Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
Bioorg Chem ; 151: 107628, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39018799

RESUMEN

Thirty protoberberine derivatives, of which twenty five were new, were synthesized and evaluated for their anti-Helicobacter pylori (HP) activities, taking 2,3,10-trimethoxy-9-p-methylbenzylaminoprotopalmatine chloride 1 as the lead. Among them, berberine (BBR) derivative 7c displayed the highest potency against six tested metronidazole (MTZ)-resistant strains and two tested MTZ-susceptible strains with the MIC values of 0.4-1.6 µg/mL with favorable druglike profiles including low toxicity and high stabilities in plasma and artificial gastric fluid. Mechanistic study revealed that 7c might target HP urease with IC50 value of 0.27 µg/mL against Jack bean urease. Furthermore, 7c might change the permeability of the bacterial membrane and direct interact with HP DNA, which also contribute to its bactericidal activity. Therefore, BBR derivatives constituted a new family of anti-HP candidates, with the advantage of good safety profile and multi-target mechanisms, and are worthy for further investigation.

2.
Cancer Res Treat ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38993092

RESUMEN

Purpose: The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the USs. Materials and Methods: Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients. Results: A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), 3 adenosarcomas, 2 carcinosarcomas, and 1 uterine tumor resembling an ovarian sex-cord tumor (UTROSCT). ESS (including high-grade ESS and low-grade ESS) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A - PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uDEGs were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named MMN-MIL showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804. Conclusion: USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients.

3.
Drug Resist Updat ; 76: 101116, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38968684

RESUMEN

Drug resistance and tumor recurrence remain clinical challenges in the treatment of urothelial carcinoma (UC). However, the underlying mechanism is not fully understood. Here, we performed single-cell RNA sequencing and identified a subset of urothelial cells with epithelial-mesenchymal transition (EMT) features (EMT-UC), which is significantly correlated with chemotherapy resistance and cancer recurrence. To validate the clinical significance of EMT-UC, we constructed EMT-UC like cells by introducing overexpression of two markers, Zinc Finger E-Box Binding Homeobox 1 (ZEB1) and Desmin (DES), and examined their histological distribution characteristics and malignant phenotypes. EMT-UC like cells were mainly enriched in UC tissues from patients with adverse prognosis and exhibited significantly elevated EMT, migration and gemcitabine tolerance in vitro. However, EMT-UC was not specifically identified from tumorous tissues, certain proportion of them were also identified in adjacent normal tissues. Tumorous EMT-UC highly expressed genes involved in malignant behaviors and exhibited adverse prognosis. Additionally, tumorous EMT-UC was associated with remodeled tumor microenvironment (TME), which exhibited high angiogenic and immunosuppressive potentials compared with the normal counterparts. Furthermore, a specific interaction of COL4A1 and ITGB1 was identified to be highly enriched in tumorous EMT-UC, and in the endothelial component. Targeting the interaction of COL4A1 and ITGB1 with specific antibodies significantly suppressed tumorous angiogenesis and alleviated gemcitabine resistance of UC. Overall, our findings demonstrated that the driven force of chemotherapy resistance and recurrence of UC was EMT-UC mediated COL4A1-ITGB1 interaction, providing a potential target for future UC treatment.

4.
J Immunother Cancer ; 12(7)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38964787

RESUMEN

BACKGROUND: Chimeric antigen receptor natural killer (CAR-NK) therapy holds great promise for treating hematologic tumors, but its efficacy in solid tumors is limited owing to the lack of suitable targets and poor infiltration of engineered NK cells. Here, we explore whether immunogenic cell death (ICD) marker ERp57 translocated from endoplasmic reticulum to cell surface after drug treatment could be used as a target for CAR-NK therapy. METHODS: To target ERp57, a VHH phage display library was used for screening ERp57-targeted nanobodies (Nbs). A candidate Nb with high binding affinity to both human and mouse ERp57 was used for constructing CAR-NK cells. Various in vitro and in vivo studies were performed to assess the antitumor efficacy of the constructed CAR-NK cells. RESULTS: We demonstrate that the translocation of ERp57 can not only be induced by low-dose oxaliplatin (OXP) treatment but also is spontaneously expressed on the surface of various types of tumor cell lines. Our results show that G6-CAR-NK92 cells can effectively kill various tumor cell lines in vitro on which ERp57 is induced or intrinsically expressed, and also exhibit potent antitumor effects in cancer cell-derived xenograft and patient-derived xenograft mouse models. Additionally, the antitumor activity of G6-CAR-NK92 cells is synergistically enhanced by the low-dose ICD-inducible drug OXP. CONCLUSION: Collectively, our findings suggest that ERp57 can be leveraged as a new tumor antigen for CAR-NK targeting, and the resultant CAR-NK cells have the potential to be applied as a broad-spectrum immune cell therapy for various cancers by combining with ICD inducer drugs.


Asunto(s)
Muerte Celular Inmunogénica , Células Asesinas Naturales , Oxaliplatino , Proteína Disulfuro Isomerasas , Humanos , Animales , Ratones , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/efectos de los fármacos , Muerte Celular Inmunogénica/efectos de los fármacos , Proteína Disulfuro Isomerasas/metabolismo , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Femenino
5.
Environ Pollut ; : 124536, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39029862

RESUMEN

Tri (2-Ethylhexyl) phosphate (TEHP), widely used as a fire retardant and plasticizer, has been commonly found in the environment. Its potential health-related risks, especially reproductive toxicity, have aroused concern. However, the potential cellular mechanisms remain unexplored. In this study, we aimed to investigate the molecular mechanisms underlying TEHP-caused cell damage in Sertoli cells, which play a crucial role in supporting spermatogenesis. Our findings indicate that TEHP induces apoptosis in 15P-1 mouse Sertoli cells. Subsequently, we conducted RNA sequencing analyses, which suggested that ER stress, autophagy, and MAPK-related pathways may participate in TEHP-induced cytotoxicity. Furthermore, we demonstrated that TEHP triggers ER stress, activates p38 MAPK, and inhibits autophagy flux. Then, we showed that the inhibition of ER stress or p38 MAPK activation attenuates TEHP-induced apoptosis, while the inhibition of autophagy flux is responsible for TEHP-induced apoptosis. These results collectively reveal that TEHP induces ER stress, activates p38, and inhibits autophagy flux, ultimately leading to apoptosis in Sertoli cells. These shed light on the molecular mechanisms underlying TEHP-associated testicular toxicity.

6.
Int J Nanomedicine ; 19: 6777-6809, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983131

RESUMEN

Chloroquine is a common antimalarial drug and is listed in the World Health Organization Standard List of Essential Medicines because of its safety, low cost and ease of use. Besides its antimalarial property, chloroquine also was used in anti-inflammatory and antivirus, especially in antitumor therapy. A mount of data showed that chloroquine mainly relied on autophagy inhibition to exert its antitumor effects. However, recently, more and more researches have revealed that chloroquine acts through other mechanisms that are autophagy-independent. Nevertheless, the current reviews lacked a comprehensive summary of the antitumor mechanism and combined pharmacotherapy of chloroquine. So here we focused on the antitumor properties of chloroquine, summarized the pharmacological mechanisms of antitumor progression of chloroquine dependent or independent of autophagy inhibition. Moreover, we also discussed the side effects and possible application developments of chloroquine. This review provided a more systematic and cutting-edge knowledge involved in the anti-tumor mechanisms and combined pharmacotherapy of chloroquine in hope of carrying out more in-depth exploration of chloroquine and obtaining more clinical applications.


Asunto(s)
Antineoplásicos , Autofagia , Cloroquina , Neoplasias , Cloroquina/farmacología , Cloroquina/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Autofagia/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico
7.
J Environ Sci (China) ; 145: 164-179, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38844317

RESUMEN

The occurrence of poisoning incidents caused by cyanobacterial blooms has aroused wide public concern. Microcystin-leucine arginine (MC-LR) is a well-established toxin produced by cyanobacterial blooms, which is widely distributed in eutrophic waters. MC-LR is not only hazardous to the water environment but also exerts multiple toxic effects including liver toxicity in both humans and animals. However, the underlying mechanisms of MC-LR-induced liver toxicity are unclear. Herein, we used advanced single-cell RNA sequencing technology to characterize MC-LR-induced liver injury in mice. We established the first single-cell atlas of mouse livers in response to MC-LR. Our results showed that the differentially expressed genes and pathways in diverse cell types of liver tissues of mice treated with MC-LR are highly heterogeneous. Deep analysis showed that MC-LR induced an increase in a subpopulation of hepatocytes that highly express Gstm3, which potentially contributed to hepatocyte apoptosis in response to MC-LR. Moreover, MC-LR increased the proportion and multiple subtypes of Kupffer cells with M1 phenotypes and highly expressed proinflammatory genes. Furthermore, the MC-LR increased several subtypes of CD8+ T cells with highly expressed multiple cytokines and chemokines. Overall, apart from directly inducing hepatocytes apoptosis, MC-LR activated proinflammatory Kupffer cell and CD8+ T cells, and their interaction may constitute a hostile microenvironment that contributes to liver injury. Our findings not only present novel insight into underlying molecular mechanisms but also provide a valuable resource and foundation for additional discovery of MC-LR-induced liver toxicity.


Asunto(s)
Microcistinas , Análisis de Secuencia de ARN , Microcistinas/toxicidad , Animales , Ratones , Hígado/efectos de los fármacos , Toxinas Marinas/toxicidad , Leucina , Hepatocitos/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas
8.
Biomater Res ; 28: 0041, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911825

RESUMEN

Surgery and targeted therapy are of equal importance for colorectal cancer (CRC) treatment. However, complete CRC tumor resection remains challenging, and new targeted agents are also needed for efficient CRC treatment. Cadherin 17 (CDH17) is a membrane protein that is highly expressed in CRC and, therefore, is an ideal target for imaging-guided surgery and therapeutics. This study utilizes CDH17 nanobody (E8-Nb) with the near-infrared (NIR) fluorescent dye IRDye800CW to construct a NIR-II fluorescent probe, E8-Nb-IR800CW, and a Pseudomonas exotoxin (PE)-based immunotoxin, E8-Nb-PE38, to evaluate their performance for CRC imaging, imaging-guided precise tumor excision, and antitumor effects. Our results show that E8-Nb-IR800CW efficiently recognizes CDH17 in CRC cells and tumor tissues, produces high-quality NIR-II images for CRC tumors, and enables precise tumor removal guided by NIR-II imaging. Additionally, fluorescent imaging confirms the targeting ability and specificity of the immunotoxin toward CDH17-positive tumors, providing the direct visible evidence for immunotoxin therapy. E8-Nb-PE38 immunotoxin markedly delays the growth of CRC through the induction of apoptosis and immunogenic cell death (ICD) in multiple CRC tumor models. Furthermore, E8-Nb-PE38 combined with 5-FU exerts synergistically antitumor effects and extends survival. This study highlights CDH17 as a promising target for CRC imaging, imaging-guided surgery, and drug delivery. Nanobodies targeting CDH17 hold great potential to construct NIR-II fluorescent probes for surgery navigation, and PE-based toxins fused with CDH17 nanobodies represent a novel therapeutic strategy for CRC treatment. Further investigation is warranted to validate these findings for potential clinical translation.

9.
Regen Biomater ; 11: rbae065, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933085

RESUMEN

Cancer is one of the most challenging diseases in the world. Recently, iron oxide nanoparticles (IONPs) are emerging materials with rapid development and high application value, and have shown great potential on tumor therapy due to their unique magnetic and biocompatible properties. However, some data hint us that IONPs were toxic to normal cells and vital organs. Thus, more data on biosafety evaluation is urgently needed. In this study, we compared the effects of silicon-coated IONPs (Si-IONPs) on two cell types: the tumor cells (Hela) and the normal cells (HEK293T, as 293 T for short), compared differences of protein composition, allocation and physical characteristics between these two cells. The major findings of our study pointed out that 293 T cells death occurred more significant than that of Hela cells after Si-IONPs treatment, and the rate and content of endocytosis of Si-IONPs in 293 T cells was more prominent than in Hela cells. Our results also showed Si-IONPs significant promoted the production of reactive oxygen species and disturbed pathways related to oxidative stress, iron homeostasis, apoptosis and ferroptosis in both two types of cells, however, Hela cells recovered from these disturbances more easily than 293 T. In conclusion, compared with Hela cells, IONPs are more likely to induce 293 T cells death and Hela cells have their own unique mechanisms to defense invaders, reminding scientists that future in vivo and in vitro studies of nanoparticles need to be cautious, and more safety data are needed for further clinical treatment.

10.
Biomed Chromatogr ; : e5900, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937935

RESUMEN

Bailing capsule (BLC), a drug that is clinically administered to modulate the autoimmune system, exhibits promising therapeutic potential in the treatment of thyroiditis. This study elucidates the chemical profile of BLC and its potential therapeutic mechanism in thyroiditis, leveraging network pharmacology and molecular docking techniques. Utilizing ultra-high-performance liquid chromatography coupled with linear trap-Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap MS), 58 compounds were identified, the majority of which were nucleosides and amino acids. Utilizing the ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC QqQ MS/MS) strategy, 16 representative active components from six batches of BLCs were simultaneously determined. Network pharmacology analysis further revealed that the active components included 5'-adenylate, guanosine, adenosine, cordycepin, inosine, 5'-guanylic acid, and l-lysine. Targets with higher connectivity included AKT1, MAPK3, RAC1, and PIK3CA. The signaling pathways primarily focused on thyroid hormone regulation and the Ras, PI3K/AKT, and MAPK pathways, all of which were intricately linked to inflammatory immunity and hormonal regulation. Molecular docking analysis corroborated the findings from network pharmacology, revealing that adenosine, guanosine, and cordycepin exhibited strong affinity toward AKT1, MAPK3, PIK3CA, and RAC1. Overall, this study successfully elucidated the material basis and preliminary mechanism underlying BLC's intervention in thyroiditis, thus laying a solid basis for further exploration of its in-depth mechanisms.

11.
MedComm (2020) ; 5(6): e566, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38868327

RESUMEN

Aging is a process that represents the accumulation of changes in organism overtime. In biological level, accumulations of molecular and cellular damage in aging lead to an increasing risk of diseases like sarcopenia. Sarcopenia reduces mobility, leads to fall-related injuries, and diminishes life quality. Thus, it is meaningful to find out novel therapeutic strategies for sarcopenia intervention that may help the elderly maintain their functional ability. Oxidative damage-induced dysfunctional mitochondria are considered as a culprit of muscle wasting during aging. Herein, we aimed to demonstrate whether myricanol (MY) protects aged mice against muscle wasting through alleviating oxidative damage in mitochondria and identify the direct protein target and its underlying mechanism. We discovered that MY protects aged mice against the loss of muscle mass and strength through scavenging reactive oxygen species accumulation to rebuild the redox homeostasis. Taking advantage of biophysical assays, peroxiredoxin 5 was discovered and validated as the direct target of MY. Through activating peroxiredoxin 5, MY reduced reactive oxygen species accumulation and damaged mitochondrial DNA in C2C12 myotubes. Our findings provide an insight for therapy against sarcopenia through alleviating oxidative damage-induced dysfunctional mitochondria by targeting peroxiredoxin 5, which may contribute an insight for healthy aging.

12.
Adv Biol (Weinh) ; : e2400120, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864263

RESUMEN

Triptolide (TP), an active component isolated from the traditional Chinese herb Tripterygium wilfordii Hook F (TWHF), shows great promise for treating inflammation-related diseases. However, its potential nephrotoxic effects remain concerning. The mechanism underlying TP-induced nephrotoxicity is inadequately elucidated, particularly at single-cell resolution. Hence, single-cell RNA sequencing (scRNA-seq) of kidney tissues from control and TP-treated mice is performed to generate a thorough description of the renal cell atlas upon TP treatment. Heterogeneous responses of nephron epithelial cells are observed after TP exposure, attributing differential susceptibility of cell subtypes to excessive reactive oxygen species and increased inflammatory responses. Moreover, TP disrupts vascular function by activating endothelial cell immunity and damaging fibroblasts. Severe immune cell damage and the activation of pro-inflammatory Macro_C1 cells are also observed with TP treatment. Additionally, ligand-receptor crosstalk analysis reveals that the SPP1 (osteopontin) signaling pathway targeting Macro_C1 cells is triggered by TP treatment, which may promote the infiltration of Macro_C1 cells to exacerbate renal toxicity. Overall, this study provides comprehensive information on the transcriptomic profiles and cellular composition of TP-associated nephrotoxicity at single-cell resolution, which can strengthen the understanding of the pathogenesis of TP-induced nephrotoxicity and provide valuable clues for the discovery of new therapeutic targets to ameliorate TP-associated nephrotoxicity.

13.
Adv Sci (Weinh) ; : e2401905, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888519

RESUMEN

Bacteria can be utilized for cancer therapy owing to their preferential colonization at tumor sites. However, unmodified non-pathogenic bacteria carry potential risks due to their non-specific targeting effects, and their anti-tumor activity is limited when used as monotherapy. In this study, a biohybrid-engineered bacterial system comprising non-pathogenic MG1655 bacteria modified with CDH17 nanobodies on their surface and conjugated with photosensitizer croconium (CR) molecules is developed. The resultant biohybrid bacteria can efficiently home to CDH17-positive tumors, including gastric, pancreatic, and colorectal cancers, and significantly suppress tumor growth upon irradiation. More importantly, biohybrid bacteria-mediated photothermal therapy (PTT) induced abundant macrophage infiltration in a syngeneic murine colorectal model. Further, that the STING pathway is activated in tumor macrophages by the released bacterial nucleic acid after PTT is revealed, leading to the production of type I interferons. The addition of CD47 nanobody but not PD-1 antibody to the PTT regimen can eradicate the tumors and extend survival. This results indicate that bacteria endowed with tumor-specific selectivity and coupled with photothermal payloads can serve as an innovative strategy for low-immunogenicity cancers. This strategy can potentially reprogram the tumor microenvironment by inducing macrophage infiltration and enhancing the efficacy of immunotherapy targeting macrophages.

14.
Imeta ; 3(2): e176, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882489

RESUMEN

Malaria continues to pose a serious global health threat, and artemisinin remains the core drug for global malaria control. However, the situation of malaria resistance has become increasingly severe due to the emergence and spread of artemisinin resistance. In recent years, significant progress has been made in understanding the mechanism of action (MoA) of artemisinin. Prior research on the MoA of artemisinin mainly focused on covalently bound targets that are alkylated by artemisinin-free radicals. However, less attention has been given to the reversible noncovalent binding targets, and there is a paucity of information regarding artemisinin targets at different life cycle stages of the parasite. In this study, we identified the protein targets of artemisinin at different stages of the parasite's intraerythrocytic developmental cycle using a photoaffinity probe. Our findings demonstrate that artemisinin interacts with parasite proteins in vivo through both covalent and noncovalent modes. Extensive mechanistic studies were then conducted by integrating target validation, phenotypic studies, and untargeted metabolomics. The results suggest that protein synthesis, glycolysis, and oxidative homeostasis are critically involved in the antimalarial activities of artemisinin. In summary, this study provides fresh insights into the mechanisms underlying artemisinin's antimalarial effects and its protein targets.

15.
J Control Release ; 372: 386-402, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38909699

RESUMEN

Ferroptosis-related tumor therapy based on nanomedicines has recently gained significant attention. However, the therapeutic performance is still hindered by the tumor's physical barriers such as the fibrotic tumor matrix and elevated interstitial fluid pressure, as well as chemical barriers like glutathione (GSH) overabundance. These physicochemical barriers impede the bioavailability of nanomedicines and compromise the therapeutic efficacy of lipid reactive oxygen species (ROS). Thus, this study pioneers a manganese-mediated overcoming of physicochemical barriers in the tumor microenvironment using organosilica-based nanomedicine (MMONs), which bolsters the synergy of photothermal-ferroptosis treatment. The MMONs display commendable proficiency in overcoming tumor physical barriers, due to their MnO2-mediated shape-morphing and softness-transformation ability, which facilitates augmented cellular internalization, enhanced tumor accumulation, and superior drug penetration. Also, the MMONs possess excellent capability in chemical barrier overcoming, including MnO2-mediated dual GSH clearance and enhanced ROS generation, which facilitates ferroptosis and heat shock protein inhibition. Notably, the resulting integration of physical and chemical barrier overcoming leads to amplified photothermal-ferroptosis synergistic tumor therapy both in vitro and in vivo. Accordingly, the comparative proteomic analysis has identified promoted ferroptosis with a transient inhibitory response observed in the mitochondria. This research aims to improve treatment strategies to better fight the complex defenses of tumors.

16.
Mol Med ; 30(1): 75, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834947

RESUMEN

BACKGROUND: Liver kinase B1 (LKB1) is frequently mutated in lung adenocarcinoma, and its loss contributes to tumor progression. METHODS: To identify LKB1 downstream genes that promote lung adenocarcinoma aggressiveness, we performed bioinformatical analysis using publicly available datasets. RESULTS: Rab3B was upregulated in LKB1-depleted lung adenocarcinoma cells and suppressed by LKB1 overexpression. CREB protein was enriched at the promoter of Rab3B in lung cancer cells. Silencing of CREB abrogated the upregulation of Rab3B upon LKB1 loss. Immunohistochemistry revealed the elevated expression of Rab3B in lung adenocarcinomas relative to adjacent normal tissues. Upregulation of Rab3B was significantly associated with lymph node metastasis, advanced tumor stage, and reduced overall survival in lung adenocarcinoma patients. Knockdown of Rab3B suppressed and overexpression of Rab3B promoted the proliferation, colony formation, and migration of lung adenocarcinoma cells in vitro. In a mouse xenograft model, Rab3B depletion restrained and Rab3B overexpression augmented the growth of lung adenocarcinoma tumors. Mechanistically, Rab3B interacted with DDX6 and enhanced its protein stability. Ectopic expression of DDX6 significantly promoted the proliferation, colony formation, and migration of lung adenocarcinoma cells. DDX6 knockdown phenocopied the effects of Rab3B depletion on lung adenocarcinoma cells. Additionally, DDX6 overexpression partially rescued the aggressive phenotype of Rab3B-depleted lung adenocarcinoma cells. CONCLUSION: LKB1 deficiency promotes Rab3B upregulation via a CREB-dependent manner. Rab3B interacts with and stabilizes DDX6 protein to accelerate lung adenocarcinoma progression. The Rab3B-DDX6 axis may be potential therapeutic target for lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón , ARN Helicasas DEAD-box , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , Animales , Femenino , Humanos , Masculino , Ratones , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Quinasas de la Proteína-Quinasa Activada por el AMP/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Estabilidad Proteica
17.
Chemosphere ; 358: 142220, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38710410

RESUMEN

Microplastics have become a prevalent environmental pollutant due to widespread release and production. Algae, as primary producers, play a crucial role in maintaining the ecological balance of freshwater environments. Despite reports on the inhibition of microalgae by microplastics, the size-dependent effects on microalgae and associated molecular mechanism remain poorly understood. This study investigates the impacts of three polystyrene micro/nano-plastics (PS-MNPs) with different sizes (100 nm, 350 nm, and 6 µm) and concentrations (25-200 mg/L) on Chlamydomonas reinhardtii (C. reinhardtii) throughout its growth period. Results reveal size- and concentration-dependent growth inhibition and induction of oxidative stress by PS-MNPs, with microalgae exhibiting increased vulnerability to smaller-sized and higher-concentration PS-MNPs. Proteomics analysis elucidates the size-dependent suppression of proteins involved in the photosynthesis process by PS-MNPs. Photosynthetic activity assays demonstrate that smaller PS-MNPs more significantly reduce chlorophyll content and the maximal photochemical efficiency of photosystem II. Finally, electron microscope and Western blot assays collectively confirm the size effect of PS-MNPs on microalgae growth is attributable to suppressed protein expression rather than shading effects. This study contributes to advancing our understanding of the intricate interactions between micro/nano-plastics and algae at the molecular level, emphasizing the efficacy of proteomics in dissecting the mechanistic aspects of microplastics-induced biological effects on environmental indicator organisms.


Asunto(s)
Chlamydomonas reinhardtii , Microplásticos , Fotosíntesis , Poliestirenos , Proteómica , Chlamydomonas reinhardtii/efectos de los fármacos , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/crecimiento & desarrollo , Poliestirenos/toxicidad , Poliestirenos/química , Microplásticos/toxicidad , Fotosíntesis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Clorofila/metabolismo , Contaminantes Químicos del Agua/toxicidad , Microalgas/efectos de los fármacos , Plásticos/toxicidad , Tamaño de la Partícula , Complejo de Proteína del Fotosistema II/metabolismo
18.
Pathol Res Pract ; 258: 155326, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754328

RESUMEN

BACKGROUND: Calmodulin 2 (CALM2) belongs to the highly conserved calcium-binding protein family, implicated in the pathogenesis of various malignant tumors. However, its involvement in breast cancer (BRCA) remains unclear. This study aimed to examine CALM2 expression in BRCA and its associations with prognosis, clinicopathological features, protein-protein interactions, and immune cell infiltration. MATERIALS AND METHODS: Online bioinformatics tools were employed to assess CALM2 expression and its clinical relevance in BRCA. Western blotting and immunohistochemistry were utilized to evaluate CALM2 expression in BRCA cell lines and tissues. Logistic regression was applied to analyze the relationship between CALM2 expression levels and clinicopathological parameters. Transwell assay was performed to validate the role of CALM2 in BRCA migration and invasion. RESULTS: CALM2 expression was significantly elevated in BRCA, with increased levels predicting poor overall survival (OS) and disease-free survival (DFS). Moreover, high CALM2 expression correlated with poorer DFS specifically in triple-negative breast cancer (TNBC). CALM2 expression in BRCA showed significant associations with lymph node metastasis, TP53 mutation status, and menopause status. Silencing CALM2 in BRCA cells demonstrated inhibition of cell migration and invasion in vitro. CONCLUSIONS: CALM2 is overexpressed in BRCA and its upregulation is significantly correlated with poor patient prognosis. Elevated CALM2 expression holds promise as a potential molecular marker for predicting poor survival and as a therapeutic target in BRCA.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Calmodulina , Humanos , Femenino , Calmodulina/metabolismo , Calmodulina/genética , Pronóstico , Persona de Mediana Edad , Neoplasias de la Mama/patología , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/metabolismo , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/análisis , Adulto , Movimiento Celular , Anciano , Supervivencia sin Enfermedad , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral
19.
Phytomedicine ; 129: 155657, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38692076

RESUMEN

BACKGROUND: The pentose phosphate pathway (PPP) plays a crucial role in the material and energy metabolism in cancer cells. Targeting 6-phosphogluconate dehydrogenase (6PGD), the rate-limiting enzyme in the PPP metabolic process, to inhibit cellular metabolism is an effective anticancer strategy. In our previous study, we have preliminarily demonstrated that gambogic acid (GA) induced cancer cell death by inhibiting 6PGD and suppressing PPP at the cellular level. However, it is unclear whether GA could suppress cancer cell growth by inhibiting PPP pathway in mouse model. PURPOSE: This study aimed to confirm that GA as a covalent inhibitor of 6PGD protein and to validate that GA suppresses cancer cell growth by inhibiting the PPP pathway in a mouse model. METHODS: Cell viability was detected by CCK-8 assays as well as flow cytometry. The protein targets of GA were identified using a chemical probe and activity-based protein profiling (ABPP) technology. The target validation was performed by in-gel fluorescence assay, the Cellular Thermal Shift Assay (CETSA). A lung cancer mouse model was constructed to test the anticancer activity of GA. RNA sequencing was performed to analyze the global effect of GA on gene expression. RESULTS: The chemical probe of GA exhibited high biological activity in vitro. 6PGD was identified as one of the binding proteins of GA by ABPP. Our findings revealed a direct interaction between GA and 6PGD. We also found that the anti-cancer activity of GA depended on reactive oxygen species (ROS), as evidenced by experiments on cells with 6PGD knocked down. More importantly, GA could effectively reduce the production of the two major metabolites of the PPP in lung tissue and inhibit cancer cell growth in the mouse model. Finally, RNA sequencing data suggested that GA treatment significantly regulated apoptosis and hypoxia-related physiological processes. CONCLUSION: These results demonstrated that GA was a covalent inhibitor of 6PGD protein. GA effectively suppressed cancer cell growth by inhibiting the PPP pathway without causing significant side effects in the mouse model. Our study provides in vivo evidence that elucidates the anticancer mechanism of GA, which involves the inhibition of 6PGD and modulation of cellular metabolic processes.


Asunto(s)
Neoplasias Pulmonares , Vía de Pentosa Fosfato , Xantonas , Xantonas/farmacología , Animales , Vía de Pentosa Fosfato/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Humanos , Fosfogluconato Deshidrogenasa/metabolismo , Línea Celular Tumoral , Antineoplásicos Fitogénicos/farmacología , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad
20.
Ecotoxicol Environ Saf ; 279: 116462, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38776784

RESUMEN

Tris (2-ethylhexyl) phosphate (TEHP) is a frequently used organophosphorus flame retardant with significant ecotoxicity and widespread human exposure. Recent research indicates that TEHP has reproductive toxicity. However, the precise cell mechanism is not enough understood. Here, by using testicular mesenchymal stromal TM3 cells as a model, we reveal that TEHP induces apoptosis. Then RNA sequencing analysis, immunofluorescence, and western blotting results show that THEP inhibits autophagy flux and enhances endoplasmic reticulum (ER) stress. Moreover, the activation of the ER stress is critical for TEHP-induced cell injury. Interestingly, TEHP-induced ER stress is contributed to autophagic flux inhibition. Furthermore, pharmacological inhibition of autophagy aggravates, and activation of autophagy attenuates TEHP-induced apoptosis. In summary, these findings indicate that TEHP triggers apoptosis in mouse TM3 cells through ER stress activation and autophagy flux inhibition, offering a new perspective on the mechanisms underlying TEHP-induced interstitial cytotoxicity in the mouse testis.


Asunto(s)
Apoptosis , Autofagia , Estrés del Retículo Endoplásmico , Retardadores de Llama , Células Intersticiales del Testículo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Autofagia/efectos de los fármacos , Animales , Masculino , Células Intersticiales del Testículo/efectos de los fármacos , Ratones , Apoptosis/efectos de los fármacos , Retardadores de Llama/toxicidad , Línea Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA