Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Front Microbiol ; 15: 1423245, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220043

RESUMEN

Hadal zones account for the deepest 45% of the oceanic depth range and play an important role in ocean biogeochemical cycles. As the least-explored aquatic habitat on earth, hadal ecosystems contain a vast diversity of so far uncultured microorganisms that cannot be grown on conventional laboratory culture media. Therefore, it has been difficult to gain a true understanding of the detailed metabolic characteristics and ecological functions of those difficult-to-culture microorganisms in hadal environments. In this study, a novel anaerobic bacterial strain, MT110T, was isolated from a hadal sediment-water interface sample of the Mariana Trench at 10,890 m. The level of 16S rRNA gene sequence similarity and percentage of conserved proteins between strain MT110T and the closest relatives, Anaerovorax odorimutans DSM 5092T (94.9 and 46.6%) and Aminipila butyrica DSM 103574T (94.4 and 46.7%), indicated that strain MT110T exhibits sufficient molecular differences for genus-level delineation. Phylogenetic analyses based on both 16S rRNA gene and genome sequences showed that strain MT110T formed an independent monophyletic branch within the family Anaerovoracaceae. The combined evidence showed that strain MT110T represents a novel species of a novel genus, proposed as Anoxybacterium hadale gen. nov. sp. nov. (type strain MT110T = KCTC 15922T = MCCC 1K04061T), which represents a previously uncultured lineage of the class Clostridia. Physiologically, no tested organic matter could be used as sole carbon source by strain MT110T. Genomic analysis showed that MT110T had the potential capacity of utilizing various carbon sources, but the pathways of sulfur reduction were largely incomplete. Our experiments further revealed that cysteine is one of the essential nutrients for the survival of strain MT110T, and cannot be replaced by sulfite, leucine, or taurine. This result suggests that organic sulfur compounds might play an important role in metabolism and growth of the family Anaerovoracaceae and could be one of the key factors affecting the cultivation of the uncultured microbes. Our study brings a new perspective to the role of dissolved organic sulfur in hadal ecosystems and also provides valuable information for optimizing the conditions of isolating related microbial taxa from the hadal environment.

2.
Food Chem ; 463(Pt 2): 141314, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39303476

RESUMEN

Oil adulteration is a global challenge in the production of high value-added natural oils. Raman spectroscopy combined with mathematical modeling can be used for adulteration detection of camellia oil (CAO). In this study, the advantages of traditional chemometrics and deep learning methods in identifying and quantifying adulterated CAO were compared from a statistical perspective, and no significant difference were founded in the identification of CAO at different levels of adulteration. The recognition rate of pure and adulterated CAO was 100 %, but there were misclassifications among different adulterated CAOs. The deep learning models outperformed chemometrics methods in quantitative prediction of adulteration level, with RP2, RMSEP, and RPD of the optimal ConvLSTM model achieved 0.999, 0.9 % and 31.5, respectively. The classifiers and models developed in this study based on deep learning have wide applicability and reliability, and provide a fast and accurate method for adulteration detection in CAO.

3.
Heliyon ; 10(15): e35178, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39157313

RESUMEN

Alcoholization is an integral part of tobacco processing and volatile compounds are key to assessing tobacco alcoholization. In this study, a total of 154 volatiles from nine categories were determined by gas chromatography-ion mobility spectrometry (GC-IMS) from four grades of tobacco, of which 114 were better identified. And then, the dynamic trends of volatile compounds with significant changes in tobacco alcoholization were analyzed. The relevant volatiles with the alcoholization indices (AIs) (R > 0.8) were screened as indicators of tobacco alcoholization. Cinnamyl isobutyrate, linolenic acid alcohol, propanoic acid-M and propanoic acid-D in all tobacco samples were highly correlated with the AIs and tended to increase during the alcoholization process. In addition, linear discriminant analysis (LDA), back-propagation neural network (BPNN) and random forest (RF) classifiers were constructed for discrimination of tobacco AIs. Three classifiers trained with a combination of 20 volatiles achieved satisfactory results with area under the curve (AUC) of 0.95 (LDA), 0.94 (BPNN) and 0.97 (RF), respectively. The RF classifier gained optimal accuracy of 100 % and 96.1 % for the training and test sets, respectively. The study confirmed that GC-IMS can be used to characterize the changes of volatile compounds in tobacco during alcoholization and combined with machine learning to achieve the determination of AIs. The results of the study may provide a new means for the tobacco industry to monitor the alcoholization process and determine the degree of alcoholization.

4.
Front Pharmacol ; 15: 1426049, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39211777

RESUMEN

Background: The preservation of the Lingguizhugan (LGZG) decoction and patient compliance issue often limit the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). Hence, herein, an LGZG oral solution was developed for alleviating MASLD. Additionally, the potential mechanisms underlying LGZG-mediated MASLD mitigation were explored. Methods: A MASLD mouse model was constructed using oleic and palmitic acid-induced LO2 cells and a high-fat diet. The apoptosis, lipid deposition, and mouse liver function were analyzed to assess the therapeutic effects of the LGZG oral solution on MASLD. Serum untargeted metabolomics, gut microbiota, bile acid (BA) metabolism, immunohistochemistry, and Western blotting analyses were performed to investigate the potential mechanism of action of LGZG oral solution on MASLD. Results: The LGZG oral solution ameliorated lipid deposition, oxidative stress, inflammation, and pathological damage. Serum untargeted metabolomics results revealed the LGZG-mediated regulation of the primary BA biosynthetic pathway. The 16S ribosomal RNA sequencing of the fecal microbiota showed that LGZG oral solution increased the relative abundance of the BA metabolism-associated Bacteroides, Akkermansia, and decreased that of Lactobacillus. Additionally, the BA metabolism analysis results revealed a decrease in the total taurine-α/ß-muricholic acid levels, whereas those of deoxycholic acid were increased, which activated specific receptors in the liver and ileum, including farnesoid X receptor (FXR) and takeda G protein-coupled receptor 5 (TGR5). Activation of FXR resulted in an increase in short heterodimer partner and subsequent inhibition of cholesterol 7α-hydroxylase and sterol regulatory element-binding protein-1c expression, and activation of FXR also results in the upregulation of fibroblast growth factor 15/19 expression, and consequently inhibition of cholesterol 7α-hydroxylase, which correlated with hepatic BA synthesis and lipogenesis, ultimately attenuating lipid deposition and bile acid stasis, thereby improving MASLD. Conclusion: Altogether, the findings of this study suggest that modulating microbiota-BA-FXR/TGR5 signaling pathway may be a potential mechanism of action of LGZG oral solution for the treatment of MASLD.

5.
Microorganisms ; 12(7)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39065077

RESUMEN

Lignocellulosic materials, made up of cellulose, hemicellulose, and lignin, constitute some of the most prevalent types of biopolymers in marine ecosystems. The degree to which marine microorganisms participate in the breakdown of lignin and their impact on the cycling of carbon in the oceans is not well understood. Strain LCG002, a novel Marivivens species isolated from Lu Chao Harbor's intertidal seawater, is distinguished by its ability to metabolize lignin and various aromatic compounds, including benzoate, 3-hydroxybenzoate, 4-hydroxybenzoate and phenylacetate. It also demonstrates a broad range of carbon source utilization, including carbohydrates, amino acids and carboxylates. Furthermore, it can oxidize inorganic gases, such as hydrogen and carbon monoxide, providing alternative energy sources in diverse marine environments. Its diversity of nitrogen metabolism is supported by nitrate/nitrite, urea, ammonium, putrescine transporters, as well as assimilatory nitrate reductase. For sulfur assimilation, it employs various pathways to utilize organic and inorganic substrates, including the SOX system and DSMP utilization. Overall, LCG002's metabolic versatility and genetic profile contribute to its ecological significance in marine environments, particularly in the degradation of lignocellulosic material and aromatic monomers.

6.
Int J Biol Macromol ; 274(Pt 1): 133286, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908635

RESUMEN

Thrombosis is associated with various fatal arteriovenous syndromes including ischemic stroke, myocardial infarction, and pulmonary embolism. However, current clinical thrombolytic treatment strategies still have many problems in targeting and safety to meet the thrombolytic therapy needs. Understanding the molecular mechanism that underlies thrombosis is critical in developing effective thrombolytic strategies. It is well known that platelets play a central role in thrombosis and the binding of fibrinogen to activated platelets is a common pathway in the process of clot formation. Based on this, a concept of biomimetic thrombus-targeted thrombolytic strategy inspired from fibrinogen binding to activated platelets in thrombosis was proposed, which could selectively bind to activated platelets at a thrombus site, thus enabling targeted delivery and local release of thrombolytic agents for effective thrombolysis. In this review, we first summarized the main characteristics of platelets and fibrinogen, and then introduced the classical molecular mechanisms of thrombosis, including platelet adhesion, platelet activation and platelet aggregation through the interactions of activated platelets with fibrinogen. In addition, we highlighted the recent advances in biomimetic thrombus-targeted thrombolytic strategies which inspired from fibrinogen binding to activated platelets in thrombosis. The possible future directions and perspectives in this emerging area are briefly discussed.


Asunto(s)
Biomimética , Plaquetas , Fibrinógeno , Activación Plaquetaria , Trombosis , Humanos , Fibrinógeno/metabolismo , Fibrinógeno/química , Trombosis/tratamiento farmacológico , Trombosis/metabolismo , Plaquetas/metabolismo , Plaquetas/efectos de los fármacos , Activación Plaquetaria/efectos de los fármacos , Terapia Trombolítica/métodos , Unión Proteica , Animales , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Fibrinolíticos/química
7.
Clinics (Sao Paulo) ; 79: 100404, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38936289

RESUMEN

OBJECTIVE: This study aimed to assess the effects of art therapy on anxiety among children and adolescents. METHODS: We searched several databases, including PubMed, Web of Science, Embase (via Ovid), PsychINFO (through EBSCO), and The Cochrane Library, comprising the Cochrane Database of Systematic Reviews and the Cochrane Central Register of Controlled Trials. Additionally, Chinese databases such as CNKI (China National Knowledge Infrastructure) and Wan Fang Data were explored from their beginnings until October 22, 2023. Studies that investigated the impact of art therapy on anxiety compared to a control group were included. The methodological quality of these randomized controlled trials was evaluated using the Cochrane Handbook's risk of bias instrument. RESULTS: Six studies involving 422 participants were included. The findings indicated a notable decrease in anxiety symptoms due to art therapy, with a Standardized Mean Difference (SMD) of -1.42, 95% Confidence Interval (95%CI -2.33, -0.51), p < 0.002. Notably, there was pronounced heterogeneity, as evidenced by Tau2 = 1.41, Chi2 = 101.19, df = 6, and I² = 94%, with Z = 3.06. CONCLUSION: Art therapy significantly improved the anxiety symptoms of children and adolescents, positioning it as an effective means of treating anxiety.


Asunto(s)
Ansiedad , Arteterapia , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Niño , Adolescente , Arteterapia/métodos , Ansiedad/terapia , Resultado del Tratamiento , Femenino , Masculino
8.
Int J Biol Macromol ; 276(Pt 1): 133432, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38936579

RESUMEN

Targeting delivery to the infection site and good affinity of vehicle to the bacterial are two main concerns in therapy of bacterial infection, and on-demand release of drug is another important issue. In this work, a liposome drug delivery system (HA/P/BAI-lip) incorporated with baicalein and modified by PHMG and HA was prepared. Several characterizations were conducted to examine the physical properties of liposome. Then it was applied to treatments of MRSA induced dorsal subcutaneous abscess model and the thigh muscle infected model. The presence of guanidine group in HA/P/BAI-lip rendered the liposome satisfactory bacterial target ability and good pH sensitive properties. The lipase secreted by bacterial could promote the hydrolysis of soybean phosphatidylcholine (SPC) in liposome. The modification of HA in HA/P/BAI-lip could lead the drug system to the exact infected site where CD44 was abundant because of inflammation. The low pH microenvironment characteristic of bacterial infection could induce the swelling of liposome following by degradation. Taken together, baicalein could be released selectively at the infected site to exert antibacterial capacity. HA/P/BAI-lip showed impressive antibacterial ability and dramatically decrease the bacterial burden of infection site and alleviate the infiltration of inflammatory cells, facilitating the recovery of infection.


Asunto(s)
Antibacterianos , Flavanonas , Ácido Hialurónico , Liposomas , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Liposomas/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Animales , Antibacterianos/farmacología , Antibacterianos/química , Infecciones Estafilocócicas/tratamiento farmacológico , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Flavanonas/farmacología , Flavanonas/química , Flavanonas/administración & dosificación , Ratones , Guanidinas/farmacología , Guanidinas/química , Concentración de Iones de Hidrógeno
9.
Int J Biol Macromol ; 268(Pt 1): 131742, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653430

RESUMEN

Thrombosis is the main cause of catastrophic events including ischemic stroke, myocardial infarction and pulmonary embolism. Acetylsalicylic acid (ASA) therapy offers a desirable approach to antithrombosis through a reduction of platelet reactivity. However, major bleeding complications, severe off-target side effects, and resistance or nonresponse to ASA greatly attenuate its clinical outcomes. Herein, we report a cationic fibrinogen-mimicking nanoparticle, denoted as ASA-RGD-CS@TPP, to achieve activated-platelet-targeted delivery and efficient release of ASA for safer and more effective antithrombotic therapy. This biomimetic antithrombotic system was prepared by one-pot ionic gelation between cationic arginine-glycine-aspartic acid (RGD)-grafted chitosan (RGD-CS) and anionic tripolyphosphate (TPP). The platform exhibited selective binding to activated platelets, leading to efficient release of ASA and subsequent attenuation of platelet functions, including the remarkable inhibition of platelet aggregation through a potent blockage of cyclooxygenase-1 (COX-1). After intravenous administration, ASA-RGD-CS@TPP displayed significantly prolonged circulation time and successful prevention of thrombosis in a mouse model. ASA-RGD-CS@TPP was demonstrated to significantly enhance antithrombotic therapy while showing minimal coagulation and hemorrhagic risks and excellent biocompatibility in vivo as compared to free ASA. This platform provides a simple, safe, effective and targeted strategy for the development of antithrombotic nanomedicines.


Asunto(s)
Plaquetas , Quitosano , Fibrinógeno , Fibrinolíticos , Nanopartículas , Quitosano/química , Animales , Nanopartículas/química , Plaquetas/metabolismo , Plaquetas/efectos de los fármacos , Ratones , Fibrinógeno/química , Fibrinógeno/metabolismo , Fibrinolíticos/farmacología , Fibrinolíticos/química , Trombosis/tratamiento farmacológico , Trombosis/prevención & control , Liberación de Fármacos , Activación Plaquetaria/efectos de los fármacos , Aspirina/farmacología , Aspirina/química , Agregación Plaquetaria/efectos de los fármacos , Humanos , Cationes/química , Masculino
10.
Food Chem ; 447: 138977, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38484541

RESUMEN

In this study, a novel luminescent carbon dot-rooted polysaccharide hydrogel (CDs@CCP hydrogel) was prepared by crosslinking cellulose, chitosan (CS), and polyvinyl alcohol (PVA) for simultaneous fluorescent sensing and adsorption of Cu2+. The crosslinking of these low-cost, polysaccharide polymers greatly enhance the mechanical strength of the composite hydrogel while making the polysaccharide-based adsorbent easy to reuse. This composite hydrogel exhibited an excellent adsorption capacity (124.7 mg∙g-1) for residual Cu2+ in water, as well as a sensitive and selective fluorescence response towards Cu2+ with a good linear relationship (R2 > 0.97) and a low detection limit (LOD) of 0.02 µM. The adsorption isotherms, adsorption kinetics, and thermodynamics studies were also conducted to investigate the adsorption mechanism. This composite hydrogel offers an efficient tool for simultaneous monitoring and treatment of Cu2+ from wastewater.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Hidrogeles , Carbono , Agua , Termodinámica , Adsorción , Cinética , Concentración de Iones de Hidrógeno
11.
Mikrochim Acta ; 191(4): 210, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38499672

RESUMEN

A ratiometric assay was designed to improve the sensitivity and reliability of electrochemical immunosensors for deoxynivalenol (DON) detection. The indicator signal caused by the Fe-based metal-organic framework nanocomposites loaded with gold nanoparticles and the internal reference signal from the [Fe(CN)6]3-/4- in the electrolyte came together at the immunosensor. When immunoreactivity occurred, the indicator signals decreased as the concentration of DON increased, while the internal reference signals increased slightly. The ratio of the indicator signal to the internal reference signal was available for reproducible and sensitive monitoring of DON. The prepared immunosensor showed excellent performance in the range from 0.5 to 5000 pg mL-1, and the detection limit was 0.0166 pg mL-1. The immunosensor achieved satisfactory detection toward DON in spiked and actual samples and has a promising application in the control of DON in grain products.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Tricotecenos , Técnicas Electroquímicas , Inmunoensayo , Oro , Reproducibilidad de los Resultados
12.
Food Chem ; 445: 138740, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38359569

RESUMEN

Microplastics released from plastic-based filter bags during tea brewing have attracted widespread attention. Laser confocal micro-Raman and direct classical least squares were used to identify and estimate micron-sized microplastics. Characteristic peaks from pyrolysis-gas chromatography/mass spectrometry of polyethylene terephthalate, polypropylene, and nylon 6 were selected to construct curves for quantification submicron-sized microplastics. The results showed that microplastics released from tea bags in the tea infusions ranged from 80 to 1288 pieces (micron-sized) and 0 to 63.755 µg (submicron-sized) per filter bag. Nylon 6 woven tea bags released far fewer microplastics than nonwoven filter bags. In particular, a simple strategy of three pre-washes with room temperature water significantly reduced microplastic residues with removal rates of 76 %-94 % (micron-sized) and 80 %-87 % (submicron-sized), respectively. The developed assay can be used for the quantitative evaluation of microplastics in tea infusions, and the pre-washing reduced the risk of human exposure to microplastics during tea consumption.


Asunto(s)
Caprolactama/análogos & derivados , Microplásticos , Contaminantes Químicos del Agua , Humanos , Plásticos/análisis , Polímeros , , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos
13.
Microorganisms ; 12(1)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38257972

RESUMEN

Lignocellulosic materials are composed of cellulose, hemicellulose and lignin and are one of the most abundant biopolymers in marine environments. The extent of the involvement of marine microorganisms in lignin degradation and their contribution to the oceanic carbon cycle remains elusive. In this study, a novel lignin-degrading bacterial strain, LCG003, was isolated from intertidal seawater in Lu Chao Harbor, East China Sea. Phylogenetically, strain LCG003 was affiliated with the genus Aliiglaciecola within the family Alteromonadaceae. Metabolically, strain LCG003 contains various extracellular (signal-fused) glycoside hydrolase genes and carbohydrate transporter genes and can grow with various carbohydrates as the sole carbon source, including glucose, fructose, sucrose, rhamnose, maltose, stachyose and cellulose. Moreover, strain LCG003 contains many genes of amino acid and oligopeptide transporters and extracellular peptidases and can grow with peptone as the sole carbon and nitrogen source, indicating a proteolytic lifestyle. Notably, strain LCG003 contains a gene of dyp-type peroxidase and strain-specific genes involved in the degradation of 4-hydroxy-benzoate and vanillate. We further confirmed that it can decolorize aniline blue and grow with lignin as the sole carbon source. Our results indicate that the Aliiglaciecola species can depolymerize and mineralize lignocellulosic materials and potentially play an important role in the marine carbon cycle.

14.
ACS Chem Neurosci ; 15(3): 593-607, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38214579

RESUMEN

Objective: Schisandrin B (Sch B) is a bioactive dibenzocyclooctadiene derizative that is prevalent in the fruit of Schisandra chinensis. Numerous studies have demonstrated that Sch B has a neuroprotective action by reducing oxidative stress and effectively preventing inflammation. It follows that Sch B is a potential treatment for Alzheimer's disease (AD). However, the drug's solubility, bioavailability, and lower permeability of the blood-brain barrier (BBB) can all reduce its efficacy during the therapy process. Therefore, this study constructed borneol-modified schisandrin B micelles (Bor-Sch B-Ms), which increase brain targeting by accurately delivering medications to the brain, effectively improving bioavailability. High therapeutic efficacy has been achieved at the pathological site. Methods: Bor-Sch B-Ms were prepared using the thin film dispersion approach in this article. On the one hand, to observe the targeting effect of borneol, we constructed a blood-brain barrier (BBB) model in vitro and studied the ability of micelles to cross the BBB. On the other hand, the distribution of micelle drugs and their related pharmacological effects on neuroinflammation, oxidative stress, and neuronal damage were studied through in vivo administration in mice. Results: In vitro studies have demonstrated that the drug uptake of bEnd.3 cells was increased by the borneol alteration on the surface of the nano micelles, implying that Bor-Sch B-Ms can promote the therapeutic effect of N2a cells. This could result in more medicines entering the BBB. In addition, in vivo studies revealed that the distribution and circulation time of medications in the brain tissue were significantly higher than those in other groups, making it more suitable for the treatment of central nervous system diseases. Conclusion: As a novel nanodrug delivery system, borneol modified schisandrin B micelles have promising research prospects in the treatment of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Barrera Hematoencefálica , Canfanos , Lignanos , Compuestos Policíclicos , Ratones , Animales , Micelas , Enfermedad de Alzheimer/tratamiento farmacológico , Células Endoteliales , Ciclooctanos
15.
Clinics ; 79: 100404, 2024. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1569146

RESUMEN

Abstract Objective: This study aimed to assess the effects of art therapy on anxiety among children and adolescents. Methods: We searched several databases, including PubMed, Web of Science, Embase (via Ovid), PsychINFO (through EBSCO), and The Cochrane Library, comprising the Cochrane Database of Systematic Reviews and the Cochrane Central Register of Controlled Trials. Additionally, Chinese databases such as CNKI (China National Knowledge Infrastructure) and Wan Fang Data were explored from their beginnings until October 22, 2023. Studies that investigated the impact of art therapy on anxiety compared to a control group were included. The methodological quality of these randomized controlled trials was evaluated using the Cochrane Handbook's risk of bias instrument. Results: Six studies involving 422 participants were included. The findings indicated a notable decrease in anxiety symptoms due to art therapy, with a Standardized Mean Difference (SMD) of -1.42, 95% Confidence Interval (95%CI -2.33, -0.51), p < 0.002. Notably, there was pronounced heterogeneity, as evidenced by Tau2 = 1.41, Chi2 = 101.19, df = 6, and I2 = 94%, with Z = 3.06. Conclusion: Art therapy significantly improved the anxiety symptoms of children and adolescents, positioning it as an effective means of treating anxiety.

16.
Nat Commun ; 14(1): 8492, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129391

RESUMEN

Coacervate droplets are promising protocell models because they sequester a wide range of guest molecules and may catalyze their conversion. However, it remains unclear how life's building blocks, including peptides, could be synthesized from primitive precursor molecules inside such protocells. Here, we develop a redox-active protocell model formed by phase separation of prebiotically relevant ferricyanide (Fe(CN)63-) molecules and cationic peptides. Their assembly into coacervates can be regulated by redox chemistry and the coacervates act as oxidizing hubs for sequestered metabolites, like NAD(P)H and gluthathione. Interestingly, the oxidizing potential of Fe(CN)63- inside coacervates can be harnessed to drive the formation of new amide bonds between prebiotically relevant amino acids and α-amidothioacids. Aminoacylation is enhanced in Fe(CN)63-/peptide coacervates and selective for amino acids that interact less strongly with the coacervates. We finally use Fe(CN)63--containing coacervates to spatially control assembly of fibrous networks inside and at the surface of coacervate protocells. These results provide an important step towards the prebiotically relevant integration of redox chemistry in primitive cell-like compartments.


Asunto(s)
Células Artificiales , Células Artificiales/química , Péptidos , Oxidación-Reducción , Aminoácidos , Amidas
17.
Commun Chem ; 6(1): 243, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935871

RESUMEN

Proteinous drugs are highly promising therapeutics to treat various diseases. However, they suffer from limited circulation times and severe off-target side effects. Inspired by active membraneless organelles capable of dynamic recruitment and releasing of specific proteins, here, we present the design of coacervates as therapeutic protocells, made from small metabolites (anionic molecules) and simple arginine-rich peptides (cationic motif) through liquid-liquid phase separation. These complex coacervates demonstrate that their assembly and disassembly can be regulated by redox chemistry, which helps to control the release of the therapeutic protein. A model proteinous drugs, tissue plasminogen activator (tPA), can rapidly compartmentalize inside the complex coacervates, and the coacervates formed from peptides conjugated with arginine-glycine-aspartic acid (RGD) motif (a fibrinogen-derived peptide sequence), show selective binding to the thrombus site and thus enhance on-target efficacy of tPA. Furthermore, the burst release of tPA can be controlled by the redox-induced dissolution of the coacervates. Our proof-of-principle complex coacervate system provides insights into the sequestration and release of proteinous drugs from advanced drug delivery systems and represents a step toward the construction of synthetic therapeutic protocells for biomedical applications.

18.
Sensors (Basel) ; 23(21)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37960503

RESUMEN

Chinese steamed bread (CSB) is a traditional food of the Chinese nation, and the preservation of its quality and freshness during storage is very important for its industrial production. Therefore, it is necessary to study the storage characteristics of CSB. Non-destructive CT technology was utilized to characterize and visualize the microstructure of CSB during storage, and also to further study of quality changes. Two-dimensional and three-dimensional images of CSBs were obtained through X-ray scanning and 3D reconstruction. Morphological parameters of the microstructure of CSBs were acquired based on CT image using image processing methods. Additionally, commonly used physicochemical indexes (hardness, flexibility, moisture content) for the quality evaluation of CSBs were analyzed. Moreover, a correlation analysis was conducted based on the three-dimensional morphological parameters and physicochemical indexes of CSBs. The results showed that three-dimensional morphological parameters of CSBs were negatively correlated with moisture content (Pearson correlation coefficient range-0.86~-0.97) and positively correlated with hardness (Pearson correlation coefficient range-0.87~0.99). The results indicate the inspiring capability of CT in the storage quality evaluation of CSB, providing a potential analytical method for the detection of quality and freshness in the industrial production of CSB.


Asunto(s)
Pan , Almacenamiento de Alimentos , Pan/análisis , Vapor , Tomografía , Rayos X
19.
J Biol Chem ; 299(12): 105442, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37949222

RESUMEN

Adenine base editors (ABEs) are genome-editing tools that have been harnessed to introduce precise A•T to G•C conversion. The discovery of split genes revealed that all introns contain two highly conserved dinucleotides, canonical "AG" (acceptor) and "GT" (donor) splice sites. ABE can directly edit splice acceptor sites of the adenine (A) base, leading to aberrant gene splicing, which may be further adopted to remodel splicing. However, spliced isoforms triggered with ABE have not been well explored. To address it, we initially generated a cell line harboring C-terminal enhanced GFP (eGFP)-tagged ß-actin (ACTB), in which the eGFP signal can track endogenous ß-actin expression. Expectedly, after the editing of splice acceptor sites, we observed a dramatical decrease in the percentage of eGFP-positive cells and generation of splicing products with the noncanonical splice site. Furthermore, we manipulated Peroxidasin in mouse embryos with ABE, in which a noncanonical acceptor was activated to remodel splicing, successfully generating a mouse disease model of anophthalmia and severely malformed microphthalmia. Collectively, we demonstrate that ABE-mediated splicing remodeling can activate a noncanonical acceptor to manipulate human and mouse genomes, which will facilitate the investigation of basic and translational medicine studies.


Asunto(s)
Adenina , Sitios de Empalme de ARN , Animales , Humanos , Ratones , Actinas/genética , Secuencia de Bases , Edición Génica , Intrones , Empalme del ARN , Células HEK293
20.
Neurochem Int ; 171: 105637, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37923298

RESUMEN

Prohibitin (PHB) is a mitochondrial inner membrane protein with neuroprotective, antioxidant, and apoptosis-reducing effects. This study aimed to explore the role of PHB in pathological symptoms, behavioral deficits, and cognitive impairment in a collagenase-IV-induced intracerebral hemorrhage (ICH) murine model. In this study, mice that received collagenase IV injection were pretreated with PHB or saline 21 days prior to modeling. The role of PHB in memory and learning ability was monitored using the Morris water maze, Y-maze, and rotarod, social, startle, and nest-building tests. The effect of PHB on depression-like symptoms was examined using the forced swimming, tail suspension, and sucrose preference tests. Subsequently, mouse samples were analyzed using immunohistochemistry, western blotting, Perls staining, Nissl staining, and gene sequencing. Results showed that collagenase IV significantly induced behavioral deficits, brain edema, cognitive impairment, and depressive symptoms. PHB overexpression effectively alleviated memory, learning, and motor deficits in mice with ICH. PHB markedly inhibited the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling-positive cells and protein levels of ionized calcium-binding adapter molecule 1, glial fibrillary acidic protein, and interleukin-1ß in the perihematomal region of ICH mice. PHB overexpression also remarkably promoted production of neurologin1 (NLGL1), and upregulated levels of Ca2+-calmodulin-dependent kinase II (CaMKII) and collapsin response mediator protein-1 (CRMP1) proteins. In conclusion, PHB overexpression can effectively alleviate the neurological deficits and neurodegeneration around the hematoma region. This may play a protective role by upregulating the expression of NLGL1 and promoting expression of CaMKII and CRMP1.


Asunto(s)
Prohibitinas , Animales , Ratones , Ratas , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Hemorragia Cerebral/metabolismo , Colagenasas , Proteínas Mitocondriales/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Prohibitinas/administración & dosificación , Ratas Sprague-Dawley , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA