Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 498
Filtrar
1.
J Chem Phys ; 161(10)2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39254959

RESUMEN

In this paper, we investigate the Feshbach resonances of high partial waves and the influence of spin-spin (S-S) interaction on ultracold scattering processes. Taking the Na23- Rb87 system as an example, we plot the variations of weakly bound state energy and elastic scattering cross section with magnetic field and with collision energy. We find that the number of splittings in high partial wave Feshbach resonances does not strictly conform to the expected l + 1 (l is rotational angular momentum), and the deviation is attributed to the influence of bound states in other channels coupled by S-S interaction. For different ml (the projection of l on the external magnetic field direction), the effects of S-S interaction lead to different scattering patterns in the incident channels. These results reveal the complex features of ultracold scattering processes in high partial waves caused by S-S interaction.

2.
ISA Trans ; : 1-14, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39237394

RESUMEN

Series elastic actuator (SEA) technology is promising for the development of compliant robotic joints. Despite advancements in the realization of precise tracking, challenges persist in controlling the vibration and transient performance. This study enhanced the resonance ratio control (RRC) algorithm by integrating it with the L1 adaptive control (L1AC) method to address overshoot, static error, and vibration in SEA position control. Initially, the resonance between the motor and link sides caused by the elastic transmission structure was analyzed, which can result in overshoots and vibrations that affect the transient performance of the SEA control. Subsequently, a control scheme based on L1AC was introduced to enhance the performance. The stability of the proposed algorithm was demonstrated through a comprehensive exploration of key control parameters. Furthermore, the algorithm was augmented with gravity compensation, effectively reducing the predicted and reference errors. Consequently, the transient performance was improved. The efficacy of this enhanced algorithm was validated through simulations and experimental platforms, and comparisons with the RRC and model reference adaptive control algorithms. In all the experiments, the overshoot did not exceed 1.1%, the maximum jitter amplitude on the link side was within 0.2° , and a larger time constant in the controller could effectively eliminate the overshoot and vibration with a small response time delay. Furthermore, the algorithm exhibited a protective response during link side collisions by moderating link velocity and limiting motor current, to safeguard the contact environment, humans, and the SEA itself, which take advantage of the L1AC's low-pass filter (LPF) properties in disturbance handling.

3.
Org Biomol Chem ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269007

RESUMEN

The cyclisation mechanism of the fungal fusicoccane (FC)-type diterpene synthase (DTS) TadA was investigated by extensive isotopic labelling experiments, and the pH-dependency of the product selectivity of this enzyme was explored. These studies provide new insights into the cyclisation mechanisms of FC-type DTSs.

4.
Bioorg Chem ; 152: 107726, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39182256

RESUMEN

Fusicoccane (FC)-type diterpenoids are a class of diterpenoids characterized by a unique 5-8-5 ring system and exhibit diverse biological activities. Recently, we identified a novel FC-type diterpene synthase MgMS, which produces a myrothec-15(17)-en-7-ol (1) hydrocarbon skeleton, however, its tailoring congeners have not been elucidated. Here, we discovered two additional gene clusters Bn and Np, each encoding a highly homologous terpene synthase to MgMS but distinct tailoring enzymes. Heterologous expression of the terpene synthases BnMS and NpMS yielded the same product as MgMS. Subsequent introduction of three P450 enzymes MgP450, BnP450 and NpP450 from individual gene clusters resulted in four new FC-type diterpenoids 2-5. Notably, MgP450 serves as the first enzyme responsible for hydroxylation of the C19 methyl group, whereas NpP450 functions as a multifunctional P450 enzyme involved in the oxidations at C5, C6, and C19 positions of the 5-8-5 tricyclic skeleton. C5 oxidation of the hydrocarbon skeleton 1 led to broadening of the NMR signals and incomplete spectra, which was resolved by high-temperature NMR spectral analysis.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Diterpenos , Oxidación-Reducción , Diterpenos/química , Diterpenos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Estructura Molecular
5.
Proc Natl Acad Sci U S A ; 121(34): e2407285121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39133859

RESUMEN

Discovering and engineering herbicide-resistant genes is a crucial challenge in crop breeding. This study focuses on the 4-hydroxyphenylpyruvate dioxygenase Inhibitor Sensitive 1-Like (HSL) protein, prevalent in higher plants and exhibiting weak catalytic activity against many ß-triketone herbicides (ß-THs). The crystal structures of maize HSL1A complexed with ß-THs were elucidated, identifying four essential herbicide-binding residues and explaining the weak activity of HSL1A against the herbicides. Utilizing an artificial evolution approach, we developed a series of rice HSL1 mutants targeting the four residues. Then, these mutants were systematically evaluated, identifying the M10 variant as the most effective in modifying ß-THs. The initial active conformation of substrate binding in HSL1 was also revealed from these mutants. Furthermore, overexpression of M10 in rice significantly enhanced resistance to ß-THs, resulting in a notable 32-fold increase in resistance to methyl-benquitrione. In conclusion, the artificially evolved M10 gene shows great potential for the development of herbicide-resistant crops.


Asunto(s)
Resistencia a los Herbicidas , Herbicidas , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento/métodos , Plantas Modificadas Genéticamente/genética , Mutación
6.
Fish Shellfish Immunol ; 153: 109847, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39168292

RESUMEN

Viral nervous necrosis (VNN) presents a significant challenge to aquaculture due to its potential for causing mass fish mortality and resulting in substantial economic losses. Therefore, the urgent need to find antiviral drugs is paramount. This study found that oleanolic acid (OA) exhibited anti-nervous necrosis virus (NNV) activity both in vivo and in vitro. The RT-qPCR results demonstrated that OA at 10.95 µM had an inhibition rate of 99.97 %. The prevention experiments also showed that OA pretreatment effectively inhibited the replication of NNV. Furthermore, the results of indirect immunofluorescence and flow cytometry suggest that OA's anti-NNV effect may be due to its ability to inhibit NNV-induced apoptosis. The in vivo study revealed a 30 % survival rate in the OA treatment group, compared to only 10 % in the control group. Additionally, RT-qPCR results demonstrated that OA treatment upregulated immune gene expression in grouper and effectively suppressed NNV replication in the host. This study demonstrates the potential of OA as an antiviral therapeutic agent for NNV. It exerts its antiviral effect by upregulating immune gene expression. These findings provide valuable insights into the development of novel antiviral treatment strategies.


Asunto(s)
Antivirales , Enfermedades de los Peces , Nodaviridae , Ácido Oleanólico , Infecciones por Virus ARN , Animales , Nodaviridae/fisiología , Nodaviridae/efectos de los fármacos , Ácido Oleanólico/farmacología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Enfermedades de los Peces/tratamiento farmacológico , Antivirales/farmacología , Infecciones por Virus ARN/veterinaria , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/virología , Lubina/inmunología , Replicación Viral/efectos de los fármacos
7.
Artículo en Inglés | MEDLINE | ID: mdl-39046863

RESUMEN

Since genomics was proposed, the exploration of genes has been the focus of research. The emergence of single-cell RNA sequencing (scRNA-seq) technology makes it possible to explore gene expression at the single-cell level. Due to the limitations of sequencing technology, the data contains a lot of noise. At the same time, it also has the characteristics of highdimensional and sparse. Clustering is a common method of analyzing scRNA-seq data. This paper proposes a novel singlecell clustering method called Robust Manifold Nonnegative LowRank Representation with Adaptive Total-Variation Regularization (MLRR-ATV). The Adaptive Total-Variation (ATV) regularization is introduced into Low-Rank Representation (LRR) model to reduce the influence of noise through gradient learning. Then, the linear and nonlinear manifold structures in the data are learned through Euclidean distance and cosine similarity, and more valuable information is retained. Because the model is non-convex, we use the Alternating Direction Method of Multipliers (ADMM) to optimize the model. We tested the performance of the MLRRATV model on eight real scRNA-seq datasets and selected nine state-of-the-art methods as comparison methods. The experimental results show that the performance of the MLRRATV model is better than the other nine methods.

8.
Angew Chem Int Ed Engl ; : e202407895, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949843

RESUMEN

The diterpene synthase AfAS was identified from Aspergillus fumigatiaffinis. Its amino acid sequence and-according to a structural model-active site architecture are highly similar to those of the fusicocca-2,10(14)-diene synthase PaFS, but AfAS produces a structurally much more complex diterpene with a novel 6-5-5-5 tetracyclic skeleton called asperfumene. The cyclisation mechanism of AfAS was elucidated through isotopic labelling experiments and DFT calculations. The reaction cascade proceeds in its initial steps through similar intermediates as for the PaFS cascade, but then diverges through an unusual vicinal deprotonation-reprotonation process that triggers a skeletal rearrangement at the entrance to the steps leading to the unique asperfumene skeleton. The structural model revealed only one major difference between the active sites: The PaFS residue F65 is substituted by I65 in AfAS. Intriguingly, site-directed mutagenesis experiments with both diterpene synthases revealed that position 65 serves as a bidirectional functional switch for the biosynthesis of tetracyclic asperfumene versus structurally less complex diterpenes.

9.
Nat Commun ; 15(1): 6393, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39080312

RESUMEN

Steady-state visual evoked potentials (SSVEPs) are widely used for brain-computer interfaces (BCIs) as they provide a stable and efficient means to connect the computer to the brain with a simple flickering light. Previous studies focused on low-density frequency division multiplexing techniques, i.e. typically employing one or two light-modulation frequencies during a single flickering light stimulation. Here we show that it is possible to encode information in SSVEPs excited by high-density frequency division multiplexing, involving hundreds of frequencies. We then demonstrate the ability to transmit entire images from the computer to the brain/EEG read-out in relatively short times. High-density frequency multiplexing also allows to implement a photonic neural network utilizing SSVEPs, that is applied to simple classification tasks and exhibits promising scalability properties by connecting multiple brains in series. Our findings open up new possibilities for the field of neural interfaces, holding potential for various applications, including assistive technologies and cognitive enhancements, to further improve human-machine interactions.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Potenciales Evocados Visuales , Humanos , Potenciales Evocados Visuales/fisiología , Masculino , Adulto , Encéfalo/fisiología , Estimulación Luminosa , Femenino , Adulto Joven , Redes Neurales de la Computación
10.
J Am Chem Soc ; 146(26): 17624-17628, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38889210

RESUMEN

Due to the highly chemically inert nature, direct activation and transformation of dinitrogen are challenging. Here, we disclose the synthesis, isolation, and derivatization of (N2)3- supported by lutetium complex. Initially, a (N2)3- radical, in [{(C5Me5){MeC(NiPr)2}Lu}2(µ2-η2:η2-N2)][K(crypt)] (crypt = 2,2,2-cryptand) complex, was generated through the reduction of neutral lutetium dinitrogen complex [{(C5Me5){MeC(NiPr)2}Lu}2(µ2-η2:η2-N2)] with potassium metal. Subsequently, the reaction of (N2)3- complex with methyl triflate (or triflic acid) led to the formation of an N-C (or N-H) bond, yielding the corresponding [{(C5Me5){MeC(NiPr)2}Lu}2(NN-R)(OTf)][K(crypt)] (R = Me, H, OTf = CF3SO3) as the product. Both electron paramagnetic resonance spectroscopy and density functional theory analyses support the radical character of the NN-Me unit. The Lu-N bonds in the (NN-Me)•2- radical complex are predominantly ionic, with 77% of the unpaired electron localized on the (NN-Me) fragment. Moreover, the geometry of the pure organic radical (NN-Me)•2-, optimized by double-hybrid density functional theory, closely matches that of the (NN-Me)•2- lutetium complex.

11.
ACS Nano ; 18(26): 17304-17313, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38904507

RESUMEN

Recently, aqueous iron ion batteries (AIIBs) using iron metal anodes have gained traction in the battery community as low-cost and sustainable solutions for green energy storage. However, the development of AIIBs is significantly hindered by the limited capacity of existing cathode materials and the poor intercalation kinetic of Fe2+. Herein, we propose a H+ and Fe2+ co-intercalation electrochemistry in AIIBs to boost the capacity and rate capability of cathode materials such as iron hexacyanoferrate (FeHCF) and Na4Fe3(PO4)2(P2O7) (NFPP). This is achieved through an electrochemical activation step during which a FeOOH nanowire layer is formed in situ on the cathode. This layer facilitates H+ co-intercalation in AIIBs, resulting in a high specific capacity of 151 mAh g-1 and 93% capacity retention over 500 cycles for activated FeHCF cathodes. We found that this activation process can also be applied to other cathode chemistries, such as NFPP, where we found that the cathode capacity is doubled as a result of this process. Overall, the proposed H+/Fe2+ co-insertion electrochemistry expands the range of applications for AIBBs, in particular as a sustainable solution for storing renewable energy.

12.
Fish Shellfish Immunol ; 151: 109717, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914179

RESUMEN

Aquaculture is one of the fastest growing sectors in global food production, recognized as a significant contributor to poverty alleviation, food security, and income generation. However, the frequent occurrence of diseases caused by pathogen infections result in reduced yields and economic losses, posing a substantial constraint to the sustainable development of aquaculture. Here, our study identified that four catechol compounds, quercetin, luteolin, caffeic acid, and chlorogenic acid, exhibited potent antiparasitic effects against Ichthyophthirius multifiliis in both, in vitro and in vivo. The parasite is recognized as one of the most pathogenic to fish worldwide. Using a combination of in silico methods, the dipeptidyl peptidase (DPP) was identified as a critical target for catechol compounds. The two hydroxyl radicals of the catechol group were essential for its binding to and interacting with the DPP protein. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that catechol compounds disrupt pathways associated with the metabolism and growth of I. multifiliis, thereby exerting antiparasitic effects. Furthermore, these compounds attenuated the expression of proinflammatory cytokines in vivo in fish and promoted macrophage polarization toward M2 phenotype by inhibiting the STAT1 signaling pathway. The dual activity of catechol compounds, acting as both direct antiparasitic and anti-inflammatory agents in fish, offers a promising therapeutic approach for combating I. multifiliis infections in aquaculture.


Asunto(s)
Catecoles , Infecciones por Cilióforos , Enfermedades de los Peces , Hymenostomatida , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/parasitología , Enfermedades de los Peces/prevención & control , Hymenostomatida/efectos de los fármacos , Catecoles/farmacología , Infecciones por Cilióforos/veterinaria , Infecciones por Cilióforos/inmunología , Infecciones por Cilióforos/parasitología , Infecciones por Cilióforos/prevención & control , Antiparasitarios/farmacología
13.
ACS Omega ; 9(23): 24513-24519, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38882152

RESUMEN

Antibiotic resistance is one of the biggest challenges that causes incurable diseases and endangers public health. Metal-porphyrin-modified nanoarchitectonics can enhance the bacterial affinity and destruction of cell walls. Herein, a new photoresponsive nanoarchitectonics (BPGa@COF-Cu) was synthesized by doping Ga(III) on the surface of black phosphorus (BP) and subsequently loaded into a Cu(II)-based covalent-organic framework (COF-Cu). The COF-Cu was induced by the coupling reaction of terephthalic chloride with amino-substituted porphyrin derivatives (THPP), followed by the coordination of the Cu(II) ion. The material BPGa@COF-Cu is a nanoball, and the mean radius is ca. 250 nm. The photochemical properties of BPGa@COF-Cu show that it efficiently catalyzes H2O2 into ·OH. BPGa@COF-Cu can also produce both singlet oxygen and heat upon 808 nm irradiation. Further, BPGa@COF-Cu was employed to inhibit bacteria, and the results showed that it can destroy the membrane of bacteria. The MIC (minimal inhibition concentration) of BPGa@COF-Cu against E. coli was 1 µg/mL. All the data suggest that BPGa@COF-Cu is a multiple nanoarchitectonics for bacterial treatment.

14.
Am J Case Rep ; 25: e943721, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38886994

RESUMEN

BACKGROUND rimary hepatic neuroendocrine neoplasms (PHNEN) are exceedingly rare tumors with atypical clinical manifestations, accounting for less than 0.5% of all neuroendocrine tumors. Currently, there is a lack of consensus on their management, and guidelines do not recommend postoperative chemotherapy for patients with stage G1/G2 disease after curative resection. We present a case report of PHNEN, outlining its diagnostic challenges, treatment strategy, and clinical outcomes. CASE REPORT A 31-year-old man presented with jaundice and was initially diagnosed with suspected IgG4-related disease, which initially appeared to respond to steroid therapy, but manifested worsening jaundice 4 months after initial treatment. Subsequent evaluation revealed a PHNEN NET G2 with lymph node metastasis and invasion of the right hepatic artery; and involvement of the hepatic duct at the hepatic hilum, primarily the left hepatic duct. The patient underwent extended left hemi-hepatectomy with caudate lobe resection, bile duct resection, and lymphadenectomy, followed by reconstruction of the right hepatic artery. Postoperatively, the patient received adjuvant chemotherapy consisting of capecitabine (1000 mg bid D1-14) and temozolomide (200 mg qn D10-14) for 6 cycles. Currently, the patient remains disease free 43 months after treatment. CONCLUSIONS PHNEN presents diagnostic challenges due to its rarity and lack of specific markers. Surgical resection remains the cornerstone of treatment, with chemotherapy being considered in select cases with high-risk features. Further research is needed to refine treatment approaches and improve outcomes for patients with PHNEN.


Asunto(s)
Hepatectomía , Arteria Hepática , Neoplasias Hepáticas , Tumores Neuroendocrinos , Humanos , Masculino , Adulto , Arteria Hepática/cirugía , Hepatectomía/métodos , Neoplasias Hepáticas/cirugía , Tumores Neuroendocrinos/cirugía
15.
Nat Commun ; 15(1): 4588, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816433

RESUMEN

Lycibarbarspermidines are unusual phenolamide glycosides characterized by a dicaffeoylspermidine core with multiple glycosyl substitutions, and serve as a major class of bioactive ingredients in the wolfberry. So far, little is known about the enzymatic basis of the glycosylation of phenolamides including dicaffeoylspermidine. Here, we identify five lycibarbarspermidine glycosyltransferases, LbUGT1-5, which are the first phenolamide-type glycosyltransferases and catalyze regioselective glycosylation of dicaffeoylspermidines to form structurally diverse lycibarbarspermidines in wolfberry. Notably, LbUGT3 acts as a distinctive enzyme that catalyzes a tandem sugar transfer to the ortho-dihydroxy group on the caffeoyl moiety to form the unusual ortho-diglucosylated product, while LbUGT1 accurately discriminates caffeoyl and dihydrocaffeoyl groups to catalyze a site-selective sugar transfer. Crystal structure analysis of the complexes of LbUGT1 and LbUGT3 with UDP, combined with molecular dynamics simulations, revealed the structural basis of the difference in glycosylation selectivity between LbUGT1 and LbUGT3. Site-directed mutagenesis illuminates a conserved tyrosine residue (Y389 in LbUGT1 and Y390 in LbUGT3) in PSPG box that plays a crucial role in regulating the regioselectivity of LbUGT1 and LbUGT3. Our study thus sheds light on the enzymatic underpinnings of the chemical diversity of lycibarbarspermidines in wolfberry, and expands the repertoire of glycosyltransferases in nature.


Asunto(s)
Glicosiltransferasas , Lycium , Glicosiltransferasas/metabolismo , Glicosiltransferasas/química , Glicosiltransferasas/genética , Glicosilación , Lycium/enzimología , Lycium/metabolismo , Lycium/química , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Glicósidos/metabolismo , Glicósidos/química , Cristalografía por Rayos X , Piperidinas/metabolismo , Piperidinas/química , Especificidad por Sustrato
16.
Nat Commun ; 15(1): 4300, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773134

RESUMEN

The chromatin modifier GRAIN WEIGHT 6a (GW6a) enhances rice grain size and yield. However, little is known about its gene network determining grain size. Here, we report that MITOGEN-ACTIVED PROTEIN KINASE 6 (OsMAPK6) and E3 ligase CHANG LI GENG 1 (CLG1) interact with and target GW6a for phosphorylation and ubiquitylation, respectively. Unexpectedly, however, in vitro and in vivo assays reveal that both of the two post-translational modifications stabilize GW6a. Furthermore, we uncover two major GW6a phosphorylation sites (serine142 and threonine186) targeted by OsMAPK6 serving an important role in modulating grain size. In addition, our genetic and molecular results suggest that the OsMAPK6-GW6a and CLG1-GW6a axes are crucial and operate in a non-additive manner to control grain size. Overall, our findings identify a previously unknown mechanism by which phosphorylation and ubiquitylation non-additively stabilize GW6a to enhance grain size, and reveal correlations and interactions of these posttranslational modifications during rice grain development.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Ubiquitinación , Oryza/metabolismo , Oryza/genética , Oryza/crecimiento & desarrollo , Fosforilación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Grano Comestible/metabolismo , Grano Comestible/crecimiento & desarrollo , Procesamiento Proteico-Postraduccional , Plantas Modificadas Genéticamente , Cromatina/metabolismo
17.
BMC Cancer ; 24(1): 466, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622555

RESUMEN

BACKGROUND: [18 F]-Fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) has the ability to detect local and/or regional recurrence as well as distant metastasis. We aimed to evaluate the prognosis value of PET/CT in locoregional recurrent nasopharyngeal (lrNPC). METHODS: A total of 451 eligible patients diagnosed with recurrent I-IVA (rI-IVA) NPC between April 2009 and December 2015 were retrospectively included in this study. The differences in overall survival (OS) of lrNPC patients with and without PET/CT were compared in the I-II, III-IVA, r0-II, and rIII-IVA cohorts, which were grouped by initial staging and recurrent staging (according to MRI). RESULTS: In the III-IVA and rIII-IVA NPC patients, with PET/CT exhibited significantly higher OS rates in the univariate analysis (P = 0.045; P = 0.009; respectively). Multivariate analysis revealed that with PET/CT was an independent predictor of OS in the rIII-IVA cohort (hazard ratio [HR] = 0.476; 95% confidence interval [CI]: 0.267 to 0.847; P = 0.012). In the rIII-IVA NPC, patients receiving PET/CT sacns before salvage surgery had a better prognosis compared with MRI alone (P = 0.036). The recurrent stage (based on PET/CT) was an independent predictor of OS. (r0-II versus [vs]. rIII-IVA; HR = 0.376; 95% CI: 0.150 to 0.938; P = 0.036). CONCLUSION: The present study showed that with PET/CT could improve overall survival for rIII-IVA NPC patients. PET/CT appears to be an effective method for assessing rTNM staging.


Asunto(s)
Neoplasias Nasofaríngeas , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Fluorodesoxiglucosa F18 , Carcinoma Nasofaríngeo/diagnóstico por imagen , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/patología , Pronóstico , Estudios Retrospectivos , Recurrencia Local de Neoplasia/diagnóstico por imagen , Recurrencia Local de Neoplasia/patología , Neoplasias Nasofaríngeas/diagnóstico por imagen , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/patología , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Estadificación de Neoplasias
19.
Front Psychiatry ; 15: 1309022, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628262

RESUMEN

Depression is the most common psychiatric disorder that burdens modern society heavily. Numerous studies have shown that adverse childhood experiences can increase susceptibility to depression, and depression with adverse childhood experiences has specific clinical-biological features. However, the specific neurobiological mechanisms are not yet precise. Recent studies suggest that the gut microbiota can influence brain function and behavior associated with depression through the "microbe-gut-brain axis" and that the composition and function of the gut microbiota are influenced by early stress. These studies offer a possibility that gut microbiota mediates the relationship between adverse childhood experiences and depression. However, few studies directly link adverse childhood experiences, gut microbiota, and depression. This article reviews recent studies on the relationship among adverse childhood experiences, gut microbiota, and depression, intending to provide insights for new research.

20.
J Am Chem Soc ; 146(18): 12723-12733, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38654452

RESUMEN

Enfumafungin-type antibiotics, represented by enfumafungin and fuscoatroside, belong to a distinct group of triterpenoids derived from fungi. These compounds exhibit significant antifungal properties with ibrexafungerp, a semisynthetic derivative of enfumafungin, recently gaining FDA's approval as the first oral antifungal drug for treating invasive vulvar candidiasis. Enfumafungin-type antibiotics possess a cleaved E-ring with an oxidized carboxyl group and a reduced methyl group at the break site, suggesting unprecedented C-C bond cleavage chemistry involved in their biosynthesis. Here, we show that a 4-gene (fsoA, fsoD, fsoE, fsoF) biosynthetic gene cluster is sufficient to yield fuscoatroside by heterologous expression in Aspergillus oryzae. Notably, FsoA is an unheard-of terpene cyclase-glycosyltransferase fusion enzyme, affording a triterpene glycoside product that relies on enzymatic fusion. FsoE is a P450 enzyme that catalyzes successive oxidation reactions at C19 to facilitate a C-C bond cleavage, producing an oxidized carboxyl group and a reduced methyl group that have never been observed in known P450 enzymes. Our study thus sets the important foundation for the manufacture of enfumafungin-type antibiotics using biosynthetic approaches.


Asunto(s)
Antifúngicos , Antifúngicos/química , Antifúngicos/farmacología , Antifúngicos/metabolismo , Aspergillus oryzae/enzimología , Aspergillus oryzae/metabolismo , Familia de Multigenes , Triterpenos/química , Triterpenos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA