Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Front Public Health ; 12: 1348743, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39056080

RESUMEN

Background/objective: While Physical Literacy has been highlighted as a determinant in health in recent study, there is a dearth of studies examining its effect on physical health, and there is a little in the way of empirical data linking Physical Literacy to health outcomes. Accordingly, further empirical research is needed to clarify the mechanisms by which Physical Literacy affects physical health. The purpose of this study was to verify the role of medical students' Physical Literacy on Health-related quality of life as well as to explore the chain mediating role of Physical Activity and Subjective Well-being in it. Methods: This study utilized a cross-sectional study design. The Physical Literacy, Health-related Quality of Life, Physical Activity ratings, and Subjective Well-being of students at Shanxi Medical University were all measured using an online survey administered in September 2023. A total of 1968 valid questionnaires were returned. First, descriptive statistics and correlation analysis were performed using SPSS software. Second, PROCESS was used to test the mediating role. Finally, we used structural equation modeling (Amos) to test the model fit. Results: There is a significant correlation between all variables. After mediation effects analysis, we found that there were three indirect pathways of physical literacy on health-related quality of life: a single mediating effect of physical activity, a single mediating effect of subjective well-being, and a chained mediating effect of physical activity-subjective well-being. Conclusion: The mediating role of physical activity and subjective well-being on the relationship between physical literacy and health-related quality of life has been confirmed. Our research results support the integration of physical literacy into physical education teaching and the modification of curriculum content by physical education teachers as part of efforts to enhance students' physical activity levels, subjective well-being levels, and overall health. This study provides a new perspective for intervention in improving the health of medical students.


Asunto(s)
Ejercicio Físico , Alfabetización en Salud , Calidad de Vida , Estudiantes de Medicina , Humanos , Estudiantes de Medicina/psicología , Estudiantes de Medicina/estadística & datos numéricos , Masculino , Estudios Transversales , Femenino , Ejercicio Físico/psicología , China , Encuestas y Cuestionarios , Alfabetización en Salud/estadística & datos numéricos , Adulto Joven , Adulto , Estado de Salud , Pueblos del Este de Asia
2.
Transl Oncol ; 46: 101996, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38795560

RESUMEN

Recent studies indicate that circular RNAs (circRNAs) are crucial in the progression of colorectal cancer (CRC). Eukaryotic translation initiation factor 4A3 (EIF4A3) has been identified as a promoter of circRNA production. The biological roles and mechanisms of EIF4A3-derived circRNA (circEIF4A3) in CRC cell autophagy remain poorly understood. This study explores the effects of circEIF4A3 on CRC cell growth and autophagy, aiming to elucidate the underlying molecular mechanisms. We discovered that EIF4A3 and circEIF4A3 synergistically enhance CRC cell growth. CircEIF4A3 sequesters miR-3126-5p, consequently upregulating EIF4A3. Further, circEIF4A3 increases EIF4A3 expression, which promotes autophagy by stabilizing ATG5 mRNA and enhances ATG7 protein stability through the stabilization of USP14 mRNA, a deubiquitinating enzyme. Upregulation of ATG5 and ATG7 counteracts the growth-inhibitory effects of EIF4A3 knockdown on CRC cells. Moreover, our findings demonstrate that EIF4A3 induces the formation of circEIF4A3 in CRC cells. In conclusion, a positive feedback loop between circEIF4A3 and EIF4A3 supports CRC cell growth by facilitating autophagy.

3.
Br J Pharmacol ; 181(17): 3039-3063, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38679474

RESUMEN

BACKGROUND AND PURPOSE: Amyloid-ß (Aß) peptide is one of the more important pathological markers in Alzheimer's disease (AD). The development of AD impairs autophagy, which results in an imbalanced clearance of Aß. Our previous research demonstrated that AdipoRon, an agonist of adiponectin receptors, decreased the deposition of Aß and enhanced cognitive function in AD. However, the exact mechanisms by which AdipoRon affects Aß clearance remain unclear. EXPERIMENTAL APPROACH: We studied how AdipoRon affects autophagy in HT22 cells and APP/PS1 transgenic mice. We also investigated the signalling pathway involved and used pharmacological inhibitors to examine the role of autophagy in this process. KEY RESULTS: AdipoRon promotes Aß clearance by activating neuronal autophagy in the APP/PS1 transgenic mice. Interestingly, we found that AdipoRon induces the nuclear translocation of GAPDH, where it interacts with the SIRT1/DBC1 complex. This interaction then leads to the release of DBC1 and the activation of SIRT1, which in turn activates autophagy. Importantly, we found that inhibiting either GAPDH or SIRT1 to suppress the activity of SIRT1 counteracts the elevated autophagy and decreased Aß deposition caused by AdipoRon. This suggests that SIRT1 plays a critical role in the effect of AdipoRon on autophagic induction in AD. CONCLUSION AND IMPLICATIONS: AdipoRon promotes the clearance of Aß by enhancing autophagy through the AdipoR1/AMPK-dependent nuclear translocation of GAPDH and subsequent activation of SIRT1. This novel molecular pathway sheds light on the modulation of autophagy in AD and may lead to the development of new therapeutic strategies targeting this pathway.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Autofagia , Ratones Transgénicos , Sirtuina 1 , Sirtuina 1/metabolismo , Sirtuina 1/antagonistas & inhibidores , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Animales , Autofagia/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Ratones , Piperidinas/farmacología , Humanos , Línea Celular , Ratones Endogámicos C57BL , Receptores de Adiponectina/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Masculino
4.
Sci Rep ; 14(1): 1846, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253578

RESUMEN

To investigate the sealing capability of mudstone caprock during the evolution of organic matter (OM)-rich mudstone, a series of hydrous pyrolysis experiments were first conducted to examine the impact of hydrocarbon generation. The pore type, pore structure, porosity, and gas breakthrough pressure of pyrolytic residual samples were analyzed by field emission scanning electron microscopy, low pressure nitrogen adsorption measurements, porosimetry, and gas breakout core experiments. To model the environment at different depths, these six experiments on hydrous pyrolysis were performed at different temperatures, lithostatic pressures, and hydrodynamic pressures, while other experimental factors such as the original sample, heating time, and rate were kept constant. The results showed that during the thermal evolution process, hydrocarbons were generated from OM in mudstone, resulting in the formation of pores within the OM. Organic acids produced by hydrocarbon generation effectively dissolved minerals, leading to the creation of numerous dissolution pores. Changes in pore type led to changes in pore structure and porosity. The volume of micropores and macropores showed an increasing trend before reaching a Ro value of 1.41%. However, after passing this threshold, they began to decrease. The volume of mesopores showed a decreasing trend before reaching a Ro value of 1.32%. After 1.32%, they began to increase. The porosity was mainly affected by the pore volumes of the mesopores and macropores. The porosity exhibited two peaks: the first occurred at a Ro value of 0.72%, with a porosity level of 4.6%. The second occurred at a Ro value of 1.41% and a porosity level of 10.3%. The breakthrough pressure was a comprehensive reflection of these influences, and its trend exhibited a negative correlation with porosity (R2 = 0.886). For two high values of porosity, the breakthrough pressure corresponded to two low values. Smaller values of the breakthrough pressure indicated a poorer sealing capability of the mudstone caprock. Overall, hydrocarbon generation in the mudstone affected the sealing capability. The mudstone in the studied area exhibited good sealing at Ro below 1.32%. However, once above the 1.32% threshold, the fluctuations of the breakthrough pressure values exhibited considerable variability, requiring a comprehensive evaluation to assess its sealing capability.

5.
EMBO Rep ; 24(12): e57176, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37870400

RESUMEN

Chronic stress induces depression and insulin resistance, between which there is a bidirectional relationship. However, the mechanisms underlying this comorbidity remain unclear. White adipose tissue (WAT), innervated by sympathetic nerves, serves as a central node in the interorgan crosstalk through adipokines. Abnormal secretion of adipokines is involved in mood disorders and metabolic morbidities. We describe here a brain-sympathetic nerve-adipose circuit originating in the hypothalamic paraventricular nucleus (PVN) with a role in depression and insulin resistance induced by chronic stress. PVN neurons are labelled after inoculation of pseudorabies virus (PRV) into WAT and are activated under restraint stress. Chemogenetic manipulations suggest a role for the PVN in depression and insulin resistance. Chronic stress increases the sympathetic innervation of WAT and downregulates several antidepressant and insulin-sensitizing adipokines, including leptin, adiponectin, Angptl4 and Sfrp5. Chronic activation of the PVN has similar effects. ß-adrenergic receptors translate sympathetic tone into an adipose response, inducing downregulation of those adipokines and depressive-like behaviours and insulin resistance. We finally show that AP-1 has a role in the regulation of adipokine expression under chronic stress.


Asunto(s)
Resistencia a la Insulina , Núcleo Hipotalámico Paraventricular , Ratas , Animales , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas Sprague-Dawley , Depresión , Obesidad/metabolismo , Adipoquinas/metabolismo , Adipoquinas/farmacología
6.
Transl Psychiatry ; 13(1): 206, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322045

RESUMEN

The dentate gyrus (DG) of the hippocampus encodes contextual information associated with fear, and cell activity in the DG is required for acquisition and extinction of contextual fear. However, the underlying molecular mechanisms are not fully understood. Here we show that mice deficient for peroxisome proliferator-activated receptor-α (PPARα) exhibited a slower rate of contextual fear extinction. Furthermore, selective deletion of PPARα in the DG attenuated, while activation of PPARα in the DG by local infusion of aspirin facilitated extinction of contextual fear. The intrinsic excitability of DG granule neurons was reduced by PPARα deficiency but increased by activation of PPARα with aspirin. Using RNA-Seq transcriptome we found that the transcription level of neuropeptide S receptor 1 (Npsr1) was tightly correlated with PPARα activation. Our results provide evidence that PPARα plays an important role in regulating DG neuronal excitability and contextual fear extinction.


Asunto(s)
Giro Dentado , Miedo , Animales , Ratones , Extinción Psicológica/fisiología , Miedo/fisiología , Neuronas/fisiología , PPAR alfa/genética
7.
Ann Clin Transl Neurol ; 10(6): 865-878, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37150844

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most aggressive brain tumor. Reportedly, circular RNAs (circRNAs) participate in regulation of the development and progression of diverse cancers, including GBM. METHODS: Dysregulated circRNAs in GBM tissues were screened out from GEO database. The expression of candidate circRNAs in GBM cells was measured by qRT-PCR. Loss-of function assays, including colony formation assay, EdU assay, TUNEL assay, and flow cytometry analysis were conducted to determine the effects of circ-AHCY knockdown on GBM cell proliferation and apoptosis. Animal study was further used to prove the inhibitory effect of circ-AHCY silencing on GMB cell growth. Mechanistic experiments like luciferase reporter, RNA pull-down and RNA-binding protein immunoprecipitation (RIP) assays were performed to unveil the downstream molecular mechanism of circ-AHCY. Nanosight Nanoparticle Tracking Analysis (NTA) and PKH67 staining were applied to identify the existence of exosomes. RESULTS: Circ-AHCY was confirmed to be highly expressed in GBM cells. Circ-AHCY silencing suppressed GBM cell proliferation both in vitro and in vivo. Mechanistically, circ-AHCY activates Wnt/ß-catenin signaling pathway by sequestering miR-1294 to up-regulate MYC which activated CTNNB1 transcription. It was also found that circ-AHCY recruited EIF4A3 to stabilize TCF4 mRNA. Enhanced levels of TCF4 and ß-catenin contributed to the stability of TCF4/ß-catenin complex. In turn, TCF4/ß-catenin complex strengthened the transcriptional activity of circ-AHCY. Exosomal circ-AHCY derived from GBM cells induced abnormal proliferation of normal human astrocytes (NHAs). CONCLUSION: Exosomal circ-AHCY forms a positive feedback loop with Wnt/ß-catenin signaling pathway to promote GBM cell growth.


Asunto(s)
Glioblastoma , MicroARNs , Animales , Humanos , Glioblastoma/genética , Vía de Señalización Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Proliferación Celular/genética , Factor 4A Eucariótico de Iniciación/metabolismo , ARN Helicasas DEAD-box/metabolismo
8.
Mol Psychiatry ; 28(3): 1365-1382, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36473997

RESUMEN

Chronic stress exposure induces maladaptive behavioral responses and increases susceptibility to neuropsychiatric conditions. However, specific neuronal populations and circuits that are highly sensitive to stress and trigger maladaptive behavioral responses remain to be identified. Here we investigate the patterns of spontaneous activity of proopiomelanocortin (POMC) neurons in the arcuate nucleus (ARC) of the hypothalamus following exposure to chronic unpredictable stress (CUS) for 10 days, a stress paradigm used to induce behavioral deficits such as anhedonia and behavioral despair [1, 2]. CUS exposure increased spontaneous firing of POMC neurons in both male and female mice, attributable to reduced GABA-mediated synaptic inhibition and increased intrinsic neuronal excitability. While acute activation of POMC neurons failed to induce behavioral changes in non-stressed mice of both sexes, subacute (3 days) and chronic (10 days) repeated activation of POMC neurons was sufficient to induce anhedonia and behavioral despair in males but not females under non-stress conditions. Acute activation of POMC neurons promoted susceptibility to subthreshold unpredictable stress in both male and female mice. Conversely, acute inhibition of POMC neurons was sufficient to reverse CUS-induced anhedonia and behavioral despair in both sexes. Collectively, these results indicate that chronic stress induces both synaptic and intrinsic plasticity of POMC neurons, leading to neuronal hyperactivity. Our findings suggest that POMC neuron dysfunction drives chronic stress-related behavioral deficits.


Asunto(s)
Anhedonia , Núcleo Arqueado del Hipotálamo , Depresión , Neuronas , Proopiomelanocortina , Estrés Psicológico , Animales , Femenino , Masculino , Ratones , Enfermedad Aguda , Anhedonia/fisiología , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/fisiopatología , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Enfermedad Crónica , Excitabilidad Cortical/fisiología , Depresión/metabolismo , Depresión/fisiopatología , Modelos Animales de Enfermedad , Trastornos Mentales/metabolismo , Trastornos Mentales/fisiopatología , Ratones Endogámicos C57BL , Fenómenos Fisiológicos del Sistema Nervioso , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Proopiomelanocortina/biosíntesis , Proopiomelanocortina/metabolismo , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Sinapsis/metabolismo , Sinapsis/fisiología
9.
Artículo en Inglés | MEDLINE | ID: mdl-36374898

RESUMEN

Traditional convolutional neural networks (CNNs) share their kernels among all positions of the input, which may constrain the representation ability in feature extraction. Dynamic convolution proposes to generate different kernels for different inputs to improve the model capacity. However, the total parameters of the dynamic network can be significantly huge. In this article, we propose a lightweight dynamic convolution method to strengthen traditional CNNs with an affordable increase of total parameters and multiply-adds. Instead of generating the whole kernels directly or combining several static kernels, we choose to "look inside", learning the attention within convolutional kernels. An extra network is used to adjust the weights of kernels for every feature aggregation operation. By combining local and global contexts, the proposed approach can capture the variance among different samples, the variance in different positions of the feature maps, and the variance in different positions inside sliding windows. With a minor increase in the number of model parameters, remarkable improvements in image classification on CIFAR and ImageNet with multiple backbones have been obtained. Experiments on object detection also verify the effectiveness of the proposed method.

10.
Medicine (Baltimore) ; 101(36): e30239, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36086787

RESUMEN

RATIONALE: Vulvar melanoma is a rare and aggressive tumor with a high risk of local recurrence and distant metastasis. The prognosis is poor with a 5-year overall survival rate of only 46.6%. Management of vulvar melanoma remains a clinical challenge. Recent evidences have shown that immune checkpoint inhibitors are effective in the treatment of vulvar melanoma. PATIENT CONCERNS AND DIAGNOSES: A 63-year-old woman with vulvar malignant melanoma suffered inguinal lymph node metastasis after vulvectomy and chemotherapy. She underwent inguinal lymph node dissection and inguinal radiotherapy. The tumor progressed again and she received immunotherapy. INTERVENTIONS: The tumor progressed again, and she was admitted to our hospital and received toripalimab combined with apatinib and abraxane. OUTCOMES: After 6 cycles of immunotherapy, the efficacy achieved partial remission. And with toripalimab as maintenance therapy, the patient achieved durable antitumor efficacy and good safety. LESSONS: In this rare case, the patient with metastatic vulvar malignant melanoma had durable antitumor efficacy and good safety when receiving toripalimab.


Asunto(s)
Melanoma , Neoplasias Primarias Secundarias , Neoplasias Cutáneas , Neoplasias de la Vulva , Anticuerpos Monoclonales Humanizados/uso terapéutico , Femenino , Humanos , Melanoma/patología , Persona de Mediana Edad , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias de la Vulva/patología
11.
Int Immunopharmacol ; 110: 109045, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35978505

RESUMEN

Adult neurogenesis in hippocampus dentate gyrus (DG) is associated with numerous neurodegenerative diseases such as aging and Alzheimer's disease (AD). Overactivation of microglia induced neuroinflammation is well acknowledged to contribute to the impaired neurogenesis in pathologies of these diseases and then leading to cognitive dysfunction. Histamine H3 receptor (H3R) is a presynaptic autoreceptor regulating histamine release via negative feedback way. Recently, studies show that H3R are highly expressed not only in neurons but also in microglia to modulate inflammatory response. However, whether inhibition of H3R is responsible for the neurogenesis and cognition in chronic neuroinflammation induced injury and the mechanism remains unclear. In this study, we found that inhibition of H3R by thioperamide reduced the microglia activity and promoted a phenotypical switch from pro-inflammatory M1 to anti-inflammatory M2 in microglia, and ultimately attenuated lipopolysaccharide (LPS) induced neuroinflammation in mice. Additionally, thioperamide rescued the neuroinflammation induced impairments of neurogenesis and cognitive function. Mechanically, the neuroprotection of thioperamide was involved in histamine dependent H2 receptor (H2R) activation, because cimetidine, an H2R antagonist but not pyrilamine, an H1R antagonist reversed the above effects of thioperamide. Moreover, thioperamide activated the H2R downstream phosphorylated protein kinase A (PKA)/cyclic AMP response element-binding protein (CREB) pathway but inhibited nuclear factor kappa-B (NF-κB) signaling. Activation of CREB by thioperamide promoted interaction of CREB-CREB Binding Protein (CBP) to increase anti-inflammatory cytokines (Interleukin-4 and Interleukin-10) and brain-derived neurotrophic factor (BDNF) release but inhibited NF-κB-CBP interaction to decrease pro-inflammatory cytokines (Interleukin-1ß, Interleukin-6 and Tumor necrosis factor α) release. H89, an inhibitor of PKA/CREB signaling, abolished effects of thioperamide on neuroinflammation and neurogenesis. Taken together, these results suggested under LPS induced neuroinflammation, the H3R antagonist thioperamide inhibited microglia activity and inflammatory response, and ameliorated impairment of neurogenesis and cognitive dysfunction via enhancing histamine release. Histamine activated H2R and reinforced CREB-CBP interaction but weakened NF-κB-CBP interaction to exert anti-inflammatory effects. This study uncovered a novel histamine dependent mechanism behind the therapeutic effect of thioperamide on neuroinflammation.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Animales , Antiinflamatorios/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Citocinas/metabolismo , Hipocampo , Histamina/metabolismo , Lipopolisacáridos/farmacología , Ratones , Microglía , FN-kappa B/metabolismo , Neurogénesis , Enfermedades Neuroinflamatorias , Receptores Histamínicos H2/metabolismo
12.
Materials (Basel) ; 15(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35806538

RESUMEN

The aero ball joint is pivotal in aircraft duct systems due to its favorable properties, including displacement compensation and flexibility. In the stress assessment of air ducts, ball joints are usually simplified by using "Joints" connections to reduce the convergence problems caused by non-linearity, which requires a high degree of accuracy in the characteristic parameters of the ball joint. Accordingly, this paper builds a high temperature and pressure fatigue test platform to investigate the bending characteristics of the ball joint at different temperatures and pressures and points out the limitations of the current method. Then, a method combining finite element analysis (FEA) and the BP neural network is proposed to obtain the characteristic parameters of the ball joint. The results showed that the bending process of the ball joint tended to have two typically different stiffness properties, which were high rigidity and low rigidity. The bending characteristics were strongly influenced by pressure, but less influenced by temperature. The existing test platform increased the force reaction at the contact areas of the ball joint, resulting in errors in the measurement of characteristic parameters. The BP neural network prediction method could effectively alter the ball joint properties and reduce errors.

13.
Life (Basel) ; 12(7)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35888046

RESUMEN

Complete ammonia oxidizers (comammox), which directly oxidize ammonia to nitrate, were recently identified and found to be ubiquitous in artificial systems. Research on the abundance and niche differentiation of comammox in the sludges of wastewater treatment plants (WWTPs) would be useful for improving the nitrogen removal efficiency of WWTPs. Here, we investigated the relative abundance and diversity of comammox in fifteen sludges of five WWTPs that use the anaerobic−anoxic−aerobic process in Jinan, China, via quantitative polymerase chain reaction and high-throughput sequencing of the 16S rRNA gene and ammonia monooxygenase gene. In the activated sludges in the WWTPs, comammox clade A.1 was widely distributed and mostly comprised Candidatus Nitrospira nitrosa-like comammox (>98% of all comammox). The proportion of this clade was negatively correlated (p < 0.01) with the dissolved oxygen (DO) level (1.7−8 mg/L), and slight pH changes (7.20−7.70) affected the structure of the comammox populations. Nitrospira lineage I frequently coexisted with Nitrosomonas, which generally had a significant positive correlation (p < 0.05) with the DO level. Our study provided an insight into the structure of comammox and other nitrifier populations in WWTPs that use the anaerobic−anoxic−aerobic process, broadening the knowledge about the effects of DO on comammox and other nitrifiers.

14.
Exp Neurol ; 347: 113870, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34563511

RESUMEN

Alzheimer's disease (AD) is an age-related neurodegenerative disease, which characterized by deposition of amyloid-ß (Aß) plaques, neurofibrillary tangles, neuronal loss, and accompanied by neuroinflammation. Neuroinflammatory processes are well acknowledged to contribute to the progression of AD pathology. Histamine H3 receptor (H3R) is a presynaptic autoreceptor regulating histamine release via negative feedback way. Recently, studies show that H3R are highly expressed not only in neurons but also in microglia and astrocytes. H3R antagonist has been reported to have anti-inflammatory efficacy. However, whether inhibition of H3R is responsible for the anti-neuroinflammation in glial cells and neuroprotection on APPswe, PSEN1dE9 (APP/PS1 Tg) mice remain unclear. In this study, we found that inhibition of H3R by thioperamide reduced the gliosis and induced a phenotypical switch from A1 to A2 in astrocytes, and ultimately attenuated neuroinflammation in APP/PS1 Tg mice. Additionally, thioperamide rescued the decrease of cyclic AMP response element-binding protein (CREB) phosphorylation and suppressed the phosphorylated P65 nuclear factor kappa B (p-P65 NF-κB) in APP/PS1 Tg mice. H89, an inhibitor of CREB signaling, abolished these effects of thioperamide to suppress gliosis and proinflammatory cytokine release. Lastly, thioperamide alleviated the deposition of amyloid-ß (Aß) and cognitive dysfunction in APP/PS1 mice, which were both reversed by administration of H89. Taken together, these results suggested the H3R antagonist thioperamide improved cognitive impairment in APP/PS1 Tg mice via modulation of the CREB-mediated gliosis and inflammation inhibiting, which contributed to Aß clearance. This study uncovered a novel mechanism involving inflammatory regulating behind the therapeutic effect of thioperamide in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Disfunción Cognitiva/patología , Gliosis/patología , Enfermedades Neuroinflamatorias/patología , Fármacos Neuroprotectores/farmacología , Piperidinas/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Masculino , Ratones , Ratones Transgénicos
15.
Neurobiol Stress ; 15: 100370, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34381852

RESUMEN

Both genetic predisposition and life events, particularly life stress, are thought to increase the risk for depression. Reward sensitivity appears to be attenuated in major depressive disorder (MDD), suggesting deficits in reward processing in these patients. We identified the VTA-BLA-NAc circuit as being activated by sex reward, and the VTA neurons that respond to sex reward are mostly dopaminergic. Acute or chronic reactivation of this circuit ameliorates the reward insensitivity induced by chronic restraint stress. Our histological and electrophysiological results show that the VTA neuron subpopulation responding to restraint stress, predominantly GABAergic neurons, inhibits the responsiveness of VTA dopaminergic neurons to reward stimuli, which is probably the mechanism by which stress modulates the reward processing neural circuits and subsequently disrupts reward-related behaviours. Furthermore, we found that the VTA-BLA-NAc circuit is a positive feedback loop. Blocking the projections from the BLA to the NAc associated with sex reward increases the excitability of VTA GABAergic neurons and decreases the excitability of VTA dopaminergic neurons, while activating this pathway decreases the excitability of VTA GABAergic neurons and increases the excitability of VTA dopaminergic neurons, which may be the cellular mechanism by which the VTA-BLA-NAc circuit associated with sex reward ameliorates the attenuated reward sensitivity induced by chronic stress.

16.
Aging Cell ; 20(6): e13387, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34053165

RESUMEN

A substantial percentage of late-life depression patients also have an cognitive impairment, which severely affects the life quality, while the co-occurring mechanisms are still unclear. Physical exercise can ameliorate both depressive behaviors and cognitive dysfunction, but the molecular mechanisms underlying its beneficial effects remain elusive. In this study, we uncover a novel adipose tissue to hippocampus crosstalk mediated by Adiponectin-Notch pathway, with an impact on hippocampal neurogenesis and cognitive function. Adiponectin, an adipocyte-derived hormone, could activate Notch signaling in the hippocampus through upregulating ADAM10 and Notch1, two key molecules in the Notch signaling. Chronic stress inhibits the Adiponectin-Notch pathway and induces impaired hippocampal neurogenesis and cognitive dysfunction, which can be rescued by AdipoRon and running. Inhibition Notch signaling by DAPT mimics the adverse effects of chronic stress on hippocampal neurogenesis and cognitive function. Adiponectin knockout mice display depressive-like behaviors, associated with inhibited Notch signaling, impaired hippocampal neurogenesis and cognitive dysfunction. Physical exercise could activate Adiponectin-Notch pathway, and improve hippocampal neurogenesis and cognitive function, while deleting adiponectin gene or inhibiting Notch signaling blocks its beneficial effects. Together, our data not only suggest that Adiponectin-Notch pathway is involved in the pathogenesis of cognitive dysfunction associated with depression, but also contributes to the therapeutic effect of physical exercise. This work helps to decipher the etiology of cognitive impairment associated with depression and hence will provide a potential innovative therapeutic target for these patients.


Asunto(s)
Adiponectina/efectos adversos , Disfunción Cognitiva/fisiopatología , Depresión/fisiopatología , Ejercicio Físico/fisiología , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones
17.
Thorac Cancer ; 12(11): 1780-1783, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33949137

RESUMEN

Immune checkpoint inhibitors (ICIs) have achieved prominent efficacy in the treatment of numerous cancers, which is the most significant breakthrough in cancer therapy in recent years. However, ICIs are associated with a series of immune-related adverse events (irAEs). Pneumonitis is an uncommon but potentially fatal irAE. In the case reported here, a patient with advanced small cell lung cancer (SCLC) had rapid progression of disease following chemotherapy and received ICIs. The patient experienced severe immune-related hyperthermia followed by immune-related pneumonitis. Fortunately, a good clinical response was achieved after the patient received corticosteroids and tocilizumab.


Asunto(s)
Anticuerpos Monoclonales Humanizados/efectos adversos , Hipertermia/etiología , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Neoplasias Pulmonares/complicaciones , Neumonía/inducido químicamente , Carcinoma Pulmonar de Células Pequeñas/complicaciones , Adulto , Humanos , Hipertermia/patología , Neoplasias Pulmonares/tratamiento farmacológico , Masculino , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico
18.
Bioorg Med Chem Lett ; 43: 128089, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33964438

RESUMEN

Several boron-containing small molecules have been approved by the US FDA to treat human diseases. We explored potential applications of boron-containing compounds in modern agriculture by pursuing multiple research and development programs. Here, we report a novel series of multi-substitution benzoxaboroles (1-36), a compound class that we recently reported as targeting geranylgeranyl transferase I (GGTase I) and thereby inhibiting protein prenylation (Kim et al., 2020). These compounds were designed, synthesized, and tested against the agriculturally important fungal pathogens Mycosphaerella fijiensis and Colletotrichum sublineolum in a structure-activity relationship (SAR) study. Compounds 13, 28, 30, 34 and 36 were identified as active leads with excellent antifungal MIC95 values in the range of 1.56-3.13 ppm against M. fijiensis and 0.78-3.13 ppm against C. sublineolum.


Asunto(s)
Antifúngicos/farmacología , Ascomicetos/efectos de los fármacos , Compuestos de Boro/farmacología , Colletotrichum/efectos de los fármacos , Fungicidas Industriales/farmacología , Agricultura , Transferasas Alquil y Aril/antagonistas & inhibidores , Transferasas Alquil y Aril/metabolismo , Antifúngicos/síntesis química , Antifúngicos/química , Ascomicetos/metabolismo , Compuestos de Boro/síntesis química , Compuestos de Boro/química , Colletotrichum/metabolismo , Relación Dosis-Respuesta a Droga , Fungicidas Industriales/síntesis química , Fungicidas Industriales/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad
19.
Aging Cell ; 20(3): e13333, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33682314

RESUMEN

Alzheimer's disease (AD) is an age-related neurodegenerative disease, and the imbalance between production and clearance of ß-amyloid (Aß) is involved in its pathogenesis. Autophagy is an intracellular degradation pathway whereby leads to removal of aggregated proteins, up-regulation of which may be a plausible therapeutic strategy for the treatment of AD. Histamine H3 receptor (H3R) is a presynaptic autoreceptor regulating histamine release via negative feedback way. Our previous study showed that thioperamide, as an antagonist of H3R, enhances autophagy and protects against ischemic injury. However, the effect of thioperamide on autophagic function and Aß pathology in AD remains unknown. In this study, we found that thioperamide promoted cognitive function, ameliorated neuronal loss, and Aß pathology in APP/PS1 transgenic (Tg) mice. Interestingly, thioperamide up-regulated autophagic level and lysosomal function both in APP/PS1 Tg mice and in primary neurons under Aß-induced injury. The neuroprotection by thioperamide against AD was reversed by 3-MA, inhibitor of autophagy, and siRNA of Atg7, key autophagic-related gene. Furthermore, inhibition of activity of CREB, H3R downstream signaling, by H89 reversed the effect of thioperamide on promoted cell viability, activated autophagic flux, and increased autophagic-lysosomal proteins expression, including Atg7, TFEB, and LAMP1, suggesting a CREB-dependent autophagic activation by thioperamide in AD. Taken together, these results suggested that H3R antagonist thioperamide improved cognitive impairment in APP/PS1 Tg mice via modulation of the CREB-mediated autophagy and lysosomal pathway, which contributed to Aß clearance. This study uncovered a novel mechanism involving autophagic regulating behind the therapeutic effect of thioperamide in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Autofagia , Cognición , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Piperidinas/farmacología , Enfermedad de Alzheimer/complicaciones , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Autofagia/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cognición/efectos de los fármacos , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/fisiopatología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipocampo/fisiopatología , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Presenilina-1/metabolismo , Regulación hacia Arriba/efectos de los fármacos
20.
Mol Psychiatry ; 26(6): 2299-2315, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33432188

RESUMEN

Previous studies have shown that AgRP neurons in the arcuate nucleus (ARC) respond to energy deficits and play a key role in the control of feeding behavior and metabolism. Here, we demonstrate that chronic unpredictable stress, an animal model of depression, decreases spontaneous firing rates, increases firing irregularity and alters the firing properties of AgRP neurons in both male and female mice. These changes are associated with enhanced inhibitory synaptic transmission and reduced intrinsic neuronal excitability. Chemogenetic inhibition of AgRP neurons increases susceptibility to subthreshold unpredictable stress. Conversely, chemogenetic activation of AgRP neurons completely reverses anhedonic and despair behaviors induced by chronic unpredictable stress. These results indicate that chronic stress induces maladaptive synaptic and intrinsic plasticity, leading to hypoactivity of AgRP neurons and subsequently causing behavioral changes. Our findings suggest that AgRP neurons in the ARC are a key component of neural circuitry involved in mediating depression-related behaviors and that increasing AgRP neuronal activity coule be a novel and effective treatment for depression.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Depresión , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Conducta Alimentaria , Femenino , Masculino , Ratones , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA