Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Plant Physiol Biochem ; 217: 109202, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39437670

RESUMEN

Pre-harvest sprouting (PHS) in cereal crops is a prevalent phenomenon that impacts grain yield and quality. Several PHS inhibitory compounds were screened and identified in previous studies, such as eugenol (EUG), maleic hydrazide (MH), coumarin (COU), etc. However, few studies have focused on the combination of PHS inhibitors, and the inhibitory mechanism remains unclear. Here, through combination tests of EUG, MH, and COU, the optimal combination of PHS inhibitors was selected as MH 20 mg L-1 + COU 100 mg L-1, which presented the lowest germination percentages. The optimal combination treatment significantly decreased the germination rate, α-amylase activity, content of soluble sugar and soluble protein, enhanced ABA content and the activity of superoxide dismutase (SOD) and peroxidase (POD), inhibited the production of superoxide anion (O2-) and hydrogen peroxide, and reduced the content of malondialdehyde (MDA); conversely, this trend is precisely the opposite in normal germination. Furthermore, gene expression analysis revealed that the optimal combination of MH and COU significantly decreased the expression level of OsAmy1A and OsAmy3D at 12 and 48 h after imbibition (HAI); and promoted the expression of OsRbohs (OsRbohA, OsRbohC, OsRbohD, OsRbohE, OsRbohH) and ABA biosynthetic genes OsNCED1, OsNCED2, and OsNCED5, especially OsNCED2 at 12 HAI, but down-regulated expression of OsRbohs and ABA catabolic genes OsABA8ox1-3 at 48 HAI. These results demonstrated that the delay in seed germination induced by MH and COU involved in ROS, ABA, and sugars; the optimal combination of MH and COU inhibited the germination process by promoting ABA biosynthesis and reducing ABA catabolism, and restraining the α-amylase activity to lower soluble sugar content. Intriguingly, although the expression of OsRbohs, which play a crucial role in generating ROS, increased in early imbibition (12h), the activity of the antioxidant enzymes SOD and POD also increased with the optimal combination treatment of MH and COU, which lead to the delay in ROS accumulation and inhibition of germination. These results have deepened our understanding of the regulatory mechanism of PHS inhibitors and provided theoretical support for the application of MH and COU in preventing sprouting before crop harvesting.

2.
Theor Appl Genet ; 137(10): 241, 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39342533

RESUMEN

KEY MESSAGE: Thirteen QTLs associated with rice grain shape were localized by genome-wide association study. LOC_Os01g74020, the putative candidate gene in the co-localized QTL-qGSE1.2 interval, was identified and validated. Grain shape (GS) is a key trait that affects yield and quality of rice. Identifying and analyzing GS-related genes and elucidating the physiological, biochemical and molecular mechanisms are important for rice breeding. In this study, genome-wide association studies (GWAS) were conducted based on 1, 795, 076 single-nucleotide polymorphisms (SNPs) and three GS-related traits, grain length (GL), grain width (GW) and thousand-grain weight (TGW), in a natural population which comprised 374 rice varieties. A total of 13 quantitative trait locus (QTLs) related to GL, GW and TGW were identified, respectively, of which two QTLs (qGSE1.2 and qGSE5.3) were associated with both GL and TGW. A known key GS regulatory gene, GW5, was present in the interval of qGSE5.3. Based on the qRT-PCR results, LOC_Os01g74020 (OsGSE1.2) was identified as a GS candidate gene. Functional analysis of OsGSE1.2 showed that glume cell width and GW were significantly reduced, and that glume cell length, GL, TGW and single-plant yield were significantly increased in OsGSE1.2 knockout lines than those of wild type. OsGSE1.2 affects rice grain length by suppressing the elongation of glume cell and is a novel GS regulatory gene. These findings laid the foundation for molecular breeding to improve rice GS and increase rice yield and profitability.


Asunto(s)
Mapeo Cromosómico , Grano Comestible , Genes de Plantas , Oryza , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Oryza/genética , Oryza/crecimiento & desarrollo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Estudios de Asociación Genética , Semillas/genética , Semillas/crecimiento & desarrollo
3.
J Am Chem Soc ; 146(31): 21568-21582, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39051165

RESUMEN

The heterogeneity of hepatocellular carcinoma (HCC) can prevent effective treatment, emphasizing the need for more effective therapies. Herein, we employed arsenene nanosheets coated with manganese dioxide and polyethylene glycol (AMPNs) for the degradation of Pin1, which is universally overexpressed in HCC. By employing an "AND gate", AMPNs exhibited responsiveness toward excessive glutathione and hydrogen peroxide within the tumor microenvironment, thereby selectively releasing AsxOy to mitigate potential side effects of As2O3. Notably, AMPNs induced the suppressing Pin1 expression while simultaneously upregulation PD-L1, thereby eliciting a robust antitumor immune response and enhancing the efficacy of anti-PD-1/anti-PD-L1 therapy. The combination of AMPNs and anti-PD-1 synergistically enhanced tumor suppression and effectively induced long-lasting immune memory. This approach did not reveal As2O3-associated toxicity, indicating that arsenene-based nanotherapeutic could be employed to amplify the response rate of anti-PD-1/anti-PD-L1 therapy to improve the clinical outcomes of HCC patients and potentially other solid tumors (e.g., breast cancer) that are refractory to anti-PD-1/anti-PD-L1 therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Compuestos de Manganeso , Peptidilprolil Isomerasa de Interacción con NIMA , Óxidos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Óxidos/química , Óxidos/farmacología , Humanos , Peptidilprolil Isomerasa de Interacción con NIMA/antagonistas & inhibidores , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Nanoestructuras/química , Antineoplásicos/química , Antineoplásicos/farmacología , Arsenicales/química , Arsenicales/farmacología , Arsenicales/uso terapéutico , Ratones , Animales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Línea Celular Tumoral , Polietilenglicoles/química
4.
Genes (Basel) ; 15(3)2024 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-38540386

RESUMEN

Nitrogen (N) is one of the essential nutrients for the growth and development of crops. The adequate application of N not only increases the yield of crops but also improves the quality of agricultural products, but the excessive application of N can cause many adverse effects on ecology and the environment. In this study, genome-wide association analysis (GWAS) was performed under low- and high-N conditions based on 788,396 SNPs and phenotypic traits relevant to N uptake and utilization (N content and N accumulation). A total of 75 QTLs were obtained using GWAS, which contained 811 genes. Of 811 genes, 281 genes showed different haplotypes, and 40 genes had significant phenotypic differences among different haplotypes. Of these 40 genes, 5 differentially expressed genes (Os01g0159250, Os02g0618200, Os02g0618400, Os02g0630300, and Os06g0619000) were finally identified as the more valuable candidate genes based on the transcriptome data sequenced from Longjing31 (low-N-tolerant variety) and Songjing 10 (low-N-sensitive variety) under low- and high-N treatments. These new findings enrich the genetic resources for N uptake and utilization in rice, as well as lay a theoretical foundation for improving the efficiency of N uptake and utilization in rice.


Asunto(s)
Oryza , Plantones , Plantones/genética , Mapeo Cromosómico , Oryza/genética , Estudio de Asociación del Genoma Completo , Nitrógeno , Productos Agrícolas/genética
5.
Heliyon ; 10(5): e24742, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38434296

RESUMEN

Objective: To analyze the immune parameters of cerebrospinal fluid (CSF) and oligoclonal band (OCB) type in patients with anti-myelin oligodendrocyte glycoprotein (MOG) antibody-associated diseases (MOGAD). Methods: Patients who were seropositive for MOG-IgG and diagnosed with MOGAD according to the diagnosis criteria in the Department of Neurology, Huashan Hospital, Fudan University from December 2020 to June 2022 were retrospectively included in this study. Complete clinical data, blood and cerebrospinal fluid samples were collected from all the participants. Paired serum and CSF MOG-IgG and autoimmune encephalitis antibody were assayed by Cell Based Assay (CBA) based on transfected target antigens. Paired serum and CSF albumin and IgG were detected by turbidimetric scattering method, and OCB was detected by standard operation procedure as described. Results: A total of 86 patients (44 males and 42 females) with MOGAD were included in this study, with a median age of 30 years (range: 5-82 years). Among all the patients, 73 patients showed OCB type I, 12 patients showed OCB type II, and one patient showed OCB type III. The overall positive rate of CSF-OCB in MOGAD patients was 15.1 %. The 24-h intrathecal synthesis rate of CSF in the OCB-positive group (n = 13) was higher than that in the OCB-negative group [n = 73, 0.62 (0.26) vs 5.11 (13.67), P = 0.003]. Subgroup analysis revealed that the positive rates of CSF-OCB in the single MOG group (n = 61) and the group combined with other antibodies (n = 25) were 14.8 % and 16.0 %, respectively. The incidence of meningoencephalitis (13/61 vs 13/25, P = 0.011) was significantly different between the two groups. The proportion of patients with high (≥1:32) or low (≤1:10) CSF MOG-IgG also showed significant difference in the group combined with other antibodies (P = 0.032). Optic neuritis was more common in the relapse course group (n = 49) than the monophasic course group (n = 37, P < 0.001) No significant diferences of CSF immune parameters were found in the MOG-IgGserum+/CSF- group and the MOG-IgGserum+/CSF + group, and the titer of MOG-IgG in the serum or CSF did not influence CSF immune parameters in different subgroups. Conclusion: The overall positive rate of CSF-OCB in MOGAD patients was 15.1 %. The 24-h intrathecal synthesis rate of cerebrospinal fluid in the OCB-positive group was higher than that in the OCB-negative group. This study illustrated OCB characterization in MOGAD patients, and will shed light on the standardization of OCB test in the study of immune diseases.

6.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38396991

RESUMEN

Low-temperature chilling is a major abiotic stress leading to reduced rice yield and is a significant environmental threat to food security. Low-temperature chilling studies have focused on physiological changes or coding genes. However, the competitive endogenous RNA mechanism in rice at low temperatures has not been reported. Therefore, in this study, antioxidant physiological indices were combined with whole-transcriptome data through weighted correlation network analysis, which found that the gene modules had the highest correlation with the key antioxidant enzymes superoxide dismutase and peroxidase. The hub genes of the superoxide dismutase-related module included the UDP-glucosyltransferase family protein, sesquiterpene synthase and indole-3-glycerophosphatase gene. The hub genes of the peroxidase-related module included the WRKY transcription factor, abscisic acid signal transduction pathway-related gene plasma membrane hydrogen-ATPase and receptor-like kinase. Therefore, we selected the modular hub genes and significantly enriched the metabolic pathway genes to construct the key competitive endogenous RNA networks, resulting in three competitive endogenous RNA networks of seven long non-coding RNAs regulating three co-expressed messenger RNAs via four microRNAs. Finally, the negative regulatory function of the WRKY transcription factor OsWRKY61 was determined via subcellular localization and validation of the physiological indices in the mutant.


Asunto(s)
MicroARNs , Oryza , ARN Largo no Codificante , Oryza/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Antioxidantes , Perfilación de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Redes Reguladoras de Genes , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Peroxidasas/genética , Superóxido Dismutasa/genética
7.
Int J Mol Sci ; 24(24)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38139418

RESUMEN

Salinity stress is one of the major abiotic stresses affecting crop growth and production. Rice is an important food crop in the world, but also a salt-sensitive crop, and the rice seedling stage is the most sensitive to salt stress, which directly affects the final yield formation. In this study, two RIL populations derived from the crosses of CD (salt-sensitive)/WD (salt-tolerant) and KY131 (salt-sensitive)/XBJZ (salt-tolerant) were used as experimental materials, and the score of salinity toxicity (SST), the relative shoot length (RSL), the relative shoot fresh weight (RSFW), and the relative shoot dry weight (RSDW) were used for evaluating the degree of tolerance under salt stress in different lines. The genetic linkage map containing 978 and 527 bin markers were constructed in two RIL populations. A total of 14 QTLs were detected on chromosomes 1, 2, 3, 4, 7, 9, 10, 11, and 12. Among them, qSST12-1, qSST12-2, and qRSL12 were co-localized in a 140-kb overlap interval on chromosome 12, which containing 16 candidate genes. Furthermore, transcriptome sequencing and qRT-PCR were analyzed in CD and WD under normal and 120 mM NaCl stress. LOC_Os12g29330, LOC_Os12g29350, LOC_Os12g29390, and LOC_Os12g29400 were significantly induced by salt stress in both CD and WD. Sequence analysis showed that LOC_Os12g29400 in the salt-sensitive parents CD and KY131 was consistent with the reference sequence (Nipponbare), whereas the salt-tolerant parents WD and XBJZ differed significantly from the reference sequence both in the promoter and exon regions. The salt-tolerant phenotype was identified by using two T3 homozygous mutant plants of LOC_Os12g29400; the results showed that the score of salinity toxicity (SST) of the mutant plants (CR-3 and CR-5) was significantly lower than that of the wild type, and the seedling survival rate (SSR) was significantly higher than that of the wild type, which indicated that LOC_Os12g29400 could negatively regulate the salinity tolerance of rice at the seedling stage. The results lay a foundation for the analysis of the molecular mechanism of rice salinity tolerance and the cultivation of new rice varieties.


Asunto(s)
Oryza , Tolerancia a la Sal , Tolerancia a la Sal/genética , Oryza/genética , Plantones/genética , Transcriptoma , Salinidad , Análisis de Secuencia
8.
Front Immunol ; 14: 1280020, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38035077

RESUMEN

Background: Cerebrospinal fluid oligoclonal band (CSF-OCB) is an established biomarker in diagnosing multiple sclerosis (MS), however, there are no nationwide data on CSF-OCB prevalence and its diagnostic performance in Chinese MS patients, especially in the virtue of common standard operation procedure (SOP). Methods: With a consensus SOP and the same isoelectric focusing system, we conducted a nationwide multi-center study on OCB status in consecutively, and recruited 483 MS patients and 880 non-MS patients, including neuro-inflammatory diseases (NID, n = 595) and non-inflammatory neurological diseases (NIND, n=285). Using a standardized case report form (CRF) to collect the clinical, radiological, immunological, and CSF data, we explored the association of CSF-OCB positivity with patient characters and the diagnostic performance of CSF-OCB in Chinese MS patients. Prospective source data collection, and retrospective data acquisition and statistical data analysis were used. Findings: 369 (76.4%) MS patients were OCB-positive, while 109 NID patients (18.3%) and 6 NIND patients (2.1%) were OCB-positive, respectively. Time from symptom onset to diagnosis was significantly shorter in OCB-positive than that in OCB-negative MS patients (13.2 vs 23.7 months, P=0.020). The prevalence of CSF-OCB in Chinese MS patients was significantly higher in high-latitude regions (41°-50°N)(P=0.016), and at high altitudes (>1000m)(P=0.025). The diagnostic performance of CSF-OCB differentiating MS from non-MS patients yielded a sensitivity of 76%, a specificity of 87%. Interpretation: The nationwide prevalence of CSF-OCB was 76.4% in Chinese MS patients, and demonstrated a good diagnostic performance in differentiating MS from other CNS diseases. The CSF-OCB prevalence showed a correlation with high latitude and altitude in Chinese MS patients.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico , Esclerosis Múltiple/epidemiología , Bandas Oligoclonales/líquido cefalorraquídeo , Estudios Retrospectivos , Estudios Prospectivos , Prevalencia , Pueblos del Este de Asia
9.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37834285

RESUMEN

Improving rice yield is one of the most important food issues internationally. It is an undeniable goal of rice breeding, and the effective panicle number (EPN) is a key factor determining rice yield. Increasing the EPN in rice is a major way to increase rice yield. Currently, the main quantitative trait locus (QTL) for EPN in rice is limited, and there is also limited research on the gene for EPN in rice. Therefore, the excavation and analysis of major genes related to EPN in rice is of great significance for molecular breeding and yield improvement. This study used japonica rice varieties Dongfu 114 and Longyang 11 to construct an F5 population consisting of 309 individual plants. Two extreme phenotypic pools were constructed by identifying the EPN of the population, and QTL-seq analysis was performed to obtain three main effective QTL intervals for EPN. This analysis also helped to screen out 34 candidate genes. Then, EPN time expression pattern analysis was performed on these 34 genes to screen out six candidate genes with higher expression levels. Using a 3K database to perform haplotype analysis on these six genes, we selected haplotypes with significant differences in EPN. Finally, five candidate genes related to EPN were obtained.


Asunto(s)
Oryza , Mapeo Cromosómico , Oryza/genética , Fenotipo , Fitomejoramiento , Sitios de Carácter Cuantitativo
10.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37511217

RESUMEN

Grain length (GL) is one of the crucial determinants of rice yield and quality. However, there is still a shortage of knowledge on the major genes controlling the inheritance of GL in japonica rice, which severely limits the improvement of japonica rice yields. Here, we systemically measured the GL of 667 F2 and 1570 BC3F3 individuals derived from two cultivated rice cultivars, Pin20 and Songjing15, in order to identify the major genomic regions associated with GL. A novel major QTL, qGL9.1, was mapped on chromosome 9, which is associated with the GL, using whole-genome re-sequencing with bulked segregant analysis. Local QTL linkage analysis with F2 and fine mapping with the recombinant plant revealed a 93-kb core region on qGL9.1 encoding 15 protein-coding genes. Only the expression level of LOC_Os09g26970 was significantly different between the two parents at different stages of grain development. Moreover, haplotype analysis revealed that the alleles of Pin20 contribute to the optimal GL (9.36 mm) and GL/W (3.31), suggesting that Pin20 is a cultivated species carrying the optimal GL variation of LOC_Os09g26970. Furthermore, a functional-type mutation (16398989-bp, G>A) located on an exon of LOC_Os09g26970 could be used as a molecular marker to distinguish between long and short grains. Our experiments identified LOC_Os09g26970 as a novel gene associated with GL in japonica rice. This result is expected to further the exploration of the genetic mechanism of rice GL and improve GL in rice japonica varieties by marker-assisted selection.


Asunto(s)
Oryza , Sitios de Carácter Cuantitativo , Humanos , Mapeo Cromosómico , Oryza/genética , Genes de Plantas , Grano Comestible/genética , Estudios de Asociación Genética
11.
Theor Appl Genet ; 136(6): 135, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37222778

RESUMEN

KEY MESSAGE: LOC_Os07g07690 on qCTB7 is associated with cold tolerance at the booting stage in rice, and analysis of transgenic plants demonstrated that qCTB7 influenced cold tolerance by altering the morphology and cytoarchitecture of anthers and pollen. Cold tolerance at the booting stage (CTB) in rice can significantly affect yield in high-latitude regions. Although several CTB genes have been isolated, their ability to induce cold tolerance is insufficient to ensure adequate rice yields in cold regions at high latitudes. Here, we identified the PHD-finger domain-containing protein gene qCTB7 using QTL-seq and linkage analysis through systematic measurement of CTB differences and the spike fertility of the Longjing31 and Longdao3 cultivars, resulting in the derivation of 1570 F2 progeny under cold stress. We then characterized the function of qCTB7 in rice. It was found that overexpression of qCTB7 promoted CTB and the same yield as Longdao3 under normal growing conditions while the phenotype of qctb7 knockout showed anther and pollen failure under cold stress. When subjected to cold stress, the germination of qctb7 pollen on the stigma was reduced, resulting in lower spike fertility. These findings indicate that qCTB7 regulates the appearance, morphology, and cytoarchitecture of the anthers and pollen. Three SNPs in the promoter region and coding region of qCTB7 were identified as recognition signals for CTB in rice and could assist breeding efforts to improve cold tolerance for rice production in high latitudes.


Asunto(s)
Oryza , Oryza/genética , Fitomejoramiento , Respuesta al Choque por Frío , Fertilidad/genética , Sistemas de Lectura Abierta
12.
Acta Biomater ; 166: 470-484, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37253416

RESUMEN

Metabolic dysregulation contributes not only to cancer development but also to a tumor immune microenvironment (TIME), which poses great challenges to chemo- and immunotherapy. Targeting metabolic reprogramming has recently emerged as a promising strategy for cancer treatment, but the lethality against solid tumors appears to be fairly restricted, partially due to the poor solubility of small molecule drugs. Herein, we construct a versatile biomimetic nanoplatform (referred to as HM-BPT) employing pH-sensitive tumor-tropism hybrid membrane-coated Manganese oxide (MnO2) nanoparticles for the delivery of BPTES, a glutamine metabolism inhibitor. Basically, hybrid membranes consisting of mesenchymal stem cell membranes (MSCm) and pH-sensitive liposomes (pSL) enable the biomimetic nanoplatform to target TME and escape from endo/lysosomes after endocytosis. The results reveal that HM-BPT treatment leads to remarkable tumor inhibition, cytotoxic T lymphocyte (CTL) infiltration, as well as M1 phenotype repolarization and stimulator of IFN genes (STING) pathway activation in macrophages in a 4T1 xenograft model. Furthermore, glutathione (GSH) depletion and oxygen (O2) supply synergistically ameliorate the immunosuppressive status of the TME, boosting potent antitumor immune responses. Overall, our study explores an integrated therapeutic platform for TME reprogramming and immune activation, offering tremendous promise for cancer combination therapy. STATEMENT OF SIGNIFICANCE: Metabolic abnormalities and the tumor immune microenvironment (TIME) lead to hyporesponsiveness to conventional therapies, ultimately resulting in refractory malignancies. In the current work, a biomimetic nanoplatform (HM-BPT) was developed for TME metabolic reprogramming in favor of immunotherapy. Particularly, hybrid membrane camouflage endowed the nanoplatform with TME targeting, endo/lysosomal escape, and sensitive release properties. The impact of hybrid membrane fusion ratio on cellular uptake and cell viability was explored, yielding beneficial references for the future development of bioactive nanomaterials. Intravenous administration of HM-BPT substantially relieved tumor burden and restored innate and acquired immune activation in 4T1 xenograft models. In conclusion, the created HM-BPT system has the potential to be a promising nanoplatform for combining cancer therapies.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Animales , Compuestos de Manganeso/farmacología , Microambiente Tumoral , Óxidos , Lisosomas , Inmunoterapia , Modelos Animales de Enfermedad , Concentración de Iones de Hidrógeno , Línea Celular Tumoral
13.
Front Plant Sci ; 14: 1184416, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37235029

RESUMEN

Background: Salinity tolerance plays a vital role in rice cultivation because the strength of salinity tolerance at the seedling stage directly affects seedling survival and final crop yield in saline soils. Here, we combined a genome-wide association study (GWAS) and linkage mapping to analyze the candidate intervals for salinity tolerance in Japonica rice at the seedling stage. Results: We used the Na+ concentration in shoots (SNC), K+ concentration in shoots (SKC), Na+/K+ ratio in shoots (SNK), and seedling survival rate (SSR) as indices to assess the salinity tolerance at the seedling stage in rice. The GWAS identified the lead SNP (Chr12_20864157), associated with an SNK, which the linkage mapping detected as being in qSK12. A 195-kb region on chromosome 12 was selected based on the overlapping regions in the GWAS and the linkage mapping. Based on haplotype analysis, qRT-PCR, and sequence analysis, we obtained LOC_Os12g34450 as a candidate gene. Conclusion: Based on these results, LOC_Os12g34450 was identified as a candidate gene contributing to salinity tolerance in Japonica rice. This study provides valuable guidance for plant breeders to improve the response of Japonica rice to salt stress.

14.
Theor Appl Genet ; 136(6): 141, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37247094

RESUMEN

KEY MESSAGE: A novel Hd3a allele strongly promoting rice heading date was identified, and it functions through florigen activation complex (FAC) and was selected during the spread of rice cultivation to high-latitude areas. Heading date is a critical agronomic trait for rice that determines the utilization of light and temperature conditions and thereby affects grain yield. Rice is a short day (SD) plant, and its photoperiodic information is processed by complex pathways and integrated by florigens to control flowering. In this study, we identified a novel allele for the florigen gene Heading date 3a (Hd3a), characterized by a C435G substitution in its coding region, by a genome-wide association study (GWAS) approach in a panel of 199 high-latitude japonica rice varieties. The C435G substitution induces plants to flower 10 days earlier in high-latitude area (long day condition). Then, we mutated C435 to G in Hd3a by prime editing and found the point mutation plants flowered 12 days earlier. Further molecular experiments showed the novel Hd3a protein can interact with GF14b protein and increase the expression of OsMADS14, the output gene of florigen activation complex (FAC). Molecular signatures of selection indicated that the novel Hd3a allele was selected during the process of rice cultivation expansion into high-latitude areas. Collectively, these results provide new insights into heading date regulation in high-latitude areas and advance improvements to rice adaptability to enhance crop yield.


Asunto(s)
Florigena , Oryza , Florigena/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alelos , Estudio de Asociación del Genoma Completo
15.
Planta ; 257(6): 122, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37202578

RESUMEN

MAIN CONCLUSION: Through QTL-seq, QTL mapping and RNA-seq, six candidate genes of qLTG9 can be used as targets for cold tolerance functional characterization, and six KASP markers can be used for marker-assisted breeding to improve the germination ability of japonica rice at low temperature. The development of direct-seeded rice at high latitudes and altitudes depends on the seed germination ability of rice under a low-temperature environment. However, the lack of regulatory genes for low-temperature germination has severely limited the application of genetics in improving the breeds. Here, we used cultivars DN430 and DF104 with significantly different low-temperature germination (LTG) and 460 F2:3 progeny derived from them to identify LTG regulators by combining QTL-sequencing, linkage mapping, and RNA-sequencing. The QTL-sequencing mapped qLTG9 within a physical interval of 3.4 Mb. In addition, we used 10 Kompetitive allele-specific PCR (KASP) markers provided by the two parents, and qLTG9 was optimized from 3.4 Mb to a physical interval of 397.9 kb and accounted for 20.4% of the phenotypic variation. RNA-sequencing identified qLTG9 as eight candidate genes with significantly different expression within the 397.9 kb interval, six of which possessed SNPs on the promoter and coding regions. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) completely validated the results of these six genes in RNA-sequencing. Subsequently, six non-synonymous SNPs were designed using variants in the coding region of these six candidates. Genotypic analysis of these SNPs in 60 individuals with extreme phenotypes indicated these SNPs determined the differences in cold tolerance between parents. The six candidate genes of qLTG9 and the six KASP markers could be used together for marker-assisted breeding to improve LTG.


Asunto(s)
Oryza , Oryza/genética , Germinación/genética , Sitios de Carácter Cuantitativo/genética , Alelos , Temperatura , Fitomejoramiento , Mapeo Cromosómico , Reacción en Cadena de la Polimerasa
16.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37175411

RESUMEN

Nitrogen-based nutrients are the main factors affecting rice growth and development. As the nitrogen (N) application rate increased, the nitrogen use efficiency (NUE) of rice decreased. Therefore, it is important to understand the molecular mechanism of rice plant morphological, physiological, and yield formation under low N conditions to improve NUE. In this study, changes in the rice morphological, physiological, and yield-related traits under low N (13.33 ppm) and control N (40.00 ppm) conditions were performed. These results show that, compared with control N conditions, photosynthesis and growth were inhibited and the carbon (C)/N and photosynthetic nitrogen use efficiency (PNUE) were enhanced under low N conditions. To understand the post-translational modification mechanism underlying the rice response to low N conditions, comparative phosphoproteomic analysis was performed, and differentially modified proteins (DMPs) were further characterized. Compared with control N conditions, a total of 258 DMPs were identified under low N conditions. The modification of proteins involved in chloroplast development, chlorophyll synthesis, photosynthesis, carbon metabolism, phytohormones, and morphology-related proteins were differentially altered, which was an important reason for changes in rice morphological, physiological, and yield-related traits. Additionally, inconsistent changes in level of transcription and protein modification, indicates that the study of phosphoproteomics under low N conditions is also important for us to better understand the adaptation mechanism of rice to low N stress. These results provide insights into global changes in the response of rice to low N stress and may facilitate the development of rice cultivars with high NUE by regulating the phosphorylation level of carbon metabolism and rice morphology-related proteins.


Asunto(s)
Oryza , Oryza/metabolismo , Nitrógeno/metabolismo , Fotosíntesis , Aclimatación , Carbono/metabolismo
17.
Ther Adv Neurol Disord ; 16: 17562864231164806, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37057197

RESUMEN

Background: The phenotype of peripheral neuropathy (PN) associated with glial fibrillary acidic protein-immunoglobulin G (GFAP-IgG) has not been well described. Objectives: The aim of this study was to report the frequency, clinical, and electrophysiological characteristics of PN in GFAP-IgG-positive patients. Design: This study is a single-center retrospective observational study. Data Sources and methods: GFAP-IgG-positive patients with PN were retrospectively identified from the Huashan Hospital Autoimmune Encephalitis Cohort between 2017 and 2021. Eight patients who presented with PN from other published studies were also included in the analysis. The clinical and electrophysiological characteristics of GFAP-IgG-related PN were described. Results: A total of 21 (31%) patients (7 females, 14 males; M age: 42 ± 16 years) from a cohort of 68 GFAP-IgG-positive patients presented with PN. Twenty of 21 patients had symmetrical weakness. Sensory and autonomic symptoms were present in 16 and 15 patients, respectively. Lower extremities were the most frequently involved regions for both motor (20/21) and sensory (15/21) symptoms. Moreover, 13 patients (4 females, 9 males; M age: 43 ± 13 years) had electrodiagnostic study data, and 12 of 13 patients had abnormal findings. Regarding clinical features, motor nerve fibers were predominantly involved (12/13), and symmetric lower extremities (12/13) were the most commonly affected regions. Axonal neuropathy is the typical underlying pathophysiologic process of PN. All 21 patients responded to immunotherapy. However, four patients with tetraplegia had poor outcomes, and PN was the major determinant of their long-term disability. Most cases (6/8) from the literature presented with similar clinical and electrophysiological features to those from our cohort. Conclusion: Peripheral nerves could be involved in autoimmune GFAP astrocytopathy. Predominant motor axonal neuropathy mainly involving the lower extremities is the most common PN phenotype in this disorder. GFAP-IgG-related PN is responsive to immunotherapy. Registration: Chinese Clinical Trial Registry: ChiCTR2000029115 (http://www.chictr.org).

18.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36982364

RESUMEN

Nitrogen is an important nutrient for plant growth and essential metabolic processes. Roots integrally obtain nutrients from soil and are closely related to the growth and development of plants. In this study, the morphological analysis of rice root tissues collected at different time points under low-nitrogen and normal nitrogen conditions demonstrated that, compared with normal nitrogen treatment, the root growth and nitrogen use efficiency (NUE) of rice under low-nitrogen treatment were significantly improved. To better understand the molecular mechanisms of the rice root system's response to low-nitrogen conditions, a comprehensive transcriptome analysis of rice seedling roots under low-nitrogen and control conditions was conducted in this study. As a result, 3171 differentially expressed genes (DEGs) were identified. Rice seedling roots enhance NUE and promote root development by regulating the genes related to nitrogen absorption and utilization, carbon metabolism, root growth and development, and phytohormones, thereby adapting to low-nitrogen conditions. A total of 25,377 genes were divided into 14 modules using weighted gene co-expression network analysis (WGCNA). Two modules were significantly associated with nitrogen absorption and utilization. A total of 8 core genes and 43 co-expression candidates related to nitrogen absorption and utilization were obtained in these two modules. Further studies on these genes will contribute to the understanding of low-nitrogen adaptation and nitrogen utilization mechanisms in rice.


Asunto(s)
Oryza , Transcriptoma , Oryza/metabolismo , Perfilación de la Expresión Génica , Plantones/genética , Plantones/metabolismo , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
19.
Eur J Nucl Med Mol Imaging ; 50(8): 2394-2408, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36929211

RESUMEN

PURPOSE: TSPO PET with radioligand [18F]DPA-714 is an emerging molecular imaging technique that reflects cerebral inflammation and microglial activation, and it has been recently used in central nervous system diseases. In this study, we aimed to investigate the neuroinflammation pattern of anti-leucine-rich glioma-inactivated 1 (LGI1) protein autoimmune encephalitis (AIE) and to evaluate its possible correlation with clinical phenotypes. METHODS: Twenty patients with anti-LGI1 encephalitis from the autoimmune encephalitis cohort in Huashan Hospital and ten with other AIE and non-inflammatory diseases that underwent TSPO PET imaging were included in the current study. Increased regional [18F]DPA-714 retention in anti-LGI1 encephalitis was detected on a voxel basis using statistic parametric mapping analysis. Multiple correspondence analysis and hierarchical clustering were conducted for discriminate subgroups in anti-LGI1 encephalitis. Standardized uptake value ratios normalized to the cerebellum (SUVRc) were calculated for semiquantitative analysis of TSPO PET features between different LGI1-AIE subgroups. RESULTS: Increased regional retention of [18F]DPA-714 was identified in the bilateral hippocampus, caudate nucleus, and frontal cortex in LGI1-AIE patients. Two subgroups of LGI1-AIE patients were distinguished based on the top seven common symptoms. Patients in cluster 1 had a high frequency of facio-brachial dystonic seizures than those in cluster 2 (p = 0.004), whereas patients in cluster 2 had a higher frequency of general tonic-clonic (GTC) seizures than those in cluster 1 (p < 0.001). Supplementary motor area and superior frontal gyrus showed higher [18F]DPA-714 retention in cluster 2 patients compared with those in cluster 1 (p = 0.024; p = 0.04, respectively). CONCLUSIONS: Anti-LGI1 encephalitis had a distinctive molecular imaging pattern presented by TSPO PET scan. LGI1-AIE patients with higher retention of [18F]DPA-714 in the frontal cortex were more prone to present with GTC seizures. Further studies are required for verifying its value in clinical application.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Encefalitis , Glioma , Humanos , Enfermedades Neuroinflamatorias , Leucina , Péptidos y Proteínas de Señalización Intracelular , Encefalitis/diagnóstico por imagen , Convulsiones , Tomografía de Emisión de Positrones/métodos , Receptores de GABA
20.
ACS Appl Mater Interfaces ; 15(9): 11474-11484, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36702809

RESUMEN

In response to diffused ionizing radiation damage throughout the body caused by nuclear leaks and inaccurate radiotherapy, radioprotectants with considerable free radical scavenging capacities, along with negligible adverse effects, are highly regarded. Herein, unlike being performed as toxic chemotherapeutic drug candidates, molybdenum-based polyoxometalate nanoclusters (Mo-POM NCs) were developed as a non-toxic potent radioprotectant with impressive free radical scavenging capacities for ionizing radiation protection. In comparison to the clinically used radioprotectant drug amifostine (AM), the as-prepared Mo-POM NCs exhibited effective shielding capacity by virtue of their antioxidant properties resulting from a valence shift of molybdenum ions, alleviating not only ionizing radiation-induced DNA damage but also disruption of the radiation-sensitive hematopoietic system. More encouragingly, without trouble with long-term retention in the body, ultra-small sized Mo-POM NCs prepared by the mimetic Folin-Ciocalteu assay can be removed from the body through the renal-urinary pathway and the hepato-enteral excretory system after completing the mission of radiation protection. This work broadened the biological applications of metal-based POM chemotherapeutic drugs to act as a neozoic radioprotectant.


Asunto(s)
Protectores contra Radiación , Protectores contra Radiación/farmacología , Molibdeno , Radiación Ionizante , Radicales Libres
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA