Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39397291

RESUMEN

HSK21542 injection is a new peripheral kappa opioid receptor (KOR) agonist. To evaluate its safety, tolerability, pharmacokinetics and pharmacodynamics, this study was conducted in healthy volunteers, consisting of two parts: a single ascending dose (0.2-3.375 µg/kg, 15-min infusion) and different infusion durations (0.2 and 1 µg/kg, 2- or 15-min infusion). The area under the plasma concentration-time curve (AUC) and peak concentration (Cmax) of HSK21542 were dose-linear among 0.2-3.375 µg/kg. After intravenous injection, HSK21542 was rapidly eliminated with a half-life (t1/2) of 1.5 h, and the majority (48.02%) of the dose was excreted unchanged in urine. Pharmacodynamic results showed that HSK21542 increased prolactin release and reached a peak at 1-2 h after administration but had no significant effect on vasopressin levels. There was a brief increase in urine volume within the initial 2 h after administration. HSK21542 was well tolerated; most of the adverse effects (AEs) in the trial group were grade 1, and only 2 cases (4.0%) were grade 2. The main AE was paresthesia, which appeared in 42% (21/50) in the trial group. No serious adverse event (SAE) was observed. No subject withdrew early due to AEs. These results suggest that HSK21542 may be a potential treatment for pain and pruritic conditions.

2.
Front Plant Sci ; 15: 1442807, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39297016

RESUMEN

Introduction: Hopea hainanensis Merrill & Chun is considered a keystone and indicator species in the tropical lowland rainforests of Hainan Island. Owing to its high-quality timber, H. hainanensis has been heavily exploited, leading to its classification as a first-class national protected plant in China and a plant species with extremely small populations (PSESPs). Methods: This study analyzed genome-wide single nucleotide polymorphisms obtained through restriction site-associated DNA sequencing from 78 adult trees across 10 H. hainanensis populations on Hainan Island. Results and discussion: The nucleotide diversity of the sampled populations ranged from 0.00096 to 0.00138, which is lower than that observed in several other PSESPs and endangered tree species. Bayesian unsupervised clustering, principal component analysis, and neighbor-joining tree reconstruction identified three to five genetic clusters in H. hainanensis, most of which were geographically widespread and shared by multiple populations. Demographic history analysis based on pooled samples indicated that the decline in the H. hainanensis population began approximately 20,000 years ago, starting from an ancestral population size of approximately 10,000 individuals. The reduction in population size accelerated approximately 4,000 years ago and has continued to the present, resulting in a severely reduced population on Hainan Island. Intensified genetic drift in small and isolated H. hainanensis populations may contribute to moderate differentiation between some of them, as revealed by pairwise F st. In conclusion, our conservation genomic study confirms a severe population decline and an extremely low level of nucleotide variation in H. hainanensis on Hainan Island. These findings provide critical insights for the sustainable management and genetic restoration of H. hainanensis on Hainan Island.

3.
Inorg Chem ; 63(41): 19287-19298, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39344080

RESUMEN

Three isostructural transition metal-organic frameworks, [M(bta)0.5(bpt)(H2O)2]·2H2O (M = Co (1), Ni (2), Zn (3), H4bta = 1,2,4,5-benzenetetracarboxylic acid, bpt = 4-amino-3,5-bis(4-pyridyl)-1,2,4-triazole), were successfully constructed using different metal cations. These frameworks exhibit a three-dimensional network structure with multiple coordinated and lattice water molecules within the framework, contributing to high stability and a rich hydrogen-bond network. Proton conduction studies revealed that, at 333 K and 98% relative humidity, the proton conductivities (σ) of MOFs 1-3 reached 1.42 × 10-2, 1.02 × 10-2, and 6.82 × 10-3 S cm-1, respectively. Compared to the proton conductivity of the initial ligands, the σ values of the complexes increased by 2 orders of magnitude, with the activation energies decreasing from 0.36 to 0.18 eV for 1, 0.09 eV for 2, and 0.12 eV for 3. An in-depth analysis of the correlation between different metal centers and proton conduction performance indicated that the varying coordination abilities of the metal cations and the water absorption capacities of the frameworks might account for the differences in conductivity. Additionally, the potential of 1 as a supercapacitor electrode material was assessed. 1 exhibited a specific capacitance of 61.13 F g-1 at a current density of 0.5 A g-1, with a capacitance retention of 82.4% after 5000 cycles, making it a promising candidate for energy storage applications.

4.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39212506

RESUMEN

The morphology is a crucial indicator for diagnosing a low-energy, low-brightness particle beam. However, conventional positron beam diagnosis, based on the pixel scanning principle, is limited by physical constraints, such as the resolution of detector pixels. Here, we have presented a novel slow positron diagnosis method using compressive sampling. With a 100 × 100 pixel-sized mask, for example, the positron beam morphology can be significantly reconstructed with a peak signal-to-noise ratio of ∼40 dB, even at half the sampling rate compared to pixel scanning. It explores a promising approach for positron beam diagnosis with an ultra-high resolution and fast sampling rates.

5.
World J Gastrointest Oncol ; 16(7): 2877-2880, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39072155

RESUMEN

Gastric cancer and adenocarcinoma of the esophagogastric junction are major challenges to global public health due to their high morbidity and mortality. Despite continuous improvements in treatment techniques, patient prognosis is still affected by multiple factors. The preoperative prognostic nutritional index (PNI), a simple clinical indicator, has received widespread attention in recent years. Fiflis et al conducted a systematic review and reported that a high PNI was associated with significantly better survival in patients with gastric cancer. They also found that the PNI had prognostic value in patients with cancer of different TNM stages and had a positive effect even in advanced gastric cancer patients. Although the study did not address the impact of treatment regimens and had limited data sources, the results support the validity of the PNI as a biomarker for predicting the survival of gastric cancer patients. Future studies should further standardize the calculation method of the PNI, explore its applicability in different populations, and integrate other clinical parameters to construct more accurate prediction models.

6.
Molecules ; 29(12)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38930821

RESUMEN

2,6-pyridine dicarboxylic acid (DPA) is an exceptional biomarker of notorious anthrax spores. Therefore, the rapid, sensitive, and selective quantitative detection of DPA is extremely significant and urgent. This paper reports a Zn(II) metal-organic framework with the formula of {[Zn6(NDA)6(DPBT)3] 2H2O·3DMF}n (MOF-1), which consists of 2,6-naphthalenedicarboxylic acid (2,6-NDA), 4,7-di(4-pyridyl)-2,1,3-benzothiadiazole (DPBT), and Zn(II) ions. Structural analysis indicated that MOF-1 is a three-dimensional (3D) network which crystallized in the monoclinic system with the C2/c space group, revealing high pH, solvent, and thermal stability. Luminescence sensing studies demonstrated that MOF-1 had the potential to be a highly selective, sensitive, and recyclable fluorescence sensor for the identification of DPA. Furthermore, fluorescent test paper was made to detect DPA promptly with color changes. The enhancement mechanism was established by the hydrogen-bonding interaction and photoinduced electron transfer transition between MOF-1 and DPA molecules.


Asunto(s)
Biomarcadores , Estructuras Metalorgánicas , Tiadiazoles , Zinc , Estructuras Metalorgánicas/química , Zinc/química , Zinc/análisis , Tiadiazoles/química , Carbunco/diagnóstico , Ácidos Picolínicos/química , Ácidos Picolínicos/análisis , Bacillus anthracis , Modelos Moleculares
7.
Acc Chem Res ; 57(13): 1851-1869, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38902854

RESUMEN

ConspectusThe directed synthesis and functionalization of porous crystalline materials pose significant challenges for chemists. The synergistic integration of different functionalities within an ordered molecular material holds great significance for expanding its applications as functional materials. The presence of coordination bonds connected by inorganic and organic components in molecular materials can not only increase the structural diversity of materials but also modulate the electronic structure and band gap, which further regulates the physical and chemical properties of molecular materials. In fact, porous crystalline materials with coordination bonds, which inherit the merits of both organic and inorganic materials, already showcase their superior advantages in optical, electrical, and magnetic applications. In addition to the inorganic components that provide structural rigidity, organic ligands of various types serve as crucial connectors in the construction of functional porous crystalline materials. In addition, redox activity can endow organic linkers with electrochemical activity, thereby making them a perfect platform for the study of charge transfer with atom-resolved single-crystal structures, and they can additionally serve as stimuli-responsive sites in sensor devices and smart materials.In this Account, we introduce the synthesis, structural characteristics, and applications of porous crystalline materials based on the famous redox-active units, tetrathiafulvalene (TTF) and its analogues, by primarily focusing on metal-organic frameworks (MOFs) and covalent organic frameworks (COFs). TTF, a sulfur-rich conjugated molecule with two reversible and easily accessible oxidation states (i.e., radical TTF•+ cation and TTF2+ dication), and its analogues boast special electrical characteristics that enable them to display switchable redox activity and stimuli-responsive properties. These inherent properties contribute to the enhancement of the optical, electrical, and magnetic characteristics of the resultant porous crystalline materials. Moreover, delving into the charge transfer phenomena, which is key for the electrochemical process within these materials, uncovers a myriad of potential functional applications. The Account is organized into five main sections that correspond to the different properties and applications of these materials: optical, electrical, and magnetic functionalities; energy storage and conversion; and catalysis. Each section provides detailed discussions of synthetic methods, structural characteristics, the physical and chemical properties, and the functional performances of highlighted examples. The Account also discusses future directions by emphasizing the exploration of novel organic units, the transformation between radical cation TTF•+ and dication TTF2+, and the integration of multifunctionalities within these frameworks to foster the development of smart materials for enhanced performance across diverse applications. Through this Account, we aim to highlight the massive potential of TTF and its analogues-based porous crystals in chemistry and material science.

8.
Small Methods ; 8(7): e2301229, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38528393

RESUMEN

The charge-transfer (CT) interactions between organic compounds are reflected in the (opto)electronic properties. Determining and visualizing crystal structures of CT complexes are essential for the design of functional materials with desirable properties. Complexes of pyranine (PYR), methyl viologen (MV), and their derivatives are the most studied water-based CT complexes. Nevertheless, very few crystal structures of CT complexes have been reported so far. In this study, the structures of two PYRs-MVs CT crystals and a map of the noncovalent interactions using 3D electron diffraction (3DED) are reported. Physical properties, e.g., band structure, conductivity, and electronic spectra of the CT complexes and their crystals are investigated and compared with a range of methods, including solid and liquid state spectroscopies and highly accurate quantum chemical calculations based on density functional theory (DFT). The combination of 3DED, spectroscopy, and DFT calculation can provide important insight into the structure-property relationship of crystalline CT materials, especially for submicrometer-sized crystals.

9.
Inorg Chem ; 62(49): 20314-20324, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37991983

RESUMEN

Functionalized crystalline solids based on metal-organic frameworks (MOFs) enable efficient luminescence detection and high proton conductivity, making them crucial in the realms of environmental monitoring and clean energy. Here, two structurally and functionally distinct zinc-based MOFs, [Zn(TTDPa)(bodca)]·H2O (1) and [Zn(TTDPb)(bodca)]·H2O (2), were successfully designed and synthesized using 3,6-di(pyridin-4-yl)thieno[3,2-b]thiophene (TTDPa) and 2,5-di(pyridin-4-yl)thieno[3,2-b]thiophene (TTDPb) as ligands, in the presence of bicyclo[2.2.2]octane-1,4-dicarboxylic acid (H2bodca). Both 1 and 2 display a three-dimensional (3D) structure with 5-fold interpenetration, and notably, 2 forms a larger one-dimensional pore measuring 17.16 × 10.81 Å2 in size. Fluorescence experiments demonstrate that 1 and 2 can function as luminescent sensors for nitrofurantoin (NFT) and nitrofurazone (NFZ) with low detection limits, remarkable selectivity, and good recyclability. A comprehensive analysis was conducted to investigate the differing sensing effects of compounds 1 and 2 and to explore potential sensing mechanisms. Additionally, at 328 K and 98% relative humidity, 1 and 2 exhibit proton conductivity values of 2.13 × 10-3 and 4.91 × 10-3 S cm-1, respectively, making them suitable proton-conducting materials. Hence, the integration of luminescent sensing and proton conductivity in monophasic 3D Zn-MOFs holds significant potential for application in intelligent multitasking devices.

10.
Inorg Chem ; 62(42): 17041-17045, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37819767

RESUMEN

The selective fluorination of C-H bonds at room temperature using heterogeneous visible-light catalysts is both interesting and challenging. Herein, we present the heterogeneous sandwich-type structure uranyl-polyoxotungstate cluster Na17{Na@[(SbW9O33)2(UO2)6(PO3OH)6]}·46H2O (denoted as U6P6) to regulate the selective fluorination of the C-H bond under visible light and room temperature. This is the first report in which uranyl participates in the fluorination reaction in the form of an insoluble substance. U6P6 is capable of the effective selective fluorination of cycloalkanes and the recyclability of the photocatalyst due to the synergistic effect of multiple uranyl (UO2)2+ and the insolubility of organic reagents of polyoxotungstate. In situ electron paramagnetic resonance spectroscopy captured the generation of cycloalkane radicals during the photoreaction, confirming the mechanism of direct hydrogen atom transfer.

11.
Inorg Chem ; 62(44): 18209-18218, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37861751

RESUMEN

A luminescent Tb-MOF with excellent stability and dual-emitting properties was constructed with an amide-functionalized tetracarboxylate ligand. Tb-MOFs were initially assembled on one-dimensional Tb3+ chains, then formed a two-dimensional double-decker layer through the synergistic linking of organic ligands and bridging formic acid anions, and further fabricated the final three-dimensional structure through the connection of the organic ligands. Powder X-ray diffraction experiments revealed that Tb-MOFs not only exhibited excellent stability in water but also maintained structural integrity in the pH range of 2-12. Importantly, this Tb-MOF provided the first example of a metal-organic framework (MOF)-based luminescence sensor that can simultaneously detect two acid amino acids (aspartic and glutamic acids) through a turn-off sensing mechanism and two basic amino acids (lysine and arginine acids) through unusual turn-on and turn-off-on sensing mechanisms. Moreover, high sensitivity, low detection limit, and excellent recyclability of this sensor endow Tb-MOFs with great potential as a highly efficient amino acid fluorescence sensor in chemical detection and biological environments.

13.
Molecules ; 28(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37687019

RESUMEN

Alginate oligosaccharides (AOs) prepared through enzymatic reaction by diverse alginate lyases under relatively controllable and moderate conditions possess versatile biological activities. But widely used commercial alginate lyases are still rather rare due to their poor properties (e.g., lower activity, worse thermostability, ion tolerance, etc.). In this work, the alginate lyase Alyw208, derived from Vibrio sp. W2, was expressed in Yarrowia lipolytica of food grade and characterized in order to obtain an enzyme with excellent properties adapted to industrial requirements. Alyw208 classified into the polysaccharide lyase (PL) 7 family showed maximum activity at 35 °C and pH 10.0, indicating its cold-adapted and high-alkaline properties. Furthermore, Alyw208 preserved over 70% of the relative activity within the range of 10-55 °C, with a broader temperature range for the activity compared to other alginate-degrading enzymes with cold adaptation. Recombinant Alyw208 was significantly activated with 1.5 M NaCl to around 2.1 times relative activity. In addition, the endolytic Alyw208 was polyG-preferred, but identified as a bifunctional alginate lyase that could degrade both polyM and polyG effectively, releasing AOs with degrees of polymerization (DPs) of 2-6 and alginate monomers as the final products (that is, DPs 1-6). Alyw208 has been suggested with favorable properties to be a potent candidate for biotechnological and industrial applications.


Asunto(s)
Alginatos , Oligosacáridos , Polimerizacion , Polisacárido Liasas
14.
Org Lett ; 25(32): 5963-5968, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37540111

RESUMEN

A palladium-catalyzed asymmetric annulative dearomatization of phenols with butene dicarbonate is reported, enabling twofold decarboxylative allylation to regioselectively produce a range of spirocyclohexadienones with 29-95% yields and 74-99% ee. A catalytic dearomative formal [4 + 2] cyclization of 1,1'-biphenyl-2,4'-diols delivered spiro[chromane-4,1'-cyclohexane]-2',5'-dien-4'-ones with high enantioselectivity, whereas enantioenriched spiro[cyclohexane-1,4'-quinoline]-2,5-dien-4-ones were generated starting from 2'-amino-[1,1'-biphenyl]-4-ols as 1,4-dinucleophiles.

15.
Nat Commun ; 14(1): 4044, 2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37422483

RESUMEN

Direct synthesis of ketones from aldehydes features high atom- and step-economy. Yet, the coupling of aldehydes with unactivated alkyl C(sp3)-H remains challenging. Herein, we develop the synthesis of ketones from aldehydes via alkyl C(sp3)-H functionalization under photoredox cooperative NHC/Pd catalysis. The two-component reaction of iodomethylsilyl alkyl ether with aldehydes gave a variety of ß-, γ- and δ-silyloxylketones via 1,n-HAT (n = 5, 6, 7) of silylmethyl radicals to generate secondary or tertiary alkyl radicals and following coupling with ketyl radicals from aldehydes under photoredox NHC catalysis. The three-component reaction with the addition of styrenes gave the corresponding ε-hydroxylketones via the generation of benzylic radicals by the addition of alkyl radicals to styrenes and following coupling with ketyl radicals. This work demonstrates the generation of ketyl radical and alkyl radical under the photoredox cooperative NHC/Pd catalysis, and provides two and three component reactions for the synthesis of ketones from aldehydes with alkyl C(sp3)-H functionalization. The synthetic potential of this protocol was also further illustrated by the late-stage functionalization of natural products.


Asunto(s)
Aldehídos , Cetonas , Paladio , Oxidación-Reducción , Catálisis
16.
Asia Pac J Oncol Nurs ; 10(8): 100255, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37519402

RESUMEN

Objective: To validate the Chinese version of the Quality of Life (QoL) Patient/Cancer Survivor Version (QOLCSV-C) for measuring QoL in Chinese cancer survivors. Methods: The study followed a seven-step research practice guideline for cross-cultural research instrument validation study including translation, adaptation, and psychometric assessment. A forward- and backward-translation procedure was approached, followed by cultural adaptation and acceptability assessment. For its psychometric properties, its concurrent validity with the Functional Assessment of Cancer Therapy-General (FACT-G) was examined with correlation analysis. The internal consistency (Cronbach's alpha) and item-total and item-subtotal correlations of the QOLCSV-C were obtained. Factor analyses were conducted. Floor and ceiling effects and the discriminant performance of the selected variables on QOLCSV-C score were also examined. Results: The QOLCSV-C was translated from the 41-item QOLCSV with four domains: psychological, physical, spiritual and social well-being. The content validity was excellent (CVI â€‹= â€‹1.00). Time spent to complete the QOLCSV-C was about 10 â€‹min. The QOLCSV-C was found easy to use, appropriate in length, and reflective of their QoL. The strong correlation between QOLCSV-C and FACT-G indicates a satisfactory concurrent validity (Spearman's rho â€‹= â€‹0.765, P â€‹< â€‹0.001, n â€‹= â€‹205). The overall internal consistency of the QOLCSV-C (Cronbach's alpha â€‹= â€‹0.888) and the split-half reliability (Spearman-Brown r â€‹= â€‹0.918) were excellent. Most of the items show moderate to strong item-total correlation. The exploratory factor analysis revealed a four-factor solution, and confirmatory factor analysis has a satisfactory model fit with indicative items. None of the total scores of QOLCSV-C reveal the floor or ceiling effect. For discriminant performance, variables demonstrating significant between-group differences include sleep quality, pain, fatigue, nausea, physical health, and financial burden. Conclusions: The QOLCSV-C is a reliable and valid instrument for measuring the QoL in Chinese cancer survivors. Future studies can explore the factor structure, gender universal or specific items, and significant predictors of QoL of cancer survivors in different cultures.

17.
J Org Chem ; 88(16): 11913-11923, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37498087

RESUMEN

An NHC-catalyzed atroposelective synthesis of axially chiral α-carbolinones from α,ß-unsaturated iminoindole derivatives and α-chloroaldehydes was developed. The reaction proceeds through a cascade process including [4 + 2] annulation and then oxidative dehydrogenation with concomitant central-to-axial chirality conversion under mild conditions. The developed method opens a new avenue to efficiently access axially chiral α-carbolinones in moderate to good enantioselectivities.

18.
Front Mol Biosci ; 10: 1211621, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37363404

RESUMEN

Introduction: Tannase is a crucial enzyme that finds wide applications in the pharmaceutical industry, feed processing, and beverage manufacturing. Although extensive studies have been conducted on tannases from fungi and bacteria, reports on tannases exhibiting favorable pH stability are relatively limited. Methods: In this study, a tannin-degrading strain Debaryomyces hansenii was screened to induce tannase production, and the corresponding tannase coding gene TANF was successfully cloned and expressed in Yarrowia lipolytica. SDS-PAGE analysis revealed that the purified TanF tannase had a molecular weight of approximately 70 kDa. Results and Discussion: The enzyme demonstrated optimal activity at 40°C and retained over 80% of its activity in the range of 35°C-60°C. Of particular interest, TanF exhibited remarkable enzyme activity at pH 5.0 and retained more than 70% of its relative activity across a wide pH range of 3.0-8.0. Furthermore, TanF exhibited broad substrate specificity for gallate esters. The final gallic acid production by TanF from tannic acid achieved 18.32 g/L. Therefore, the excellent properties TanF has been demonstrated to be an efficient tool for the preparation of gallic acid.

19.
Bioresour Technol ; 379: 128984, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37003453

RESUMEN

Pelagic Sargassum is invasive macroalgae with huge biomass. To produce bulk chemicals with profit from the biomass, innovative strategies need to be developed. In this study, maximum saccharification yield of Sargassum horneri biomass was obtained with the combined use of 3% alginate lyase and 3% cellulase, releasing 20.83 g/L glucose and 1.73 g/L mannitol at a 1:6 feed ratio. Subsequently, the crude S. horneri hydrolysate (pH 3.0) was proved most suitable for erythritol production of Yarrowia lipolytica strain. After 60 h fermentation in a 10-L fermenter, the erythritol concentration reached 18.42 g/L with a yield of 0.82 g/g; while the concentration of alginate oligosaccharides (AOS) was 37.56 g/L. Finally, AOS with a purity of 93.4% were obtained by ethanol precipitation, and erythritol was harvested via crystallization. This proposed strategy demonstrates the feasibility of transforming invasive Sargassum into two high-value chemicals for the first time.


Asunto(s)
Sargassum , Yarrowia , Alginatos , Eritritol , Reactores Biológicos , Oligosacáridos
20.
J Microbiol Immunol Infect ; 56(4): 747-756, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37080838

RESUMEN

BACKGROUND: More and more novel anticancer drugs have been approved for patients with hematological malignancies in recent years, but HBV reactivation (HBV-R) data in this population is very scarce. This study aimed to evaluated HBV-R risk in patients with hematological malignancies receiving novel anticancer drugs. METHODS: HBV markers and serum HBV DNA levels of patients with hematological malignancies receiving novel anticancer drugs in a tertiary cancer hospital were retrospectively collected. HBV-R risk in the whole cohort and subgroups was described. The relevant literature was reviewed to make a pooled analysis. RESULTS: Of 845 patients receiving novel anticancer drugs, 258 (30.5%) were considered at risk for HBV-R. The median duration of exposure to novel drugs was 5.6 (0.1-67.6) months. The incidence of HBV-R was 2.1% in patients with past HBV infection without prophylactic antiviral treatment (PAT) and 1.2% in all patients at risk of HBV-R. In a pooled analysis of 11 studies with 464 patients, the incidence of HBV-R was 2.4% (95% CI: 1.3-4.2) in all at-risk patients receiving novel anticancer drugs and 0.6% (95% CI: 0.03-3.5) in patients with anticancer drugs plus PAT. The incidence of death due to HBV-R was 0.4% (95% CI: 0.1-1.6) in all at-risk patients and 18.2% (95% CI: 3.2-47.7) in patients with HBV-R. CONCLUSION: Most episodes of HBV-R are preventable, and most cases with HBV-R are manageable. We recommend that novel anticancer drugs should not be intentionally avoided when treating cancer patients with HBV infection.


Asunto(s)
Antineoplásicos , Neoplasias Hematológicas , Hepatitis B , Neoplasias , Humanos , Virus de la Hepatitis B/genética , Incidencia , Estudios Retrospectivos , Antineoplásicos/efectos adversos , Neoplasias Hematológicas/complicaciones , Neoplasias Hematológicas/tratamiento farmacológico , Antivirales/uso terapéutico , Antivirales/farmacología , Activación Viral , Hepatitis B/tratamiento farmacológico , Hepatitis B/epidemiología , Antígenos de Superficie de la Hepatitis B
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA