Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Analyst ; 149(18): 4758, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39176451

RESUMEN

Correction for 'Open-flow microperfusion combined with mass spectrometry for in vivo liver lipidomic analysis' by Tuo Li et al., Analyst, 2021, 146, 1915-1923, https://doi.org/10.1039/D0AN02189J.

2.
Heliyon ; 10(14): e34722, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39130420

RESUMEN

Nano-TiO2 is widely used in various fields such as industry, daily necessities, food and medicine. Previous studies have shown that it can enter mammalian tissues through the digestive tract or respiratory tract and have effects on various organs and systems. However, the effect of nano-TiO2 on the mammalian thyroid gland has not been reported. In this study, we fed SD rats with rutile nano-TiO2 at a dose of 5 mg/kg body weight for 3 weeks, and then examined the thyroid histology and thyroid function of the rats. In vitro experiments were conducted to determine the effects of nano-TiO2 on the viability, apoptosis, inflammatory factors, antioxidant enzymes, and oxidative stress of human thyroid follicular epithelial cells. Histological evidence showed abnormal morphology of rat thyroid follicles and organelle damage in follicular epithelial cells. Nano-TiO2 caused a decrease in the level of sodium/iodide symporter (NIS), an increase in the level of apoptotic protein cleaved-caspase 3, and an increase in the levels of pro-inflammatory factors IL-1ß and TNF-α in rat thyroid tissue. Nano-TiO2 also resulted in increased serum FT4 and TPO-Ab levels. In in vitro experiments, nano-TiO2 reduced the viability of human thyroid follicular cells, downregulated the levels and activities of antioxidant enzymes CAT, GPX1 and SOD, and increased the levels of ROS and MDA caused by oxidative stress. These results indicate that nano-TiO2 damages the structure and function of thyroid follicular epithelial cells through oxidative stress. Long-term exposure to nano-TiO2 could be a potential risk factor for thyroid dysfunction.

3.
Angew Chem Int Ed Engl ; : e202414118, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160140

RESUMEN

Trap-assisted non-radiative recombination losses and moisture-induced degradation significantly impede the development of highly efficient and stable inverted (p-i-n) perovskite solar cells (PSCs), which require high-quality perovskite bulk. In this research, we mitigate these challenges by integrating thermally stable perovskite layers with Lewis base covalent organic frameworks (COFs). The ordered pore structure and surface binding groups of COFs facilitate cyclic, multi-site chelation with undercoordinated lead ions, enhancing the perovskite quality across both its bulk and grain boundaries. This process not only reduces defects but also promotes improved energy alignment through n-type doping at the surface. The inclusion of COF dopants in p-i-n devices achieves power conversion efficiencies (PCEs) of 25.64% (certified 24.94%) for a 0.0748-cm2 device and 23.49% for a 1-cm2 device. Remarkably, these devices retain 81% of their initial PCE after 978 hours of accelerated aging at 85˚C, demonstrating remarkable durability. Additionally, COF-doped devices demonstrate excellent stability under illumination and in moist conditions, even without encapsulation.

4.
Foods ; 13(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38998524

RESUMEN

We aimed to explore the anti-obesity mechanism from the microbiome, metabolome, and transcriptome viewpoints, focusing on the sulfated polysaccharides found in the cooking liquid of Apostichopus japonicus (CLSPAJ) to explore the potential mediators of the anti-obesity effects in mice fed a high-fat diet (HFD). The mice treated with CLSPAJ showed a decrease in obesity and blood lipid levels. Gut microbiome dysbiosis caused by the HFD was reversed after CLSPAJ supplementation, along with increased levels of indole-3-ethanol, N-2-succinyl-L-glutamic acid 5-semialdehyde, and urocanic acid. These increases were positively related to the increased Akkermansia, Lactobacillus, Roseburia, and Phascolarctobacterium. Transcriptome analysis showed that B cell receptor signaling and cytochrome P450 xenobiotic metabolism were the main contributors to the improvement in obesity. Metabolome-transcriptome analysis revealed that CLSPAJ reversal of obesity was mainly due to amino acid metabolism. These findings suggest that CLSPAJ could be a valuable prebiotic preparation for preventing obesity-related diseases.

5.
Environ Sci Technol ; 58(26): 11791-11801, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38871647

RESUMEN

The effect of aqueous solution chemistry on the ionic hydration structure and its corresponding nanofiltration (NF) selectivity is a research gap concerning ion-selective transport. In this study, the hydration distribution of two typical monovalent anions (Cl- and NO3-) under different aqueous solution chemical conditions and the corresponding transmembrane selectivity during NF were investigated by using in situ liquid time-of-flight secondary ion mass spectrometry in combination with molecular dynamics simulations. We demonstrate the inextricable link between the ion hydration structure and the pore steric effect and further find that ionic transmembrane transport can be regulated by breaking the balance between the hydrogen bond network (i.e., water-water) and ion hydration (i.e., ion-water) interactions of hydrated ion. For strongly hydrated (H2O)nCl- with more intense ion-water interactions, a higher salt concentration and coexisting ion competition led to a larger hydrated size and, thus, a higher ion rejection by the NF membrane, whereas weakly hydrated (H2O)nNO3- takes the reverse under the same conditions. Stronger OH--anion hydration competition resulted in a smaller hydrated size of (H2O)nCl- and (H2O)nNO3-, showing a lower observed average hydration number at pH 10.5. This study deepens the long-overlooked understanding of NF separation mechanisms, concerning the hydration structure.


Asunto(s)
Filtración , Agua/química , Iones , Simulación de Dinámica Molecular , Soluciones , Aniones/química
6.
Anal Bioanal Chem ; 416(20): 4571-4580, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38902347

RESUMEN

Recently, open tubular capillary electrochromatography (OT-CEC) has captured considerable interest; its efficient separation capability hinges on the interactions between analytes and polymer coatings. However, in situ growth of stimuli-responsive polymers as coatings has been rarely studied and is crucial for expanding the OT-CEC technique and its application. Herein, following poly(styrene-maleicanhydride) (PSM) chemically bonded onto the inner surface of the capillary, a dual pH/temperature stimuli-responsive block copolymer, P(SMN-COOH), was prepared by in situ polymerizing poly(N-isopropylacrylamide) carboxylic acid terminated [P(N-COOH)] in PSM. An OT-CEC protocol was first explored using the coated capillary for epimedins separation. As a proof of concept, the developed OT-CEC system facilitated hydrogen bonding and tuning the hydrophilic/hydrophobic interactions between the test analytes and the P(SMN-COOH) coating by varying buffer pH and environmental temperature. Four epimedins with similar chemical structures were baseline separated under 40 °C at pH 10.0, exhibiting dramatical improvement in separation efficiency in comparison to its performance under 25 °C at pH 4.0. In addition, the coated capillary showed good repeatability and reusability with relative standard deviations for migration time and peak area between 0.7 and 1.7% and between 2.9 and 4.6%, respectively, and no significant changes after six runs. This work introduces a paradigm for efficient OT-CEC separation of herbal medicines through adjusting the interactions between analytes and smart polymer coatings, addressing polymer coating design and OT-CEC challenges.

7.
Molecules ; 29(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38893499

RESUMEN

Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, promotes the cytotoxicity of the genotoxic anticancer drug cisplatin, yet the underlying mechanism remains poorly understood. Herein, we revealed that TSA at a low concentration (1 µM) promoted the cisplatin-induced activation of caspase-3/6, which, in turn, increased the level of cleaved PARP1 and degraded lamin A&C, leading to more cisplatin-induced apoptosis and G2/M phase arrest of A549 cancer cells. Both ICP-MS and ToF-SIMS measurements demonstrated a significant increase in DNA-bound platinum in A549 cells in the presence of TSA, which was attributable to TSA-induced increase in the accessibility of genomic DNA to cisplatin attacking. The global quantitative proteomics results further showed that in the presence of TSA, cisplatin activated INF signaling to upregulate STAT1 and SAMHD1 to increase cisplatin sensitivity and downregulated ICAM1 and CD44 to reduce cell migration, synergistically promoting cisplatin cytotoxicity. Furthermore, in the presence of TSA, cisplatin downregulated TFAM and SLC3A2 to enhance cisplatin-induced ferroptosis, also contributing to the promotion of cisplatin cytotoxicity. Importantly, our posttranslational modification data indicated that acetylation at H4K8 played a dominant role in promoting cisplatin cytotoxicity. These findings provide novel insights into better understanding the principle of combining chemotherapy of genotoxic drugs and HDAC inhibitors for the treatment of cancers.


Asunto(s)
Antineoplásicos , Apoptosis , Cisplatino , Ácidos Hidroxámicos , Cisplatino/farmacología , Humanos , Apoptosis/efectos de los fármacos , Ácidos Hidroxámicos/farmacología , Antineoplásicos/farmacología , Células A549 , Inhibidores de Histona Desacetilasas/farmacología , Línea Celular Tumoral , Acetilación/efectos de los fármacos , Sinergismo Farmacológico
8.
Chembiochem ; 25(12): e202400105, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38639074

RESUMEN

Cell senescence is defined as irreversible cell cycle arrest, which can be triggered by telomere shortening or by various types of genotoxic stress. Induction of senescence is emerging as a new strategy for the treatment of cancer, especially when sequentially combined with a second senolytic drug capable of killing the resulting senescent cells, however severely suffering from the undesired off-target side effects from the senolytic drugs. Here, we prepare a bimetalic platinum-aluminum salen complex (Alumiplatin) for cancer therapy-a combination of pro-senesence chemotherapy with in situ senotherapy to avoid the side effects. The aluminum salen moiety, as a G-quadruplex stabilizer, enhances the salen's ability to induce cancer cell senescence and this phenotype is in turn sensitive to the cytotoxic activity of the monofunctional platinum moiety. It exhibits an excellent capability for inducing senescence, a potent cytotoxic activity against cancer cells both in vitro and in vivo, and an improved safety profile compared to cisplatin. Therefore, Alumiplatin may be a good candidate to be further developed into safe and effective anticancer agents. This novel combination of cell senescence inducers with genotoxic drugs revolutionizes the therapy options of designing multi-targeting anticancer agents to improve the efficacy of anticancer therapies.


Asunto(s)
Aluminio , Antineoplásicos , Senescencia Celular , Etilenodiaminas , Platino (Metal) , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Etilenodiaminas/química , Etilenodiaminas/farmacología , Senescencia Celular/efectos de los fármacos , Platino (Metal)/química , Platino (Metal)/farmacología , Aluminio/química , Aluminio/farmacología , Animales , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/uso terapéutico , Ratones , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Compuestos Organoplatinos/farmacología , Compuestos Organoplatinos/química
9.
Proc Natl Acad Sci U S A ; 121(14): e2316564121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38527200

RESUMEN

Sulfur in nature consists of two abundant stable isotopes, with two more neutrons in the heavy one (34S) than in the light one (32S). The two isotopes show similar physicochemical properties and are usually considered an integral system for chemical research in various fields. In this work, a model study based on a Li-S battery was performed to reveal the variation between the electrochemical properties of the two S isotopes. Provided with the same octatomic ring structure, the cyclo-34S8 molecules form stronger S-S bonds than cyclo-32S8 and are more prone to react with Li. The soluble Li polysulfides generated by the Li-34S conversion reaction show a stronger cation-solvent interaction yet a weaker cation-anion interaction than the 32S-based counterparts, which facilitates quick solvation of polysulfides yet hinders their migration from the cathode to the anode. Consequently, the Li-34S cell shows improved cathode reaction kinetics at the solid-liquid interface and inhibited shuttle of polysulfides through the electrolyte so that it demonstrates better cycling performance than the Li-32S cell. Based on the varied shuttle kinetics of the isotopic-S-based polysulfides, an electrochemical separation method for 34S/32S isotope is proposed, which enables a notably higher separation factor than the conventional separation methods via chemical exchange or distillation and brings opportunities to low-cost manufacture, utilization, and research of heavy chalcogen isotopes.

10.
Small ; 20(30): e2308715, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38412419

RESUMEN

Biomolecular piezoelectric materials show great potential in the field of wearable and implantable biomedical devices. Here, a self-assemble approach is developed to fabricating flexible ß-glycine piezoelectric nanofibers with interfacial polarization locked aligned crystal domains induced by Nb2CTx nanosheets. Acted as an effective nucleating agent, Nb2CTx nanosheets can induce glycine to crystallize from edges toward flat surfaces on its 2D crystal plane and form a distinctive eutectic structure within the nanoconfined space. The interfacial polarization locking formed between O atom on glycine and Nb atom on Nb2CTx is essential to align the ß-glycine crystal domains with (001) crystal plane intensity extremely improved. This ß-phase glycine/Nb2CTx nanofibers (Gly-Nb2C-NFs) exhibit fabulous mechanical flexibility with Young's modulus of 10 MPa, and an enhanced piezoelectric coefficient of 5.0 pC N-1 or piezoelectric voltage coefficient of 129 × 10-3Vm N-1. The interface polarization locking greatly improves the thermostability of ß-glycine before melting (≈210°C). A piezoelectric sensor based on this Gly-Nb2C-NFs is used for micro-vibration sensing in vivo in mice and exhibits excellent sensing ability. This strategy provides an effective approach for the regular crystallization modulation for glycine crystals, opening a new avenue toward the design of piezoelectric biomolecular materials induced by 2D materials.

11.
Molecules ; 29(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38398629

RESUMEN

Strophanthidin (SPTD), one of the cardiac glycosides, is refined from traditional Chinese medicines such as Semen Lepidii and Antiaris toxicaria, and was initially used for the treatment of heart failure disease in clinic. Recently, SPTD has been shown to be a potential anticancer agent, but the underlying mechanism of action is poorly understood. Herein, we explored the molecular mechanism by which SPTD exerts anticancer effects in A549 human lung adenocarcinoma cells by means of mass spectrometry-based quantitative proteomics in combination with bioinformatics analysis. We revealed that SPTD promoted the expression of tumor necrosis factor (TNF)-related apoptosis-inducing ligand receptor 2 (TRAIL-R2, or DR5) in A549 cells to activate caspase 3/6/8, in particular caspase 3. Consequently, the activated caspases elevated the expression level of apoptotic chromatin condensation inducer in the nucleus (ACIN1) and prelamin-A/C (LMNA), ultimately inducing apoptosis via cooperation with the SPTD-induced overexpressed barrier-to-autointegration factor 1 (Banf1). Moreover, the SPTD-induced DEPs interacted with each other to downregulate the p38 MAPK/ERK signaling, contributing to the SPTD inhibition of the growth of A549 cells. Additionally, the downregulation of collagen COL1A5 by SPTD was another anticancer benefit of SPTD through the modulation of the cell microenvironment.


Asunto(s)
Adenocarcinoma del Pulmón , Estrofantidina , Humanos , Estrofantidina/farmacología , Caspasa 3/farmacología , Línea Celular Tumoral , Apoptosis , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Adenocarcinoma del Pulmón/tratamiento farmacológico , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Microambiente Tumoral , Proteínas Nucleares
12.
Angew Chem Int Ed Engl ; 63(5): e202316087, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38093609

RESUMEN

Solid-state lithium-sulfur batteries have shown prospects as safe, high-energy electrochemical storage technology for powering regional electrified transportation. Owing to limited ion mobility in crystalline polymer electrolytes, the battery is incapable of operating at subzero temperature. Addition of liquid plasticizer into the polymer electrolyte improves the Li-ion conductivity yet sacrifices the mechanical strength and interfacial stability with both electrodes. In this work, we showed that by introducing a spherical hyperbranched solid polymer plasticizer into a Li+ -conductive linear polymer matrix, an integrated dynamic cross-linked polymer network was built to maintain fully amorphous in a wide temperature range down to subzero. A quasi-solid polymer electrolyte with a solid mass content >90 % was prepared from the cross-linked polymer network, and demonstrated fast Li+ conduction at a low temperature, high mechanical strength, and stable interfacial chemistry. As a result, solid-state lithium-sulfur batteries employing the new electrolyte delivered high reversible capacity and long cycle life at 25 °C, 0 °C and -10 °C to serve energy storage at complex environmental conditions.

13.
Adv Mater ; 36(11): e2312125, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38052233

RESUMEN

Twisted bilayer graphene (TBG) generates significant attention in the fundamental research of 2D materials due to its distinct twist-angle-dependent properties. Exploring the efficient production of TBG with a wide range of twist angles stands as one of the major frontiers in moiré materials. Here, the local space-confined chemical vapor deposition growth technique for high-quality single-crystal TBG with twist angles ranging from 0° to 30° on liquid copper substrates is reported. The clean surface, pristine interface, high crystallinity, and thermal stability of TBG are verified by using comprehensive characterization techniques including optical microscopy, electron microscopy, and secondary-ion mass spectrometry. The proportion of TBG in bilayer graphene reaches as high as 89%. In addition, the stacking structure and growth mechanism of TBG are investigated, revealing that the second graphene layer develops beneath the first one. A series of comparative experiments illustrates that the liquid copper surface, with its excellent fluidity, promotes the growth of TBG. Electrical measurements show the twist-angle-dependent electronic properties of as-grown TBG, achieving a room-temperature carrier mobility of 26640 cm2 V-1 s-1 . This work provides an approach for the in situ preparation of 2D twisted materials and facilitates the application of TBG in the fields of electronics.

14.
J Chromatogr A ; 1714: 464595, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38141483

RESUMEN

Fabricating polymeric coatings that are responsive to multiple/dual stimuli is crucial and remains a major challenge in the development of highly efficient open tubular capillary electrochromatography (OT-CEC). In this study, a pH and temperature-responsive block copolymer, poly(styrene-maleic anhydride 2-dimethylamino ethyl methacrylate), P(St-MAn-DMAEMA), was designed and synthesized. Using P(St-MAn-DMAEMA) as the coating, an OT-CEC protocol was constructed for the analysis of chromones. The morphology and hydrophobicity-hydrophilicity of the polymeric coating could change via varying the environmental conditions, affecting the separation efficiency of OT-CEC. Interestingly, the best performance of OT-CEC was achieved at pH 9.7 and 45 °C via tuning the interactions between the coating and the analytes. Additionally, the proposed OT-CEC method exhibited a good linear range for the detection of the three test chromones from 10.0 to 100.0 µM, with all correlation coefficients (R2) >0.997. The coatings also had good stability and reusability. This work provides an approach for the preparation of new multiple-stimuli-responsive polymeric coatings for the establishment of OT-CEC systems.


Asunto(s)
Electrocromatografía Capilar , Polímeros , Humanos , Polímeros/química , Electrocromatografía Capilar/métodos , Metacrilatos
15.
Dalton Trans ; 53(1): 292-298, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38047479

RESUMEN

Four trinucleotides 5'-ATA-3' (I), 5'-ATC-3' (II), 5'-CTA-3' (III) and 5'-CTC-3' (IV) were introduced to interact with a diazido-based photoactivatable anticancer prodrug trans,trans,trans-[PtIV(N3)2(OH)2(py)2] (py = pyridine; 1) upon light irradiation. Using electrospray ionization mass spectrometry (ESI-MS), we aimed to investigate the possibility of 1,3-intrastrand crosslinks at adenine and/or cytosine in the trinucleotides via the bi-functional trans-[PtII(py)2]2+ species generated by photodecomposition of complex 1. The primary mass spectrometry results showed that although mono- and di-platinated trinucleotides bound by mono-functional trans-[PtII(N3)(py)2]+ species were the major platinated adducts, comparable amounts of bifunctional trans-[PtII(py)2]2+-bound trinucleotides were also observed. Further tandem mass spectrometry of the trans-[PtII(py)2]2+-bound trinucleotides showed the formation of 1,3-crosslinks between adenine-adenine, adenine-cytosine and cytosine-cytosine bases in the trinucleotides. The formation of such unique structures is not only distinct from the action modes of cisplatin with DNA but also an important complement to the acknowledged 1,3-GNG intrastrand crosslink by trans-Pt species, which may support the promising and distinct anticancer activities of such photoactivatable diazido Pt(IV) anticancer prodrugs and deserve further studies.


Asunto(s)
Antineoplásicos , Profármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Compuestos Organoplatinos/farmacología , Compuestos Organoplatinos/química , Profármacos/farmacología , Profármacos/química , Adenina , Cisplatino
16.
J Am Chem Soc ; 145(47): 25643-25652, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37970704

RESUMEN

Anode-free rechargeable sodium batteries represent one of the ultimate choices for the 'beyond-lithium' electrochemical storage technology with high energy. Operated based on the sole use of active Na ions from the cathode, the anode-free battery is usually reported with quite a limited cycle life due to unstable electrolyte chemistry that hinders efficient Na plating/stripping at the anode and high-voltage operation of the layered oxide cathode. A rational design of the electrolyte toward improving its compatibility with the electrodes is key to realize the battery. Here, we show that by refining the volume ratio of two conventional linear ether solvents, a binary electrolyte forms a cation solvation structure that facilitates flat, dendrite-free, planar growth of Na metal on the anode current collector and that is adaptive to high-voltage Na (de)intercalation of P2-/O3-type layered oxide cathodes and oxidative decomposition of the Na2C2O4 supplement. Inorganic fluorides, such as NaF, show a major influence on the electroplating pattern of Na metal and effective passivation of plated metal at the anode-electrolyte interface. Anode-free batteries based on the refined electrolyte have demonstrated high coulombic efficiency, long cycle life, and the ability to claim a cell-level specific energy of >300 Wh/kg.

17.
Nat Commun ; 14(1): 7247, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945604

RESUMEN

Micron-sized Si anode promises a much higher theoretical capacity than the traditional graphite anode and more attractive application prospect compared to its nanoscale counterpart. However, its severe volume expansion during lithiation requires solid electrolyte interphase (SEI) with reinforced mechanical stability. Here, we propose a solvent-induced selective dissolution strategy to in situ regulate the mechanical properties of SEI. By introducing a high-donor-number solvent, gamma-butyrolactone, into conventional electrolytes, low-modulus components of the SEI, such as Li alkyl carbonates, can be selectively dissolved upon cycling, leaving a robust SEI mainly consisting of lithium fluoride and polycarbonates. With this strategy, raw micron-sized Si anode retains 87.5% capacity after 100 cycles at 0.5 C (1500 mA g-1, 25°C), which can be improved to >300 cycles with carbon-coated micron-sized Si anode. Furthermore, the Si||LiNi0.8Co0.1Mn0.1O2 battery using the raw micron-sized Si anode with the selectively dissolved SEI retains 83.7% capacity after 150 cycles at 0.5 C (90 mA g-1). The selective dissolution effect for tailoring the SEI, as well as the corresponding cycling life of the Si anodes, is positively related to the donor number of the solvents, which highlights designing high-donor-number electrolytes as a guideline to tailor the SEI for stabilizing volume-changing alloying-type anodes in high-energy rechargeable batteries.

18.
J Phys Chem Lett ; 14(38): 8620-8629, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37728520

RESUMEN

Engineering the buried interfaces of perovskite solar cells (PSCs) is crucial for optimizing the device performance. We herein report a novel strategy by modifying the ETL-FTO interface with MgO, as well as the interface between the perovskite layer (PVKL) and the SnO2 electron transfer layer (ETL) with formamidine bromide (FABr). The dual-interface ETL engineering substantially improved the photoelectric conversion efficiency (19.62 → 22.04%) and suppressed the hysteresis index (14.98 → 1.09%). The structure-activity relationship was explored by using transient photoelectric and time-of-flight secondary-ion mass spectroscopic analyses. It was found that the FABr treatment enhanced the PVKL crystallinity and the PVKL-ETL interaction and that the MgO modification dramatically retarded the ion migration, which together optimized the ETL function. The mechanism underlying the influence of ion distribution on the dynamics of ions and free carriers is discussed, which may be helpful for the rational design of high-performance PSCs.

19.
Arch Pharm (Weinheim) ; 356(12): e2300416, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37737557

RESUMEN

In light of the cocrystal structure of ceritinib with anaplastic lymphoma kinase (ALK)WT protein, a series of novel 2,4-diarylaminopyrimidine analogs (L1-L25) bearing a typical piperidinyl-4-ol moiety were designed and synthesized with improved biological and physicochemical properties. Satisfyingly, most compounds demonstrated moderate to excellent antitumor effects with IC50 values below 5 µM on ALK-positive Karpas299 and H2228 cells. In particular, L6 bearing the 1-(6-methoxy-pyridin-2-yl)-4-(morpholinomethyl)piperidinyl-4-ol moiety was detected as the optimal compound against ALK-dependent cell lines of Karpas299 (0.017 µM) and H2228 cells (0.052 µM), in company with encouraging ALK enzyme inhibition (ALKWT , IC50 = 1.8 nM). In addition, L6 was also capable of inhibiting ALK-resistant mutations, including ALKL1196M (3.9 nM) and ALKG1202R (5.2 nM). Remarkably, L6 typically repressed colony formation and migration of H2228 cells in a dose-dependent manner. Meanwhile, acridine orange-ethidium bromide staining analysis indicated that the proapoptotic effect of L6 was better than that of ceritinib at the same concentration (50 nM). Ultimately, the binding patterns of L6 to ALKWT and ALKG1202R were ideally established, which further confirmed the structural basis in accordance with the structure-activity relationship analysis.


Asunto(s)
Antineoplásicos , Pirimidinas , Relación Estructura-Actividad , Proliferación Celular , Pirimidinas/farmacología , Pirimidinas/química , Sulfonas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Mutación , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química
20.
Angew Chem Int Ed Engl ; 62(41): e202311865, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37615050

RESUMEN

Passivating the interfaces between the perovskite and charge transport layers is crucial for enhancing the power conversion efficiency (PCE) and stability in perovskite solar cells (PSCs). Here we report a dual-interface engineering approach to improving the performance of FA0.85 MA0.15 Pb(I0.95 Br0.05 )3 -based PSCs by incorporating Ti3 C2 Clx Nano-MXene and o-TB-GDY nanographdiyne (NanoGDY) into the electron transport layer (ETL)/perovskite and perovskite/ hole transport layer (HTL) interfaces, respectively. The dual-interface passivation simultaneously suppresses non-radiative recombination and promotes carrier extraction by forming the Pb-Cl chemical bond and strong coordination of π-electron conjugation with undercoordinated Pb defects. The resulting perovskite film has an ultralong carrier lifetime exceeding 10 µs and an enlarged crystal size exceeding 2.5 µm. A maximum PCE of 24.86 % is realized, with an open-circuit voltage of 1.20 V. Unencapsulated cells retain 92 % of their initial efficiency after 1464 hours in ambient air and 80 % after 1002 hours of thermal stability test at 85 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA