Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Food Sci ; 89(4): 2450-2464, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462851

RESUMEN

Fermented foods have shown promise in preventing or treating ulcerative colitis (UC) via regulating intestinal flora and correcting metabolic disorders. However, the prevention effect of fermented Wallace melon juice (FMJ) on UC is unclear. In this study, the effects of FMJ on dextran sodium sulfate (DSS)-induced UC were investigated via 16S rRNA sequencing and non-targeted metabolomics. The results showed that FMJ was effective in alleviating the symptoms of UC, reducing histological damage and oxidative stress, decreasing the levels of pro-inflammatory cytokines. After FMJ treatment, the level of propionic acid, butyric acid, and valeric acid increased by 14.1%, 44.4%, and 52.4% compared to DSS-induced UC mice. Meanwhile, the levels of harmful bacteria such as Oscillospira, Bacteroidetes, and Erysipelotrichaceae and Clostridium decreased, while the levels of beneficial bacteria such as Akkermansia, Lactobacillus, and Bifidobacterium increased. Fecal metabolomics analysis identified 31 differential metabolites, which could regulate metabolic disorders in UC mice by controlling the primary bile acid biosynthesis, purine metabolism, and pantothenate and CoA biosynthesis pathway. Additionally, the abundances of butyric acid, bile acids, and pantothenic acid were positively correlated with Allobaculum, Bifidobacterium, and other beneficial bacteria (R2 > 0.80, p < 0.01). The results indicated that FMJ played a role in regulating the structure of intestinal flora, which in turn helped in repairing metabolic disorders and alleviated colitis inflammation.


Asunto(s)
Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Enfermedades Metabólicas , Animales , Ratones , Lactobacillus , Colitis Ulcerosa/inducido químicamente , Sulfato de Dextran/efectos adversos , ARN Ribosómico 16S , Ácido Butírico , Bifidobacterium , Firmicutes , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Colon
2.
J Sci Food Agric ; 104(6): 3776-3787, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38294418

RESUMEN

BACKGROUND: Melons (Cucumis melo L.) are among the most commonly consumed fruits but they are highly susceptible to mechanical damage and rot during storage and transportation. New processed products are needed to avoid postharvest fruit loss and to increase health benefits. Fermentation is an effective means of utilizing the nutrients and improving flavor. RESULTS: Fermented melon juice (MJ) was prepared using three potential probiotics Lactiplantibacillus plantarum CICC21824 (LP), Lactiplantibacillus plantarum GB3-2 (LG), and Lactiplantibacillus pentosus XZ-34 (LX). The nutrition, flavor characteristics, and digestive properties of different fermented MJs were compared. The results demonstrated that, in comparison with mono-fermentation, mixed fermentation by LG and LX could increase the level of organic acids and phenolic acids. Correspondingly, antioxidant capacity was improved significantly and positively correlated with p-coumaric acid and cinnamic acid content. The production of alcohols and acids was more strongly enhanced by mixed culture fermentation, whereas mono-fermentation reduced the content of esters, especially ethyl acetate and isopropyl acetate. Aldehydes and ketones increased significantly in fermented MJ, and damascenone and heptanal could be the characteristic aroma compounds. CONCLUSION: Mixed fermented MJ provides more beneficial phytochemicals, better flavor, and stronger antioxidant properties than mono-fermentation. © 2024 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Cucurbitaceae , Fermentación , Antioxidantes/química , Cucurbitaceae/metabolismo , Frutas/química , Alcoholes/análisis
3.
Exp Gerontol ; 165: 111863, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35660419

RESUMEN

We explored the effect of phlorizin against cholinergic memory impairment and dysbacteriosis in D-galactose induced ICR mice. The control (CON) group, D-galactose model (DGM) group, and three groups (DG-PL, DG-PM, DG-PH) treated with phlorizin at 0.01%, 0.02%, and 0.04% (w/w) in diets were raised for 12 weeks. Supplementing with phlorizin reversed the loss of organ coefficient and body weight caused by D-galactose. The functional abilities of phlorizin on hippocampal-dependent spatial learning and memory, anti-oxidation, anti-inflammation were also observed. Meanwhile, phlorizin intervention upregulated the gene expression of Nrf2, GSH-PX, SOD1, decreased the gene expression of NF-κB, TLR-4, TNF-α, and IL-1ß in the hippocampus, while enhanced the gene expression of JAM-A, Mucin2, Occludin in the caecum. Furthermore, a neurotransmitter of acetylcholine (ACh) was enhanced, while acetylcholinesterase (AChE) activity was inhibited by phlorizin administration. Moreover, phlorizin administration increased short-chain fatty acids (SCFAs) content, and reduced lipopolysaccharides (LPS) levels, which may relate to the rebuilding of gut microbiota homeostasis. Treatment with phlorizin may be an effective intervention for alleviating cognitive decline and gut microbiota dysbiosis.


Asunto(s)
Galactosa , Microbioma Gastrointestinal , Acetilcolinesterasa/metabolismo , Animales , Colinérgicos , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Ratones , Ratones Endogámicos ICR , Florizina
4.
J Food Sci ; 87(6): 2463-2473, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35593264

RESUMEN

This research aims to prepare capsules emulsion using gallic acid (GA), dextran (DEX), bovine serum albumin (BSA), sodium alginate, and K-carrageenan (K-Car) as the biological delivery system of lycopene. The stability and bioaccessibility of lycopene were further improved through encapsulation of covalent complex of sodium alginate and K-Car. The molecular weight distribution and secondary structure of the conjugates were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared spectroscopy (FTIR). The storage stability of the emulsion stabilized by conjugates was measured with Turbiscan stability index (TSI) and fluctuation of the particle size. The TSI value of ternary conjugates was 18.7 (37℃) with particle sizes ranging from 208 to 319 nm. Then, the changes of three-dimensional reticulate structures and physical properties of sodium alginate-K were analyzed by scanning electron microscopy (SEM) and TPA. The thermal stability of the sodium alginate-K-Car composite systems was increased compared with sodium alginate. The bioaccessibility of lycopene was significantly improved under the dual embedding of BSA-DEX-GA conjugate emulsion and sodium alginate-K-Car composite systems.


Asunto(s)
Alginatos , Alginatos/química , Carragenina , Emulsiones/química , Cinética , Licopeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA