such as pH, chemical oxygen demand (CODMn), and turbidity affected the eARGs recovery rate. However, high eARGs recovery rates always remained within the standard limits for natural surface water quality, while eARG levels in water were lower than the detection limits of single qPCR assays. The recovery rates were not affected by water temperature and heterotrophic plate counts (HPC). The eARGs whatever located in the plasmids or the short-length linear DNAs can be recovered from the water. Furthermore, the recovery rate was high even in the presence of high concentrations of plasmids in different natural water (Haihe river, well water, raw water for drinking water, Jinhe river, Tuanbo lake and the Yunqiao reservoir). By this technology, eARGs concentrations were found ranging from (2.70 ± 0.73) × 10(2) to (4.58 ± 0.47) × 10(4) GCs/L for the extracellular ampicillin resistance gene and (5.43 ± 0.41) × 10(2) to (2.14 ± 0.23) × 10(4) GCs/L for the extracellular gentamicin resistance gene in natural water for the first time, respectively. All these findings suggest that NAAPs have great potential for the monitoring of eARGs pollution in water.


Asunto(s)
Farmacorresistencia Microbiana/genética , Espacio Extracelular/química , Microbiología del Agua , Purificación del Agua/métodos , Agua/química , Adsorción , Análisis de la Demanda Biológica de Oxígeno , Precipitación Química , ADN/análisis , Concentración de Iones de Hidrógeno , Ácidos Nucleicos/análisis , Reproducibilidad de los Resultados , Reología , Espectrometría por Rayos X , Factores de Tiempo , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/análisis
20.
Sci Rep ; 6: 19042, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26750243

RESUMEN

The presence of neutralizing epitopes in human papillomavirus (HPV) L1 virus-like particles (VLPs) is the structural basis of prophylactic vaccines. An anti-HPV16 neutralizing monoclonal antibody (N-mAb) 26D1 was isolated from a memory B cell of a human vaccinee. The pre-binding of heparan sulfate to VLPs inhibited the binding of both N-mAbs to the antigen, indicating that the epitopes are critical for viral cell attachment/entry. Hybrid VLP binding with surface loop swapping between types indicated the essential roles of the DE and FG loops for both 26D1 (DEa in particular) and H16.V5 binding. Specifically, Tyr(135) and Val(141) on the DEa loop were shown to be critical residues for 26D1 binding via site-directed mutagenesis. Partially overlap between the epitopes between 26D1 and H16.V5 was shown using pairwise epitope mapping, and their binding difference is demonstrated to be predominantly in DE loop region. In addition, 26D1 epitope is immunodominant epitope recognized by both antibodies elicited by the authentic virus from infected individuals and polyclonal antibodies from vaccinees. Overall, a partially overlapping but distinct neutralizing epitope from that of H16.V5 was identified using a human N-mAb, shedding lights to the antibody arrays as part of human immune response to vaccination and infection.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Neutralizantes/química , Proteínas de la Cápside/inmunología , Papillomavirus Humano 16/inmunología , Vacunas contra Papillomavirus/química , Vacunas de Partículas Similares a Virus/química , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Neutralizantes/biosíntesis , Afinidad de Anticuerpos , Especificidad de Anticuerpos , Linfocitos B/química , Linfocitos B/inmunología , Linfocitos B/virología , Proteínas de la Cápside/química , Mapeo Epitopo , Epítopos/química , Epítopos/inmunología , Femenino , Heparitina Sulfato/química , Heparitina Sulfato/farmacología , Papillomavirus Humano 16/química , Humanos , Sueros Inmunes/química , Memoria Inmunológica , Simulación del Acoplamiento Molecular , Mutación , Pruebas de Neutralización , Vacunas contra Papillomavirus/administración & dosificación , Vacunas contra Papillomavirus/inmunología , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Vacunación , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA