Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Poult Sci ; 103(8): 103876, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38833746

RESUMEN

The aim of this study was to elucidate the different effects and difference mechanism of gelling properties among egg white (EW) treated with different heating intensities and the composite addition of rhamnolipid and soybean lecithin. Particle size analyzer, potentiometric analyzer, surface hydrophobicity method, and Fourier transform infrared spectroscopy techniques were used to determine the physicochemical properties and molecular structure, respectively. Low-field nuclear magnetic resonance, magnetic resonance imaging, texture profile analysis, and scanning electron microscopy techniques were used to analyze the gelling properties and gel structure, respectively. And we illuminate the different mechanisms in the gelling properties of the EW with various treatments and key internal factors that play important roles in improving gelling properties by establishing the link between the gelling properties and relevant characteristics by mixed effects model and visual network analysis. The results indicate raising the content of rhamnolipid decreased the migration of immobilized water in the EW gel and the free water content. At the heating intensities of 55 °C/3.5, 65 °C/2.5, and 67 °C/1.5 min, with an increase in rhamnolipid, the gel's cohesiveness, gumminess, and chewiness gradually increased. The mixed effects model indicated that heating intensities and composite ratios have a 2-way interaction on zeta potential, the relaxation time of bound water (T21), the content of bound water (P21), the content of immobilized water (P22), and fractal dimension (df) attributes (P < 0.05). The visual network analysis showed that the protein solubility, the relaxation time of immobilized water (T22), surface hydrophobicity, zeta potential, average particle size (d43) and the relaxation time of free water (T23) are critical contributors to the different gelling properties of EW subjected to various treatments and the improvement of gelling properties. This study will provide theoretical guidance for the development of egg white products and the expansion of egg white's application scope in the egg product processing industry.

2.
Angew Chem Int Ed Engl ; : e202406855, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871653

RESUMEN

In NH3 capture technologies, the desorption process is usually driven by high temperature and low pressure (such as 150-200°C under vacuum), which accounts for intensive energy consumption and CO2 emission. Developing light responsive adsorbent is promising in this regard but remains a great challenge. Here, we for the first time designed and synthesized a light responsive azophenol-containing covalent organic framework (COF), COF-HNU38, to address this challenge. We found that at 25 °C and 1.0 bar the cis -COF exhibited a NH3 uptake capacity of 7.7 mmol g-1 and a NH3/N2 selectivity of 158. In the adsorbed NH3, about 29.0% could be removed by vis-light irradiated cis-trans isomerization at 25 °C, and the remaining NH3 might be released at 25 °C under vacuum. Almost no decrease in adsorption capacity was observed after eight adsorption-desorption cycles. As such, an efficient NH3 capture and low energy release strategy was established thanks to the multiple hydrogen bond interactions (which are strong in total but weak in individuals) between NH3 and the smart COF, and the increase in polarity and in number of hydrogen bond sites after the trans-cis isomerization process.

3.
J Thorac Dis ; 16(4): 2443-2459, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38738236

RESUMEN

Background: Myocardial infarction (MI) is one of the most lethal cardiovascular diseases. The loss of cardiomyocytes and the degradation of the extracellular matrix leads to high ventricular wall stress, which further drives the pathological thinning of the ventricular wall during MI. Injecting biomaterials to thicken the infarct ventricular wall provides mechanical support, thereby inhibiting the continued expansion of the heart. As an injectable biomaterial, alginate hydrogel has achieved exciting results in clinical trials, but further research needs to be conducted to determine whether it can improve cardiac function in addition to providing mechanical support. This study sought to explore these mechanisms in an animal model of MI. Methods: A MI model was established in male C57BL/6J mice by ligation of the proximal left anterior descending (LAD) coronary artery. Intramyocardial injections (hydrogel or saline group) were performed in the proximal wall regions bordering the infarct area (with one 20-µL injection). Four weeks after MI, RNA sequencing revealed that 342 messenger RNAs (mRNAs) from the infarcted hearts were differentially expressed between the saline group and hydrogel group. We subsequently conducted a Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to analyze the RNA sequencing data. In addition, we employed both western blotting and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) techniques to verify a number of genes that were differentially expressed and could potentially affect cardiac function after MI. Subsequently, we confirmed these findings through in vitro experiments. Results: We found that compared with hydrogel treatment group, 250 mRNAs were upregulated and 92 mRNAs were downregulated in saline group (P<0.05). And by exploring the GO and KEGG signaling pathways as well as the protein-protein interaction (PPI) network, we found that administration of alginate hydrogel modulated cardiomyocyte inflammation-associated proteins as well as chemokine-related proteins during the inflammatory response phase after MI. In addition, our analysis at both the protein and RNA level revealed that B2M was effective in improving cardiac function after MI in the hydrogel treatment group, which was consistent in the myocardium oxygen and glucose deprivation (OGD) injury model. Conclusions: We explored the transcriptome changes of infarcted hearts after alginate-hydrogel injection during the inflammatory response period. Our findings suggest that the injectable hydrogel directly alters the inflammatory response and the chemokine-mediated signaling pathway of cardiomyocytes, ultimately improving cardiac function.

4.
Langmuir ; 40(6): 3133-3141, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38307089

RESUMEN

A Pickering emulsion is a natural microreactor for interfacial catalysis in which an emulsifier is critical. Recently, a metal-organic framework (MOF) has attracted attention to emulsify water-organic mixtures for constructing a Pickering emulsion. However, a few stimuli-responsive Pickering emulsions based on MOFs have been reported, and the MOF emulsifiers cannot be regenerated at room temperature. Herein, the Zr-MOF with a rodlike morphology is synthesized using ionic liquid as a modulator and then modified with n-(trimethoxysilylpropyl)imidazole (C3im) to prepare a series of functionalized Zr-MOFs (MOF-C3im). It is found that MOF-C3im is an excellent emulsifier to construct stable and CO2-responsive Pickering emulsions even at low content (>0.20 wt %). Notably, the emulsification and demulsification of the emulsions can be easily and reversibly switched by bubbling of CO2 and N2 alternatively at room temperature because CO2 and imidazole molecules anchored on the Zr-MOF underwent a reversible acid-base reaction, resulting in an obvious change in the wettability of the emulsifier. As a proof of concept, the reduction reactions of nitrobenzene have been successfully carried out in these Pickering emulsions, demonstrating the efficient integration as a microreactor for chemical reaction, product separation, and emulsifier recycling under ambient conditions. This strategy provides an innovative option to develop stimulus-responsive Pickering emulsions for sustainable chemical processes.

5.
J Phys Chem B ; 128(4): 1079-1090, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38260998

RESUMEN

CO2 capture technology is one of the most important technical methods for significantly mitigating CO2 emissions in a low-carbon context. The recent invention of mixed absorbents comprising poly(ethylenimine) (PEI) and ionic liquids (ILs) provides a novel strategy for efficiently capturing CO2, and this has garnered widespread attention. However, the intermolecular interactions between the IL and other constituents during the CO2 absorption process remain unclear. In this present work, a series of density functional theory (DFT) calculations and molecular dynamics simulations were conducted to investigate the positive role of IL in CO2 capture by PEI. The results showed that the formation of hydrogen bonds between the IL anion and the amino groups of PEI primarily drives the addition of IL to PEI. During the CO2 absorption process, the IL anion not only can absorb CO2 but also exerts a dehydrogenation effect on the amino group of PEI, facilitating enhanced interaction between PEI and CO2. Additionally, the IL substantially reduces the viscosity of PEI, promoting the diffusion of CO2 within the system and enhancing the absorption rate. Based on the information on interaction energy and viscosity, we can easily make theoretical predictions for the optimal proportion of IL to be added. The above results provide fundamental insights to promote the industrial application of the PEI/IL system for CO2 capture.

6.
J Phys Chem Lett ; 14(36): 8165-8174, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37671781

RESUMEN

Covalent organic frameworks (COFs) have regular channels that can accommodate guest molecules to provide highly conductive solid electrolytes. However, designing smart, conductive COFs remains a great challenge. Herein, we report the first example of PEG-functionalized ionic liquids (ILs) anchored on the COF walls by strong hydrogen bonding to fabricate thermally responsive COFs (ILm@COF). We found that similar to the traditional IL/water mixture, the ILs undergo lower critical solution temperature (LCST)-type phase behavior within COF nanopores under high moisture levels. However, the phase separation temperature of aqueous IL decreases in COF channels due to the strong interaction between the IL and COF. Thus, the proton conductivity of ILm@COF can be reversibly switched by phase miscibility and separation in COF nanopores, and there is no obvious decrease even after 20 switching cycles. Our work provides important clues for understanding liquid-liquid phase separation in a confined nanospace and opens a new pathway to switchable proton conductivity.

7.
Huan Jing Ke Xue ; 44(9): 4853-4862, 2023 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-37699804

RESUMEN

Studies on runoff are crucial for the scientific allocation, utilization, and development of water resources and can provide an important basis for the prevention and control of flood and drought disaster, as well as water environmental pollution management. Affected by global warming, the frequency and intensity of extreme climate events, particularly extreme precipitation, have significantly changed in recent years, which can directly or indirectly impact runoff changes. In this study, we used the SWAT model to simulate the spatiotemporal variations in runoff in the Yangtze River Basin from 1965 to 2019 and analyzed the response of runoff to precipitation under extreme conditions. The results showed that the changes in total runoff in the Yangtze River Basin were not significantly different from 1965 to 2019. The total runoff and the mid-lower runoff in the basin experienced four stages of "dry-wet-dry-wet." Simulations revealed that under the 50-year extreme precipitation event, the increase in daily average runoff was 6200%, 21%, and 15% for the typical sub-basins of the upper, middle, and lower reaches of the Yangtze River, respectively. Additionally, the increase in monthly and annual average runoff was 355%, 5%, and 1.3% and 78%, 1%, and 0.24%, for upper, middle, and lower reaches of the Yangtze River, respectively. Moreover, under the 100-year extreme precipitation, the average daily runoff increasing rates were 8000%, 25%, and 17% for upper, middle, and lower reaches of the Yangtze River, respectively, compared to the monthly increase of 437%, 7%, and 1.5% and annual increase of 96%, 1.2%, and 0.28%, respectively. Our findings may improve the understanding of hydrological responses to climate change and provide valuable inferences to decision-makers and water managers for better allocation and management of water resources.

8.
Am J Cancer Res ; 13(8): 3517-3530, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37693159

RESUMEN

Patients with non-small cell lung cancer (NSCLC) treated with tyrosine kinase inhibitors (TKIs) inevitably exhibit drug resistance, which diminishes therapeutic effects. Nonetheless, the molecular mechanisms of TKI resistance in NSCLC remain obscure. In this study, data from clinical and TCGA databases revealed an increase in DNMT3A expression, which was correlated with a poor prognosis. Using NSCLC organoid models, we observed that high DNMT3A levels reduced TKI susceptibility of NSCLC cells via upregulating inhibitor of apoptosis proteins (IAPs). Simultaneously, the DNMT3Ahigh subset, which escaped apoptosis, underwent an early senescent-like state in a CDKN1A-dependent manner. Furthermore, the cellular senescence induced by TKIs was observed to be reversible, whereas DNMT3Ahigh cells reacquired their proliferative characteristics in the absence of TKIs, resulting in subsequent tumour recurrence and growth. Notably, the blockade of DNMT3A/IAPs signals enhanced the efficacy of TKIs in DNMT3Ahigh tumour-bearing mice, which represented a promising strategy for the effective treatment of NSCLC.

9.
Anal Bioanal Chem ; 415(22): 5463-5473, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37423905

RESUMEN

The purpose of this study was to offer a quick and efficient method to screen for multiple restricted additives in polymer materials. A solvent-free pyrolysis gas chromatography-mass spectrometry method was developed to simultaneously screen 33 restricted substances, comprising 7 phthalates, 15 bromine flame retardants, 4 phosphorus flame retardants, 4 ultraviolet stabilizers, and 3 bisphenols. The pyrolysis technique and temperatures affecting additive desorption were studied. Under optimized conditions, the instrument sensitivity was confirmed using in-house reference materials at concentrations of 100 mg/kg and 300 mg/kg. The linear range was between 100 and 1000 mg/kg in 26 compounds, and in the other compounds it was between 300 and 1000 mg/kg. In this study, in-house reference materials, certified reference materials, and proficiency testing samples were used for method verification. The relative standard deviation of this method was less than 15%, and recoveries ranged from 75.9 to 107.1% for most of the compounds, with a few exceeding 120%. Furthermore, the screening method was verified with 20 plastic products used in daily life and 170 recycled plastic particle samples from imports. The experimental results showed that phthalates were the main additives in plastic products, and among 170 recycled plastic particle samples, 14 samples were found to contain restricted additives. The main additives in recycled plastics were bis(2-ethylhexyl) phthalate, di-iso-nonyl phthalate, hexabromocyclododecane, and 2,2',3,3',4,4',5,5',6,6'-decabromodiphenyl ether at concentrations between 374 and 34785 mg/kg, except for some results that exceeded the maximum measured value of the instrument. Compared with traditional methods, an important advantage is that this method simultaneously tests for 33 additives without sample pretreatment, covering a variety of additives limited by laws and regulations, and therefore can provide more comprehensive and thorough inspections.

10.
ACS Appl Mater Interfaces ; 15(25): 30262-30271, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37337471

RESUMEN

Ag single-atom catalysts (SACs) have great potential in selective electrocatalysis of the CO2 reduction reaction (CO2RR) to CO, while it is still a challenge to achieve high current density and high atom efficiency simultaneously. Here, we present a new and simple in situ adsorption-reduction method to prepare Ag SACs supported on CeO2 (Ag1/CeO2). It is found that Ag single atoms are anchored on CeO2 through strong metal-support interaction (SMSI), and each Ag atom is accompanied with three interfacial oxygen vacancies. This Ag1/CeO2 exhibits high performance in the electrocatalytic CO2RR with a high CO faradaic efficiency (FE) of >95% under a wide potential range. The turnover frequency (TOF) value can reach 50,310 h-1 at FECO = 99.5% in H-cells. Notably, Ag1/CeO2 achieves an industrial-grade current density of 403 mA cm-2 with a high FECO of 97.2% in flow cells. Experimental results combined with density functional theory calculation revealed that this superior performance was mainly ascribed to the existence of interfacial oxygen vacancies, which lead to the formation of Ag-O-Ce3+ atomic interfaces, and activates the Ce3+-O structures as the synergistic active center of Ag, thus promoting CO2 adsorption and activation and reducing the reaction potential barrier of *COOH-to-*CO.

11.
Molecules ; 28(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37175296

RESUMEN

The existence of carcinogenic nitrites in food and the natural environment has attracted much attention. Therefore, it is still urgent and necessary to develop nitrite sensors with higher sensitivity and selectivity and expand their applications in daily life to protect human health and environmental safety. Herein, one-dimensional honeycomb-like carbon nanofibers (HCNFs) were synthesized with electrospun technology, and their specific structure enabled controlled growth and highly dispersed bismuth nanoparticles (Bi NPs) on their surface, which endowed the obtained Bi/HCNFs with excellent electrocatalytic activity towards nitrite oxidation. By modifying Bi/HCNFs on the screen-printed electrode, the constructed Bi/HCNFs electrode (Bi/HCNFs-SPE) can be used for nitrite detection in one drop of solution, and exhibits higher sensitivity (1269.9 µA mM-1 cm-2) in a wide range of 0.1~800 µM with a lower detection limit (19 nM). Impressively, the Bi/HCNFs-SPE has been successfully used for nitrite detection in food and environment samples, and the satisfactory properties and recovery indicate its feasibility for further practical applications.

12.
Adv Biol (Weinh) ; 7(8): e2300086, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37178448

RESUMEN

Artemisinin (ART) and its derivatives have great therapeutical utility as antimalarials and can be repurposed for other indications, such as viral infections, autoimmune diseases, and cancer. This review presents a comprehensive overview of the therapeutic effects of ART-based drugs, beyond their antimalarial effects. This review also summarizes the information on their repurposing in other pathologies, with the hope that it will guide the future optimization of the use of ART-based drugs and of the treatment strategies for the listed diseases. By reviewing related literature, ART extraction and structure as well as the synthesis and structure of its derivatives are presented. Subsequently, the traditional roles of ART and its derivatives against malaria are reviewed, including antimalarial mechanism and occurrence of antimalarial resistance. Finally, the potential of ART and its derivatives to be repurposed for the treatment of other diseases are summarized. The great repurposing potential of ART and its derivatives may be useful for the control of emerging diseases with corresponding pathologies, and future research should be directed toward the synthesis of more effective derivatives or better combinations.


Asunto(s)
Antimaláricos , Artemisininas , Antagonistas del Ácido Fólico , Malaria , Humanos , Antimaláricos/uso terapéutico , Antimaláricos/química , Antimaláricos/farmacología , Reposicionamiento de Medicamentos , Artemisininas/uso terapéutico , Artemisininas/química , Artemisininas/farmacología , Malaria/tratamiento farmacológico , Antagonistas del Ácido Fólico/uso terapéutico
13.
Foods ; 12(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37048294

RESUMEN

Liquid whole egg (LWE) products have many advantages such as convenient transportation, easy production and are safe. However, LWE has a short shelf life and high thermal sensitivity, so suitable heating treatment is the key to the production of LWE products. The aim of this study is to investigate the effects of heating treatments conditions (at 55-67 °C for 0-10 min) on the emulsification, foaming activity and rheological properties of LWE. The results indicated that the emulsifying activity of LWE had no significant change after 55-64 °C heating treatment, while it decreased significantly after heating treatment at 67 °C. The foaming property of LWE increased significantly after 55 °C to the 64 °C heating treatment; while the foaming property showed a downward trend with the increase in heat treatment temperature, it can significantly improve the foam stability of LWE. The heating treatment thoroughly changed the molecular weight distribution of LWE protein, thus promoted the protein surface hydrophobicity, hydrophobicity activity and rheological properties. The heating treatment at 61 °C for 6 min had a better effect on the functional properties than that of the other heating groups. In addition, the results of this study provide the change in rules of LWE under different heating treatment conditions and provide theoretical guidance for the production and processing of LWE.

14.
J Am Chem Soc ; 145(17): 9520-9529, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37076447

RESUMEN

Covalent organic frameworks (COFs) hold the potential in converting CO2 with water into value-added fuels and O2 to save the deteriorating ecological environment. However, reaching high yield and selectivity is a grand challenge under metal-, photosensitizer-, or sacrificial reagent-free conditions. Here, inspired by microstructures of natural leaves, we designed triazine-based COF membranes with the integration of steady light-harvesting sites, efficient catalytic center, and fast charge/mass transfer configuration to fabricate a novel artificial leaf for the first time. Significantly, a record high CO yield of 1240 µmol g-1 in a 4 h reaction, approximately 100% selectivity, and a long lifespan (at least 16 cycles) were achieved under gas-solid conditions without using any metal, photosensitizer, or sacrificial reagent. Unlike the existing knowledge, the chemical structural unit of triazine-imide-triazine and the unique physical form of the COF membrane are predominant for such a remarkable photocatalysis. This work opens a new pathway to simulating photosynthesis in leaves and may motivate relevant research in the future.

15.
Nat Commun ; 14(1): 1147, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854683

RESUMEN

Cobalt coordinated covalent organic frameworks have attracted increasing interest in the field of CO2 photoreduction to CO, owing to their high electron affinity and predesigned structures. However, achieving high conversion efficiency is challenging since most Co related coordination environments facilitate fast recombination of photogenerated electron-hole pairs. Here, we design two kinds of Co-COF catalysts with oxygen coordinated Co atoms and find that after tuning of coordination environment, the reported Co framework catalyst with Co-O4 sites exhibits a high CO production rate of 18000 µmol g-1 h-1 with selectivity as high as 95.7% under visible light irradiation. From in/ex-situ spectral characterizations and theoretical calculations, it is revealed that the predesigned Co-O4 sites significantly facilitate the carrier migration in framework matrixes and inhibit the recombination of photogenerated electron-hole pairs in the photocatalytic process. This work opens a way for the design of high-performance catalysts for CO2 photoreduction.

16.
Chemistry ; 29(27): e202300222, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-36788109

RESUMEN

In recent years, light-responsive molecules have been incorporated in metal-organic frameworks (MOFs) to fabricate light-responsive intelligent devices, where reversible isomerization of the guest molecules in the nanopores is crucial. However, how to design a porous environment of MOFs to achieve a reversible isomerization remains unknown until now. In this work, donor-acceptor Stenhouse adducts (DASAs), a new kind of visible light responsive compound, were confined in the nanopores of different MOFs to study their isomerization upon visible-light irradiation/mild heating. We found that the polarity of the pore environment is the key to control the reversibility of isomerization of such guest molecules. Under the guidance of this principle, MIL-53(Al) was screened to investigate the proton conductivity and switching performance of the DASA-confined MOF. The proton conductance was up to 0.013 S cm-1 at 80 °C and 98 % RH, and at least 30 switching cycles were achieved thanks to the Grotthuss-type mechanism and the low polarity of MIL-53(Al) pore environment.

17.
J Environ Manage ; 328: 117024, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36525733

RESUMEN

Soil erosion (SE) is seriously threatening grain production and the ecological environment in the black soil region. Understanding the impact of changes in land use/land cover (LULC) and soil properties on SE is critical for agricultural sustainability and soil management. However, the contribution of soil property changes to SE is often ignored in existing studies. This study analyzed changes in LULC and soil properties from 1980 to 2020 in the black soil region, China. Then, the revised universal soil loss equation was used to explore the spatiotemporal changes of SE from 1980 to 2020. Finally, the contribution of LULC change and soil property change to SE was separated by scenario comparison. The results showed that cropland increased (by 24,157 km2) at the expense of grassland and forest from 1980 to 2020. Sand in cropland decreased by 21.95%, while the silt, clay, and SOC increased by 21.37%, 1.43%, and 15.38%, respectively. Soil erodibility in cropland increased greatly (+9.85%), while in forest and grassland decreased (-6.05% and -4.72%). LULC change and soil properties change together aggravated SE in the black soil region. LULC change and soil property change resulted in a 22% increase in SE, of which LULC change resulted in a 14% increase, and soil property change resulted in an 8% increase. Agricultural development policy was the main reason driving LULC change. The combination of LULC change, climatic factors, and long-term tillage resulted in changes in soil properties. Ecosystem management and policy can reduce SE through vegetation restoration and soil improvement. This study can provide important references for soil conservation and agricultural development in the black soil region.


Asunto(s)
Ecosistema , Suelo , Erosión del Suelo , Conservación de los Recursos Naturales/métodos , China , Monitoreo del Ambiente/métodos
18.
Chem Commun (Camb) ; 58(85): 12001, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36218137

RESUMEN

Correction for 'An azobenzene-modified redox-active ionic liquid electrolyte for supercapacitors' by Yuhua Zhao et al., Chem. Commun., 2022, https://doi.org/10.1039/d2cc04081f.

19.
RSC Adv ; 12(42): 27213-27224, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36276000

RESUMEN

Heat treatment is an important step in mayonnaise production but can affect the quality of mayonnaise because thermal treatment can accelerate oil droplet coalescence. To resolve this issue, in this study, enzymatically modified egg yolks were applied to produce mayonnaise. Egg yolk hydrolyzed with 0.2% neutral protease could effectively produce mayonnaise with superior heat stability, and this effect was attributed to enzymatic modifications that increased the degree of amino acid ionization, the overall hydrophilicity and the ability to adsorb proteins. Moreover, electrophoresis and FT-IR results showed that the enzymatically modified egg yolk proteins had a smaller molecular weight and more flexible structure, which could also favor the improved properties. The study elucidated why mayonnaise prepared by enzymatic modification-treated egg yolk has better thermal stability.

20.
Angew Chem Int Ed Engl ; 61(47): e202212032, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36180385

RESUMEN

Ammonia (NH3 ) is an important chemical raw material and a unique carbon-free fuel with high hydrogen energy density. Thus, NH3 capture, storage, and desorption are of significant importance. However, high capacity capture, low energy desorption, and selective separation of NH3 are still challengs so far. Here, we report high-performance hybrid sorbents by anchoring LiCl in the nanopores of MIL-53-(OH)2 metal-organic frameworks (MOFs). It is found that the optimal composite shows a capture capacity of 33.9 mmol g-1 NH3 at 1.0 bar and 25 °C, which far exceeds the current record among the reported porous materials. Notably, the excellent capture capacity at low pressure and high temperature makes it possible to selectively capture NH3 from NH3 /N2 , NH3 /CO2 , and NH3 /H2 O. It is revealed that synergistic action of NH3 coordination to the highly dispersed Li+ in the MOF nanopores and hydrogen bonding of NH3 with Cl- account for such an excellent capture and selectivity performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA