Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(6): 538-543, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-38952094

RESUMEN

Objective To investigate the expression levels of lncRNA H19 in ulcerative colitis (UC) patients and its role in UC. Methods Colonic mucosa and serum samples were collected from 25 UC patients and 25 healthy individuals at the General Hospital of Xizang Military Region. The expression levels of lncRNA H19 were detected, and the receiver operating characteristic (ROC) curve analysis was performed using serum samples. An in vitro inflammatory model was established in HT29 colorectal cells under lipopolysaccharide (LPS) stimulation, and the expression levels of lncRNA H19 were observed in HT29 cells through fluorescence quantitative PCR. HT29 cells with downregulated lncRNA H19 was constructed using lentivirus-mediated shRNA. The effect of lncRNA H19 on cell survival was analyzed through MTT assay. Cell apoptosis was detected by flow cytometry, and the protein expression levels of apoptosis and autophagy markers were analyzed through Western blot. After treatment with rapamycin, the survival of HT29 cells was observed by MTT assay. Results lncRNA H19 was highly expressed in the colonic mucosa and serum samples of UC patients with the ROC area being 0.786. Following LPS stimulation, the expression levels of lncRNA H19 was significantly increased in a time-dependent manner. Downregulation of lncRNA H19 can promote cell survival, inhibit cell apoptosis and increase autophagy level in HT29 cells. Treatment with rapamycin significantly increased the cell survival rate. Conclusion Knock-down of lncRNA H19 increases autophagy levels, inhibits LPS-induced apoptosis and promotes the survival of colon cells.


Asunto(s)
Apoptosis , Autofagia , Colitis Ulcerosa , Lipopolisacáridos , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Apoptosis/efectos de los fármacos , Apoptosis/genética , Autofagia/efectos de los fármacos , Autofagia/genética , Lipopolisacáridos/farmacología , Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , Células HT29 , Masculino , Femenino , Persona de Mediana Edad , Adulto , Técnicas de Silenciamiento del Gen
2.
Sensors (Basel) ; 24(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39001142

RESUMEN

The semantic segmentation of the 3D operating environment represents the key to intelligent mining shovels' autonomous digging and loading operation. However, the complexity of the operating environment of intelligent mining shovels presents challenges, including the variety of scene targets and the uneven number of samples. This results in low accuracy of 3D semantic segmentation and reduces the autonomous operation accuracy of the intelligent mine shovels. To solve these issues, this paper proposes a 3D point cloud semantic segmentation network based on memory enhancement and lightweight attention mechanisms. This model addresses the challenges of an uneven number of sampled scene targets, insufficient extraction of key features to reduce the semantic segmentation accuracy, and an insufficient lightweight level of the model to reduce deployment capability. Firstly, we investigate the memory enhancement learning mechanism, establishing a memory module for key semantic features of the targets. Furthermore, we address the issue of forgetting non-dominant target point cloud features caused by the unbalanced number of samples and enhance the semantic segmentation accuracy. Subsequently, the channel attention mechanism is studied. An attention module based on the statistical characteristics of the channel is established. The adequacy of the expression of the key features is improved by adjusting the weights of the features. This is done in order to improve the accuracy of semantic segmentation further. Finally, the lightweight mechanism is studied by adopting the deep separable convolution instead of conventional convolution to reduce the number of model parameters. Experiments demonstrate that the proposed method can improve the accuracy of semantic segmentation in the 3D scene and reduce the model's complexity. Semantic segmentation accuracy is improved by 7.15% on average compared with the experimental control methods, which contributes to the improvement of autonomous operation accuracy and safety of intelligent mining shovels.

3.
J Hazard Mater ; 475: 134857, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38876017

RESUMEN

Interactions between positively charged amino-modified (APS) and negatively charged bare (BPS) polystyrene nanoplastics may cause heteroaggregation in aquatic environments. This study investigated the effects of particle concentration ratio, solution chemistry [electrolytes, pH, and natural organic matter (NOM)], and interaction sequence on their heteroaggregation kinetics. In the absence of electrolytes and NOM, the APS/BPS ratio for attaining maximum heteroaggregation rate (khetero) increased from APS/BPS= 3/7 to APS/BPS= 1/1 as pH increased from 4 to 10, indicating that electrostatic interactions dominated heteroaggregation. In the absence of NOM, khetero ranked APS/BPS= 2/3 > APS/BPS= 1/1 > APS/BPS= 3/2. Colloidal stability decreased linearly as pH increased from 4 to 8 at APS/BPS= 1/1, while diffusion-limited heteroaggregation persisted at pH 10. In NaCl solution, humic acid (HA) retarded heteroaggregation more effectively than sodium alginate (SA) via steric hindrance and weakening electrostatic interactions, following the modified Derjaguin-Landau-Verwey-Overbeek (MDLVO) theory. Compared with simultaneous interactions among APS, BPS, NaCl, and NOM, the NOM retardation effects on heteroaggregation weakened if delaying its interaction with others. In CaCl2 solution, the effects of NOM on heteroaggregation depended on counterbalance among charge screening, steric hindrance, and calcium bridging. These findings highlight the important role of heteroaggregation between oppositely charged nanoplastics on their fate and transport in aquatic environments.

4.
Food Chem ; 457: 140146, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901338

RESUMEN

A novel method is introduced for extracting and enriching Cd(II) and Pb(II) from edible oils using glutathione disulfide (GSSG) as both an extractant and a phase-separation agent. The ions in the oils were initially extracted into an aqueous solution containing GSSG. After mixing the solution with acetonitrile at the appropriate volume ratio, a new phase formed, resulting in enrichment of the analytes. The experimental conditions were optimized using response surface methodology with a central composite design. Under optimal conditions, the method offered a combined enrichment factor of >660, with combined extraction efficiencies of 84.31% and 83.35% for Cd(II) and Pb(II), respectively. Finally, the method was conjugated to capillary electrophoresis to determine Cd(II) and Pb(II) in edible oil samples, with detection limits of 0.45 and 1.24 ppb, respectively. In comparison to traditional approaches, the GSSG-based method demonstrates rapidity, efficiency, and recyclability in extracting heavy metal ions from complex matrices.

5.
Sensors (Basel) ; 24(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38732886

RESUMEN

In this paper, a temperature measurement system with NTC (Negative Temperature Coefficient) thermistors was designed. An MCU (Micro Control Unit) primarily operates by converting the voltage value collected by an ADC (Analog-to-Digital Converter) into the resistance value. The temperature value is then calculated, and a DAC (Digital-to-Analog Converter) outputs a current of 4 to 20 mA that is linearly related to the temperature value. The nonlinear characteristics of NTC thermistors pose a challenging problem. The nonlinear characteristics of NTC thermistors were to a great extent solved by using a resistance ratio model. The high precision of the NTC thermistor is obtained by fitting it with the Hoge equation. The results of actual measurements suggest that each module works properly, and the temperature measurement accuracy of 0.067 °C in the range from -40 °C to 120 °C has been achieved. The uncertainty of the output current is analyzed and calculated with the uncertainty of 0.0014 mA. This type of system has broad potential applications in industry fields such as the petrochemical industry.

6.
J Am Heart Assoc ; 13(10): e033455, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38761074

RESUMEN

BACKGROUND: The health effects of particulate matter with an aerodynamic diameter ≤2.5 µm (PM2.5) might differ depending on compositional variations. Little is known about the joint effect of PM2.5 constituents on metabolic syndrome and cardiovascular disease (CVD). This study aims to evaluate the combined associations of PM2.5 components with CVD, identify the most detrimental constituent, and further quantify the mediation effect of metabolic syndrome. METHODS AND RESULTS: A total of 14 427 adults were included in a cohort study in Sichuan, China, and were followed to obtain the diagnosis of CVD until 2021. Metabolic syndrome was defined by the simultaneous occurrence of multiple metabolic disorders measured at baseline. The concentrations of PM2.5 chemical constituents within a 1-km2 grid were derived based on satellite- and ground-based detection methods. Cox proportional hazard models showed that black carbon, organic matter (OM), nitrate, ammonium, chloride, and sulfate were positively associated with CVD risks, with hazard ratios (HRs) ranging from 1.24 to 2.11 (all P<0.05). Quantile g-computation showed positive associations with 4 types of CVD risks (HRs ranging from 1.48 to 2.25, all P<0.05). OM and chloride had maximum weights for CVD risks. Causal mediation analysis showed that the positive association of OM with total CVD was mediated by metabolic syndrome, with a mediation proportion of 1.3% (all P<0.05). CONCLUSIONS: Long-term exposure to PM2.5 chemical constituents is positively associated with CVD risks. OM and chloride appear to play the most responsible role in the positive associations between PM2.5 and CVD. OM is probably associated with CVD through metabolic-related pathways.


Asunto(s)
Enfermedades Cardiovasculares , Síndrome Metabólico , Material Particulado , Humanos , Material Particulado/efectos adversos , Enfermedades Cardiovasculares/epidemiología , Masculino , China/epidemiología , Femenino , Persona de Mediana Edad , Síndrome Metabólico/epidemiología , Estudios Prospectivos , Adulto , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/efectos adversos , Medición de Riesgo , Anciano , Factores de Tiempo , Tamaño de la Partícula , Factores de Riesgo , Contaminación del Aire/efectos adversos
7.
J Colloid Interface Sci ; 667: 128-135, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38631251

RESUMEN

The self-assembled carbon nitride quantum dots (CNQDs) has been largely advanced owing to the structure-relative photocatalytic activities, especially its electronic structure, which can be regulated by defects, functional groups, and doping. However, there are still issues such as wide band gaps for the assembles and severe recombination of photoinduced charges. Herein, we demonstrate the self-assembly of CNQDs into fusiform hollow superstructures (CNFHs), induced by hydrogen bonding between the terminal functional groups (-OH, -COOH, and -NH2). During the top-down assembly process, the hydrogen bonding dominates and initiates lateral cross-linking between adjacent CNQDs, which further twist into fusiform hollow structures. Benefitted greatly from the ultrathin and hollow nature of the superstructure that provides more exposed active sites, coupled with the introduction of phosphorus doping atoms into the framework induced narrowed band gap, CNFHs exhibits an 18-fold higher activity than the bulk counterpart toward photocatalytic hydrogen evolution after loading the CoP co-catalyst. This work presents a new platform to design and manipulate carbon nitride superstructures.

9.
Sensors (Basel) ; 24(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38475160

RESUMEN

In semiconductor manufacturing, defect inspection in non-patterned wafer production lines is essential to ensure high-quality integrated circuits. However, in actual production lines, achieving both high efficiency and high sensitivity at the same time is a significant challenge due to their mutual constraints. To achieve a reasonable trade-off between detection efficiency and sensitivity, this paper integrates the time delay integration (TDI) technology into dark-field microscopy. The TDI image sensor is utilized instead of a photomultiplier tube to realize multi-point simultaneous scanning. Experiments illustrate that the increase in the number of TDI stages and reduction in the column fixed pattern noise effectively improve the signal-to-noise ratio of particle defects without sacrificing the detecting efficiency.

10.
Mol Ther ; 32(3): 749-765, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38310356

RESUMEN

Approximately 80%-90% of hepatocellular carcinomas (HCC) occur in a premalignant environment of fibrosis and abnormal extracellular matrix (ECM), highlighting an essential role of ECM in the tumorigenesis and progress of HCC. However, the determinants of ECM in HCC are poorly defined. Here, we show that nuclear receptor RORγ is highly expressed and amplified in HCC tumors. RORγ functions as an essential activator of the matrisome program via directly driving the expression of major ECM genes in HCC cells. Elevated RORγ increases fibronectin-1 deposition, cell-matrix adhesion, and collagen production, creating a favorable microenvironment to boost liver cancer metastasis. Moreover, RORγ antagonists effectively inhibit tumor growth and metastasis in multiple HCC xenografts and immune-intact models, and they effectively sensitize HCC tumors to sorafenib therapy in mice. Notably, elevated RORγ expression is associated with ECM remodeling and metastasis in patients with HCC. Taken together, we identify RORγ as a key player of ECM remodeling in HCC and as an attractive therapeutic target for advanced HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , Sorafenib , Colágeno/metabolismo , Microambiente Tumoral
11.
Sci Total Environ ; 918: 170773, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38336054

RESUMEN

Cadmium (Cd) exposure is known to enhance breast cancer (BC) progression. Cd promotes epithelial-mesenchymal transition (EMT) in BC cells, facilitating BC cell aggressiveness and invasion, but the underlying molecular mechanisms are unclear. Hence, transgenic MMTV-Erbb2 mice (6 weeks) were orally administered Cd (3.6 mg/L, approximately equal to 19.64 µΜ) for 23 weeks, and BC cells (BT474 cells) were exposed to Cd (0, 0.1, 1 or 10 µΜ) for 72 h to investigate the effect of Cd exposure on EMT in BC cells. Chronic Cd exposure dramatically expedited tumor metastasis to multiple organs; decreased E-cadherin density; and increased Vimentin, N-cadherin, ZEB1, and Twist density in the tumor tissues of MMTV-Erbb2 mice. Notably, transcriptomic analysis of BC tumors revealed cytochrome P450 1B1 (CYP1B1) as a key factor that regulates EMT progression in Cd-treated MMTV-Erbb2 mice. Moreover, Cd increased CYP1B1 expression in MMTV-Erbb2 mouse BC tumors and in BT474 cells, and CYP1B1 inhibition decreased Cd-induced BC cell malignancy and EMT in BT474 cells. Importantly, the promotion of EMT by CYP1B1 in Cd-treated BC cells was presumably controlled by glutamine metabolism. This study offers novel perspectives into the effect of environmental Cd exposure on driving BC progression and metastasis, and this study provides important guidance for comprehensively assessing the ecological and health risks of Cd.


Asunto(s)
Cadmio , Neoplasias , Ratones , Animales , Cadmio/farmacología , Línea Celular Tumoral , Glutamina/metabolismo , Glutamina/farmacología , Reprogramación Metabólica , Transición Epitelial-Mesenquimal , Cadherinas/genética , Cadherinas/metabolismo , Cadherinas/farmacología
12.
Aging (Albany NY) ; 16(1): 348-366, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38189879

RESUMEN

Small Nuclear Ribonucleoprotein Polypeptides B and B1 (SNRPB) have been linked to multiple human cancers. However, the mechanism of SNRPB in hepatocellular carcinoma (HCC) and whether SNRPB has a synergistic effect with sorafenib in the treatment of HCC remain unclear. In this study, bioinformatic analysis found that SNRPB was an independent prognostic factor for HCC that exerted a critical effect on the progression of HCC. SNRPB was linked with immune checkpoints, cell cycle, oxidative stress and ferroptosis in HCC. Single cell sequencing analysis found that HCC cell subset with high expression of SNRPB, accounted for a higher proportion in HCC cells with higher stages, had higher expression levels of the genes which promote cell cycle, inhibit oxidative stress and ferroptosis, and had higher cell cycle score, lower oxidative stress score and ferroptosis score. Single-sample gene set enrichment analysis (ssGSEA) analysis found that 17 oxidative stress pathways and 68 oxidative stress-ferroptosis related genes were significantly correlated with SNRPB risk scores. SNRPB knockdown induced cell cycle G2/M arrest and restrained cell proliferation, while downregulated the expression of CDK1, CDK4, and CyclinB1. The combined treatment (SNRPB knockdown+sorafenib) significantly inhibited tumor growth. In addition, the expression of SLC7A11, which is closely-related to ferroptosis, decreased significantly in vitro and in vivo. Therefore, SNRPB may promote HCC progression by regulating immune checkpoints, cell cycle, oxidative stress and ferroptosis, while its downregulation inhibits cell proliferation, which enhances the therapeutic effect of sorafenib, providing a novel basis for the development of HCC therapies.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Neoplasias del Recto , Humanos , Carcinoma Hepatocelular/genética , Sorafenib/farmacología , Sorafenib/uso terapéutico , Apoptosis , Ferroptosis/genética , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular , Neoplasias Hepáticas/genética , Proteínas Nucleares snRNP
13.
Oncol Lett ; 27(1): 33, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38108078

RESUMEN

Lysosome-associated membrane protein type 2A (LAMP2A) is a key protein in the chaperone-mediated autophagy (CMA) pathway and has been demonstrated to be involved in the pathogenesis of a number of tumors. However, the role of CMA in colorectal cancer cell proliferation, metastasis and cell survival during oxidative stress and oxaliplatin resistance remains to be elucidated. In the present study, elevated expression of LAMP2A was observed in colon cancer tissues. Then, CMA activity was increased in SW480 and HT29 colorectal cancer cells with a LAMP2A overexpression vector and CMA activity was decreased using a LAMP2A short interfering RNA vector. MTT and colony formation assays showed that the colorectal cancer cell proliferation ability and cell viability following treatment with H2O2 or oxaliplatin were decreased significantly after LAMP2A knockdown and increased significantly after LAMP2A overexpression. Wound healing assays and Transwell invasion assays demonstrated that downregulation of LAMP2A expression inhibited the cell migration and invasion abilities of colorectal cancer and that upregulation of LAMP2A expression promoted cell migration and invasion. Extracellular acidification rate (ECAR) assay and lactate determination assay showed that glycolysis in colorectal cancer cells was significantly downregulated after LAMP2A knockdown and significantly upregulated after LAMP2A overexpression. Inhibition of glycolysis by 2-DG markedly attenuated LAMP2A-induced chemoresistance in colorectal cancer cells. Collectively, these data indicated that CMA can promote colorectal cancer cell proliferation, metastasis and cell survival during oxidative stress and oxaliplatin resistance and that the mechanism is related to the glycolytic pathway, which may provide a new therapeutic target for colorectal cancer patients.

14.
BMC Public Health ; 23(1): 2556, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129832

RESUMEN

OBJECTIVE: Previous studies proved the effect of long-term exposure to air pollution or physical activity (PA) on the risk of systemic inflammation-induced multimorbidity (SIIM), while the evidence regarding their joint effects was rare, especially in low- and middle-income countries. Therefore, we aimed to examine the extent of interaction or joint relations of PA and air pollution with SIIM. METHODS: This study included 72,172 participants from China Multi-Ethnic Cohort.The average concentrations of ambient particulate matter pollutants (PM1, PM2.5, and PM10) were estimated using satellite-based random forest models. Self-reported information on a range of physical activities related to occupation, housework, commuting, and leisure activities was collected by an interviewer-administered questionnaire. A total of 11 chronic inflammatory systemic diseases were assessed based on self-reported lifetime diagnosis or medical examinations. SIIM was defined as having ≥ 2 chronic diseases related to systemic inflammation. Logistic regression models were used to assess the complex associations of air pollution particulate matter and PA with SIIM. RESULTS: We found positive associations between long-term air pollution particulates exposure and SIIM, with odds ratios (95%CI) of 1.07 (1.03 to 1.11), 1.18 (1.13 to 1.24), and 1.08 (1.05 to 1.12) per 10 µg/m3 increase in PM1, PM2.5, and PM10. No significant multiplicative interaction was found between ambient air pollutant exposure and PA on SIIM, whereas negative additive interaction was observed between long-term exposure to PM2.5 and PA on SIIM. The positive associations between low volume PA and SIIM were stronger among those exposed to high-level air pollution particulates. Compared with individuals engaged in high volume PA and exposed to low-level ambient air pollutants, those engaged in low volume PA and exposed to high-level ambient air pollutants had a higher risk of SIIM (OR = 1.49 in PM1 exposure, OR = 1.84 in PM2.5 exposure, OR = 1.19 in PM10 exposure). CONCLUSIONS: Long-term (3 years average) exposure to PM1, PM2.5, and PM10 was associated with an increased risk of SIIM. The associations were modified by PA, highlighting PA's importance in reducing SIIM for all people, especially those living in high-level air pollution regions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Adulto , Humanos , Estudios de Cohortes , Multimorbilidad , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Inflamación/epidemiología , Polvo , China/epidemiología , Ejercicio Físico , Dióxido de Nitrógeno/análisis
15.
Cell Mol Biol (Noisy-le-grand) ; 69(11): 254-259, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38015511

RESUMEN

The purpose of this study was to detect the changes of P-Glycoprotein (P-GP) expression in rat brain microvessel endothelial cell line RBE4 after the action of Tetramethylpyrazine (TMP) on Carbamazepine (CBZ), so as to clarify the potential mechanism of TMP combined with CBZ against intractable epilepsy drug resistance. The RBE4 cell line was utilized for in vitro analysis. Cells were divided into control, CBZ, and CBZ-TMP group. The expression of P-GP was assessed using Western blot and reverse transcription polymerase chain reaction (RT-PCR). Intracellular concentration of CBZ was measured through high-performance liquid chromatography (HPLC). The differential expression of mRNA was evaluated by RNA sequencing. The intracellular concentration of CBZ in the CBZ-TMP group was significantly higher than that in other groups. The expression of P-GP in the CBZ group was significantly higher than that in the control group, while in the CBZ&TMP group, it was significantly lower than that in the other groups. Comparative analysis also revealed some differentially expressed genes. Compared with the CBZ group, FAM106A, SLC3A2, TENM2, etc. were upregulated most significantly in the CBZ&TMP group. ZBTB10, WDR7, STARD13, etc. were downregulated most significantly. Results suggest that TMP increases the intracellular concentration of CBZ, downregulates the expression of P-GP increased by CBZ, and modulates related cellular metabolism and signaling pathways, thus reversing the drug resistance mechanism of intractable epilepsy, providing a theoretical basis for the combination of traditional Chinese medicine and antiepileptic drugs.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Animales , Ratas , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Células Endoteliales , Carbamazepina/farmacología , Encéfalo
16.
Opt Lett ; 48(22): 5847-5850, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37966734

RESUMEN

Wavefront coding (WFC) combines phase mask design and image restoration algorithm to extend the depth of field (DOF) for various applications. However, discrete design limits finding globally optimal solutions, increasing the complexity of system design, and affecting the accuracy and robustness of image restoration. An end-to-end imaging system design has emerged to break through these limitations by integrating optical design and image processing algorithms. In this study, we propose an algorithm that synchronously optimizes the optical elements and decoding algorithm in WFC using ray-tracing simulation. We also derive formulas for the optical layer's forward and backward propagation for joint optimization of the optical layer and decoding algorithm. Experimental verification demonstrates the algorithm's effectiveness in optimizing the WFC system and offers improved performance under a unified design framework.

17.
Cureus ; 15(10): e47574, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38021786

RESUMEN

Background The poor prognosis of lung adenocarcinoma (LUAD) has been confirmed by a large number of studies, so it is necessary to construct a prognosis model. In addition, exosome is closely related to tumors, but there are few studies on exosome-related long non-coding RNA (lncRNA) (ExolncRNA). Methods In this study, we designed a prognostic model, exosome-related lncRNA-based signature (ExoLncSig), using ExolncRNA expression profiles of LUAD patients from The Cancer Genome Atlas (TCGA). ExolncRNAs were identified through univariate and multivariate and Lasso analyses. Subsequently, based on the ExoLncSig, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, immune function and immunotherapy analysis, drug screening, and so on were performed. Results AC026355.2, AC108136.1, AL590428.1, and LINC01312 were examined to establish the ExoLncSig. Gene enrichment analysis identified potential prognostic markers and therapeutic targets, including human leukocyte antigen (HLA), parainflammation, chemokine receptor (CCR), antigen-presenting cell (APC) co-inhibition, cancer-associated fibroblast (CAF), and myeloid-derived suppressor cell (MDSC). Moreover, we ascertained that the high-risk subgroup exhibits heightened susceptibility to pharmaceutical agents. Conclusion Our findings indicate that ExoLncSig holds promise as a valuable prognostic marker in LUAD. Furthermore, the immunogenic properties of ExolncRNAs may pave the way for the development of a therapeutic vaccine against LUAD.

18.
bioRxiv ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37873189

RESUMEN

Adaptive immune resistance (AIR) is a protective process used by cancer to escape elimination by CD8+ T cells. Inhibition of immune checkpoints PD-1 and CTLA-4 specifically target Interferon-gamma (IFNγ)-driven AIR. AIR begins at the plasma membrane where tumor cell-intrinsic cytokine signaling is initiated. Thus, plasma membrane remodeling by endomembrane trafficking could regulate AIR. Herein we report that the trafficking protein ADP-Ribosylation Factor 6 (ARF6) is critical for IFNγ-driven AIR. ARF6 prevents transport of the receptor to the lysosome, augmenting IFNγR expression, tumor intrinsic IFNγ signaling and downstream expression of immunosuppressive genes. In murine melanoma, loss of ARF6 causes resistance to immune checkpoint blockade (ICB). Likewise, low expression of ARF6 in patient tumors correlates with inferior outcomes with ICB. Our data provide new mechanistic insights into tumor immune escape, defined by ARF6-dependent AIR, and support that ARF6-dependent endomembrane trafficking of the IFNγ receptor influences outcomes of ICB.

19.
Chem Commun (Camb) ; 59(75): 11240-11243, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37656125

RESUMEN

A highly stable thiazole functionalized covalent triazine framework, namely CTF-BT-500, was developed for C2H6/C2H4 separation, which exhibits a record-high ethane uptake (99.7 cm3 g-1) among all reported COFs at 298 K and 1 bar. This work not only presents an excellent C2H6-selective adsorbent, but also provides guidance for the construction of robust adsorbents for value-added gas purification.

20.
Micromachines (Basel) ; 14(8)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37630094

RESUMEN

An improper Z-increment in laser solid forming can result in fluctuations in the off-focus amount during the manufacturing procedure, thereby exerting an influence on the precision and quality of the fabricated component. To solve this problem, this study proposes a closed-loop control system for a Z-increment based on machine vision monitoring. Real-time monitoring of the precise cladding height is accomplished by constructing a paraxial monitoring system, utilizing edge detection technology and an inverse perspective transformation model. This system enables the continuous assessment of the cladding height, which serves as a control signal for the regulation of the Z-increments in real-time. This ensures the maintenance of a constant off-focus amount throughout the manufacturing process. The experimental findings indicate that the proposed approach yields a maximum relative error of 1.664% in determining the cladding layer height, thereby enabling accurate detection of this parameter. Moreover, the real-time adjustment of the Z-increment quantities results in reduced standard deviations of individual cladding layer heights, and the height of the cladding layer increases. This proactive adjustment significantly enhances the stability of the manufacturing process and improves the utilization of powder material. This study can, therefore, provide effective guidance for process control and product optimization in laser solid forming.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA