Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38823148

RESUMEN

The development and optimization of Antibody-Drug Conjugates (ADCs) hinge on enhanced analytical and bioanalytical characterization, particularly in assessing critical quality attributes (CQAs). The ADC's potency is largely determined by the average number of drugs attached to the monoclonal antibody (mAb), known as the drug-to-antibody ratio (DAR). Furthermore, the drug load distribution (DLD) influences the therapeutic window of the ADC, defining the range of dosages effective in treating diseases without causing toxic effects. Among CQAs, DAR and DLD are vital; their control is essential for ensuring manufacturing consistency and product quality. Typically, hydrophobic interaction chromatography (HIC) or reversed-phase liquid chromatography (RPLC) with UV detector have been used to quantitate DAR and DLD in quality control (QC) environment. Recently, Native size-exclusion chromatography-mass spectrometry (nSEC-MS) proves the potential as a platformable quantitative method for characterizing DAR and DLD across various cysteine-linked ADCs in research or early preclinical development. In this work, we established and assessed a streamlined nSEC-MS workflow with a benchtop LC-MS platform, to quantitatively monitor DAR and DLD of different chemotype and drug load level cysteine-linked ADCs. Moreover, to deploy this workflow in QC environment, complete method validation was conducted in three independent laboratories, adhering to the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) Q2(R1) guidelines. The results met the predefined analytical target profile (ATP) and performance criteria, encompassing specificity/selectivity, accuracy, precision, linearity, range, quantification/detection limit, and robustness. Finally, the method validation design offers a reference for other nSEC-MS methods that are potentially used to determine the DAR and DLD on cysteine-linker ADCs. To the best of our knowledge, this study is the first reported systematic validation of the nSEC-MS method for detecting DAR and DLD. The results indicated that the co-validated nSEC-MS workflow is suitable for DAR and DLD routine analysis in ADC quality control, release, and stability testing.

2.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2585-2596, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38812159

RESUMEN

This study investigated the effects and mechanisms of total saponins of Panax japonicus(TSPJ) against liver injury induced by acetaminophen(APAP). Male Kunming mice were randomly divided into a blank control group, TSPJ group(200 mg·kg~(-1), ig), model group, APAP+ TSPJ low-dose group(50 mg·kg~(-1), ig), APAP+ TSPJ medium-dose group(100 mg·kg~(-1), ig), APAP+ TSPJ high-dose group(200 mg·kg~(-1), ig), and APAP+ N-acetyl-L-cysteine group(200 mg·kg~(-1), ip). The administration group received the corresponding medications via ig or ip once a day for 14 consecutive days. After the last administration for one hour, except for the blank control group and TSPJ group, all groups of mice were given 500 mg·kg~(-1) APAP by gavage. After 24 hours, mouse serum and liver tissue were collected for serum alanine aminotransferase(ALT), aspartate aminotransferase(AST), reactive oxygen species(ROS), tumor necrosis factor alpha(TNF-α), interleukin-1 beta(IL-1ß), cyclooxygenase-2(COX-2), IL-6, IL-4, IL-10, as well as lactate dehydrogenase(LDH), glutathione(GSH), superoxide dismutase(SOD), catalase(CAT), total antioxidant capacity(T-AOC), malondialdehyde(MDA), and myeloperoxidase(MPO) liver tissue. Hematoxylin-eosin staining was used to observe the morphological changes of liver tissue. The mRNA expression levels of lymphocyte antigen 6G(Ly6G), galectin 3(Mac-2), TNF-α, IL-1ß, COX-2, IL-6, IL-4, and IL-10 in liver tissue were determined by quantitative real-time polymerase chain reaction(PCR). Western blot was utilized to detect the protein expression levels of Ly6G, Mac-2, extracellular regulated protein kinases(ERK), phosphorylated extracellular regulated protein kinases(p-ERK), COX-2, inhibitor of nuclear factor κB protein α(IκBα), phosphorylated inhibitor of nuclear factor κB protein α(p-IκBα), and nuclear factor-κB subunit p65(NF-κB p65) in cytosol and nucleus in liver tissue. The results manifested that TSPJ dramatically reduced liver coefficient, serum ALT, AST, ROS, TNF-α, IL-1ß, IL-6, and COX-2 levels, LDH, MPO, and MDA contents in liver tissue, and mRNA expressions of TNF-α, IL-1ß, and IL-6 in APAP-induced liver injury mice. It prominently elevated serum IL-4 and IL-10 levels, GSH, CAT, SOD, and T-AOC contents, and mRNA expressions of IL-4 and IL-10 in liver tissue, improved the degree of liver pathological damage, and suppressed neutrophil infiltration and macrophage recruitment in liver tissue. In addition, TSPJ lessened the mRNA and protein expressions of neutrophil marker Ly6G, macrophage marker Mac-2, and COX-2 in liver tissue, protein expressions of p-ERK, p-IκBα, and NF-κB p65 in nuclear, and p-ERK/ERK and p-IκBα/p-IκBα ratios and hoisted protein expression of NF-κB p65 in cytosol. These results suggest that TSPJ has a significant protective effect on APAP-induced liver injury in mice, and it can alleviate APAP-induced oxidative damage and inflammatory response. Its mechanism may be related to suppressing ERK/NF-κB/COX-2 signaling pathway activation, thus inhibiting inflammatory cell infiltration, cytokine production, and liver cell damage.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Ciclooxigenasa 2 , Hígado , FN-kappa B , Panax , Saponinas , Transducción de Señal , Animales , Acetaminofén/efectos adversos , Acetaminofén/toxicidad , Ratones , Panax/química , Masculino , Saponinas/farmacología , Saponinas/administración & dosificación , FN-kappa B/genética , FN-kappa B/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Transducción de Señal/efectos de los fármacos , Humanos , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología
3.
Int J Mol Sci ; 25(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38791184

RESUMEN

Recombinant adeno-associated virus (rAAV) has emerged as a prominent vector for in vivo gene therapy, owing to its distinct advantages. Accurate determination of the rAAV genome titer is crucial for ensuring the safe and effective administration of clinical doses. The evolution of the rAAV genome titer assay from quantitative PCR (qPCR) to digital PCR (dPCR) has enhanced accuracy and precision, yet practical challenges persist. This study systematically investigated the impact of various operational factors on genome titration in a single-factor manner, aiming to address potential sources of variability in the quantitative determination process. Our findings revealed that a pretreatment procedure without genome extraction exhibits superior precision compared with titration with genome extraction. Additionally, notable variations in titration results across different brands of dPCR instruments were documented, with relative standard deviation (RSD) reaching 23.47% for AAV5 and 11.57% for AAV8. Notably, optimal operations about DNase I digestion were identified; we thought treatment time exceeding 30 min was necessary, and there was no need for thermal inactivation after digestion. And we highlighted that thermal capsid disruption before serial dilution substantially affected AAV genome titers, causing a greater than ten-fold decrease. Conversely, this study found that additive components of dilution buffer are not significant contributors to titration variations. Furthermore, we found that repeated freeze-thaw cycles significantly compromised AAV genome titers. In conclusion, a comprehensive dPCR titration protocol, incorporating insights from these impact factors, was proposed and successfully tested across multiple serotypes of AAV. The results demonstrate acceptable variations, with the RSD consistently below 5.00% for all tested AAV samples. This study provides valuable insights to reduce variability and improve the reproducibility of AAV genome titration using dPCR.


Asunto(s)
Dependovirus , Vectores Genéticos , Genoma Viral , Dependovirus/genética , Vectores Genéticos/genética , Humanos , Reacción en Cadena de la Polimerasa/métodos , Células HEK293 , Terapia Genética/métodos , Carga Viral
4.
Anal Chim Acta ; 1297: 342349, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38438233

RESUMEN

SARS-CoV-2, the causative agent of COVID-19, has imposed a major public health threat, which needs effective therapeutics and vaccination strategies. Several potential candidate vaccines being rapidly developed are in clinical evaluation and recombinant vaccine has gained much attention thanks to its potential for greater response predictability, improved efficacy, rapid development and reduced side effects. Recombinant vaccines are designed and manufactured using bacterial, yeast cells or mammalian cells. A small piece of DNA is taken from the virus or bacterium against which we want to protect and inserted into the manufacturing cells. Due to the extremely complex heterogeneity of SARS-CoV-2 recombinant vaccine, single technology platform cannot achieve thorough and accurate characterization of such difficult proteins so integrating comprehensive technologies is essential. This study illustrates an innovative workflow employing multiple separation techniques tandem high-resolution mass spectrometry for comprehensive and in-depth characterization of SARS-CoV-2 recombinant vaccine, including ultra-high performance liquid chromatography (UHPLC), ion exchange chromatography (IEX) and imaged capillary isoelectric focusing (icIEF). The integrated methodology focuses on the importance of cutting-edge icIEF-MS online coupling and icIEF fractionation applied to revealing the heterogeneity secret of SARS-CoV-2 recombinant vaccine.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , COVID-19/prevención & control , SARS-CoV-2/genética , Espectrometría de Masas en Tándem , Saccharomyces cerevisiae , Vacunas Sintéticas , Mamíferos
5.
MedComm (2020) ; 5(4): e506, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38525110

RESUMEN

Recombinant proteins are gaining increasing popularity for treating human diseases. The clinical effectiveness of recombinant proteins is directly related to their biological activity, which is an important indicator in drug development and quality control. However, certain recombinant proteins have unclear or complex signal pathways, making detecting their activity in vitro difficult. For instance, recombinant human endostatin (endostatin), a new antitumor drug developed in China, lacks a sensitive and stable assay for its biological activity since being market approval. To address this issue, we performed a genome-wide screening of immortalized human umbilical vein endothelial cells (HUVECs) using a CRISPR/Cas9 knockout library containing 20,000 targeted genes. We identified two potential endostatin-resistant genes, NEPSPP and UTS2, and successfully constructed a highly sensitive cell line, HUVEC-UTS2-3#, by knocking down the UTS2 gene. Based on the optimized parameters of HUVEC-UTS2-3# cells, we established a new method for detecting the biological activity of endostatin. The method was validated, and it produced results consistent with primary HUVEC cells but with higher sensitivity and more stable data. The use of gene-editing technology provides a novel solution for detecting the biological activity of recombinant proteins that other methods cannot detect.

6.
Signal Transduct Target Ther ; 9(1): 33, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38369543

RESUMEN

Pyrogen, often as a contaminant, is a key indicator affecting the safety of almost all parenteral drugs (including biologicals, chemicals, traditional Chinese medicines and medical devices). It has become a goal to completely replace the in vivo rabbit pyrogen test by using the in vitro pyrogen test based on the promoted 'reduction, replacement and refinement' principle, which has been highly considered by regulatory agencies from different countries. We used NF-κB, a central signalling molecule mediating inflammatory responses, as a pyrogenic marker and the monocyte line THP-1 transfected with a luciferase reporter gene regulated by NF-κB as an in vitro model to detect pyrogens by measuring the intensity of a fluorescence signal. Here, we show that this test can quantitatively and sensitively detect endotoxin (lipopolysaccharide from different strains) and nonendotoxin (lipoteichoic acid, zymosan, peptidoglycan, lectin and glucan), has good stability in terms of NF-κB activity and cell phenotypes at 39 cell passages and can be applied to detect pyrogens in biologicals (group A & C meningococcal polysaccharide vaccine; basiliximab; rabies vaccine (Vero cells) for human use, freeze-dried; Japanese encephalitis vaccine (Vero cells), inactivated; insulin aspart injection; human albumin; recombinant human erythropoietin injection (CHO Cell)). The within-laboratory reproducibility of the test in three independent laboratories was 85%, 80% and 80% and the interlaboratory reproducibility among laboratories was 83.3%, 95.6% and 86.7%. The sensitivity (true positive rate) and specificity (true negative rate) of the test were 89.9% and 90.9%, respectively. In summary, the test provides a novel alternative for pyrogen detection.


Asunto(s)
FN-kappa B , Pirógenos , Animales , Chlorocebus aethiops , Conejos , Humanos , Pirógenos/farmacología , Pirógenos/química , Células Vero , Reproducibilidad de los Resultados , Línea Celular
7.
Biologicals ; 85: 101744, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38402730

RESUMEN

Biosimilars have played a significant role in alleviating healthcare burdens and enhancing patient access to high-quality biologic-based pharmaceutical therapies. The World Health Organization (WHO), as well as various national governments and regulatory agencies, have established corresponding regulations and guidelines to encourage the development of biosimilars. China, as a populous nation with a substantial demand for biologic therapies, has made substantial investments in the research and development (R&D) of a number of biosimilars, making it the global leader in terms of the number of biosimilar varieties developed and the companies involved. This article summarizes the landscape of biosimilar R&D and registration in China, the development of regulatory science for biosimilars (including guidelines) in China, the challenges faced in biosimilar development in China, and a discussion of and suggestions for tailoring or even waiving comparative clinical efficacy studies.


Asunto(s)
Biosimilares Farmacéuticos , Humanos , Biosimilares Farmacéuticos/uso terapéutico , China
8.
Zhongguo Zhong Yao Za Zhi ; 49(1): 185-196, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38403351

RESUMEN

This study investigated the effect of trametenolic acid(TA) on the migration and invasion of human hepatocellular carcinoma HepG2.2.15 cells by using Ras homolog gene family member C(RhoC) as the target and probed into the mechanism, aiming to provide a basis for the utilization of TA. The methyl thiazolyl tetrazolium(MTT) assay was employed to examine the proliferation of HepG2.2.15 cells exposed to TA, and scratch and Transwell assays to examine the cell migration and invasion. The pull down assay was employed to determine the impact of TA on RhoC GTPase activity. Western blot was employed to measure the effect of TA on the transport of RhoC from cytoplasm to cell membrane and the expression of RhoC/Rho-associated kinase 1(ROCK1)/myosin light chain(MLC)/matrix metalloprotease 2(MMP2)/MMP9 pathway-related proteins. RhoC was over-expressed by transient transfection of pcDNA3.1-RhoC. The changes of F-actin in the cytoskeleton were detected by Laser confocal microscopy. In addition, the changes of cell migration and invasion, expression of proteins in the RhoC/ROCK1/MLC/MMP2/MMP9 pathway, and RhoC GTPase activity were detected. The subcutaneously transplanted tumor model of BALB/c nude mice and the low-, medium-, and high-dose(40, 80, and 120 mg·kg~(-1), respectively) TA groups were established and sorafenib(20 mg·kg~(-1)) was used as the positive control. The tumor volume and weight in each group were measured, and the expression of related proteins in the tumor tissue was determined by Western blot. The results showed that TA inhibited the proliferation of HepG2.2.15 cells in a concentration-dependent manner, with the IC_(50) of 66.65 and 23.09 µmol·L~(-1) at the time points of 24 and 48 h, respectively. The drug administration groups had small tumors with low mass. The tumor inhibition rates of sorafenib and low-, medium-and high-dose TA were 62.23%, 26.48%, 55.45%, and 62.36%, respectively. TA reduced migrating and invading cells and inhibited RhoC protein expression and RhoC GTPase activity in a concentration-dependent manner, dramatically reducing RhoC and membrane-bound RhoC GTPase. The expression of ROCK1, MLC, p-MLC, MMP2, and MMP9 downstream of RhoC can be significantly inhibited by TA, as confirmed in both in vitro and in vivo experiments. After HepG2.2.15 cells were transfected with pcDNA3.1-RhoC to overexpress RhoC, TA down-regulated the protein levels of RhoC, ROCK1, MLC, p-MLC, MMP2, and MMP9 and decreased the activity of RhoC GTPase, with the inhibition level comparable to that before overexpression. In summary, TA can inhibit the migration and invasion of HepG2.2.15 cells. It can inhibit the RhoC/ROCK1/MLC/MMP2/MMP9 signaling pathway by suppressing RhoC GTPase activity and down-regulating RhoC expression. This study provides a new idea for the development of autophagy modulators targeting HSP90α to block the proliferation and inhibit the invasion and migration of hepatocellular carcinoma cells via multiple targets of active components in traditional Chinese medicines.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Humanos , Proteína rhoC de Unión a GTP/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Metaloproteinasa 9 de la Matriz/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo , Sorafenib , Ratones Desnudos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Línea Celular Tumoral , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Movimiento Celular , Proliferación Celular
9.
Vaccines (Basel) ; 11(11)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-38006013

RESUMEN

Of all of the components in SARS-CoV-2 inactivated vaccines, nucleocapsid protein (N) is the most abundant and highly conserved protein. However, the function of N in these vaccines, especially its influence on the targeted spike protein's response, remains unknown. In this study, the immunization of mice with the N protein alone was shown to reduce the viral load, alleviating pulmonary pathological lesions after challenge with the SARS-CoV-2 virus. In addition, co-immunization and pre-immunization with N were found to induce higher S-specific antibody titers rather than compromise them. Remarkably, the same trend was also observed when N was administered as the booster dose after whole inactivated virus vaccination. N-specific IFN-γ-secreting T cell response was detected in all groups and exhibited a certain relationship with S-specific IgG antibody improvements. Together, these data indicate that N has an independent role in vaccine-induced protection and improves the S-specific antibody response to inactivated vaccines, revealing that an interplay mechanism may exist in the immune responses to complex virus components.

10.
Pharm Biol ; 61(1): 1343-1363, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37623313

RESUMEN

CONTEXT: Tormentic acid (TA), an effective triterpenoid isolated from Chaenomeles speciosa (Sweet) Nakai (Rosaceae) fruits, exerts an effective treatment for gastric damage. OBJECTIVE: To investigate the gastroprotective effect of TA on indomethacin (IND) damaged GES-1 cells and rats, and explore potential mechanisms. MATERIALS AND METHODS: TA concentrations of 1.563-25 µM were used. Cell proliferation, apoptosis and migration were performed using MTT, colony formation, wound healing, migration, Hoechst staining assays. SD rats were divided into control, IND, TA (1, 2 and 4 mg/kg) + IND groups, once a day for 21 continuous days. Twenty-four hours after the last administration, all groups except the control group were given IND (100 mg/kg) by gavage. Gastric juice parameters, gastric ulcer, gastric blood flow (GBF), blood biochemical parameters and cytokine analysis and gastric mucosal histopathology were detected for 2 h and 6 h after IND oral administration. The mRNA and protein expression of miR-139 and the CXCR4/CXCL12/PLC/PKC/Rho A/MLC pathway were analyzed in the IND-damaged GES-1 cells and gastric tissue of rats. RESULTS: TA might ameliorate the gastric mucosal injury by accelerating the IND-damaged GES-1 cell proliferation and migration, ameliorating GBF, ulcer area and pathologic changes, the redox system and cytokine levels, the gastric juice parameters, elevating the gastric pH in IND damaged rats; suppressed miR-139 mRNA expression, elevated CXCR4 and CXCL12 mRNA and protein expression, p-PLC, p-PKC, Rho A, MLCK and p-MLC protein expression. DISCUSSION AND CONCLUSIONS: TA may have potential use as a clinical drug candidate for gastric mucosal lesion treatment.


Asunto(s)
MicroARNs , Triterpenos , Animales , Ratas , Ratas Sprague-Dawley , Frutas , Triterpenos/farmacología , Citocinas , Quimiocina CXCL12
11.
Altern Ther Health Med ; 29(7): 376-381, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37535908

RESUMEN

Objective: The present study aimed to assess the clinical efficacy of acupuncture with the Canggui Tanxue Technique on the Huantiao point for treating sciatica caused by lumbar disc herniation. Methods: This randomized controlled trial evaluated outpatient and inpatient data of patients from the Department of Acupuncture and Encephalopathy at Yancheng City Hospital of Traditional Chinese Medicine, Nanjing University of Traditional Chinese Medicine, between March 2020 and October 2022. A total of 100 eligible cases were recruited. Patients were randomly assigned using a random number table method at a ratio of 1:1 to receive either routine acupuncture technique on the Huantiao point (control group) or Canggui Tanxue Technique on the Huantiao point (Canggui Tanxue group), with 50 cases in each group. Outcome measures included post-treatment pain and clinical efficacy. Results: Canggui Tanxue Technique demonstrated significant pain reduction and improved functional restoration compared to the routine technique, as evidenced by significantly lower scores on the Visual Analogue Scale (VAS), Japanese Orthopaedic Association (JOA) scores, and Roland-Morris Disability Questionnaire (RDQ) scores (P < .05). Patients receiving acupuncture with Canggui Tanxue Technique exhibited significantly higher clinical efficacy compared to those receiving the routine technique (P < .05). Conclusion: Acupuncture with Canggui Tanxue Technique on the Huantiao point provides superior pain reduction and functional restoration for patients with sciatica caused by lumbar disc herniation compared to routine techniques. This approach offers high safety, potent efficiency, and better operability.


Asunto(s)
Terapia por Acupuntura , Desplazamiento del Disco Intervertebral , Ciática , Humanos , Desplazamiento del Disco Intervertebral/complicaciones , Desplazamiento del Disco Intervertebral/terapia , Ciática/etiología , Ciática/terapia , Terapia por Acupuntura/métodos , Resultado del Tratamiento , Medicina Tradicional China
12.
J Phys Chem A ; 127(28): 5772-5778, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37418276

RESUMEN

The rotational spectrum of acetoin (3-hydroxy-2-butanone) was measured by using Fourier transform microwave spectroscopy with the aid of quantum chemical calculations. Only one conformer of acetoin was detected in the pulsed jet, whose spectrum featured the splittings raised from the internal rotation of the methyl top linking to the C═O group. Based on the spectroscopic result, radio-astronomical searches for acetoin were carried out toward the massive star-forming region Sgr B2(N) using the Shanghai Tianma 65 m and IRAM 30 m radio telescopes. No lines belonging to acetoin were detected toward Sgr B2(N). Its upper limit of column density was calculated.

13.
Plant J ; 115(2): 317-334, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37009643

RESUMEN

Frequent herbicide use selects for herbicide resistance in weeds. Cytochrome P450s are important detoxification enzymes responsible for herbicide resistance in plants. We identified and characterized a candidate P450 gene (BsCYP81Q32) from the problematic weed Beckmannia syzigachne to test whether it conferred metabolic resistance to the acetolactate synthase-inhibiting herbicides mesosulfuron-methyl, bispyribac-sodium, and pyriminobac-methyl. Transgenic rice overexpressing BsCYP81Q32 was resistant to the three herbicides. Equally, rice overexpressing the rice ortholog gene OsCYP81Q32 was more resistant to mesosulfuron-methyl. Conversely, an OsCYP81Q32 gene knockout generated using CRISPR/Cas9 enhanced mesosulfuron-methyl sensitivity in rice. Overexpression of the BsCYP81Q32 gene resulted in enhanced mesosulfuron-methyl metabolism in transgenic rice seedlings via O-demethylation. The major metabolite, demethylated mesosulfuron-methyl, was chemically synthesized and displayed reduced herbicidal effect in plants. Moreover, a transcription factor (BsTGAL6) was identified and shown to bind a key region in the BsCYP81Q32 promoter for gene activation. Inhibition of BsTGAL6 expression by salicylic acid treatment in B. syzigachne plants reduced BsCYP81Q32 expression and consequently changed the whole plant response to mesosulfuron-methyl. Sequence polymorphisms in an important region of the BsTGAL6 promoter may explain the higher expression of BsTGAL6 in resistant versus susceptible B. syzigachne plants. Collectively, the present study reveals the evolution of an herbicide-metabolizing and resistance-endowing P450 and its transcription regulation in an economically important weedy plant species.


Asunto(s)
Acetolactato Sintasa , Herbicidas , Oryza , Acetolactato Sintasa/genética , Poaceae/genética , Compuestos de Sulfonilurea/farmacología , Oryza/genética , Oryza/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Herbicidas/farmacología , Resistencia a los Herbicidas/genética
15.
Expert Rev Vaccines ; 22(1): 270-277, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36779650

RESUMEN

INTRODUCTION: Potency is a critical quality attribute for controlling quality consistency and relevant biological properties of vaccines. Owing to the high demand for animals, lengthy operations and high variability of in vivo methods, in vitro alternatives for human vaccine potency assays are extensively developed. AREAS COVERED: Herein, in vivo and in vitro methods for potency assays of previously licensed human vaccines were sorted, followed by a brief description of the background for substituting in vivo methods with in vitro alternatives. Based on the analysis of current research on the substitution of vaccine potency assays, barriers and suggestions for substituting were proposed. EXPERT OPINION: Owing to the variability of in vivo methods, the correlation between in vivo and in vitro methods may be low. One or more in vitro method(s) that determine the vaccine antigen content and functions, should be established. Since the substitution involves with the change of critical quality attributes and specifications, the specifications of in vitro methods should be appropriately set to maintain the efficacy of vaccines. For novel vaccines in research and development, in vitro methods for monitoring the consistency and relevant biological properties, should be established based on reflecting the immunogenicity of vaccines.


Asunto(s)
Potencia de la Vacuna , Vacunas , Animales , Humanos , Antígenos , Vacunación
16.
Bioprocess Biosyst Eng ; 46(4): 499-505, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36800017

RESUMEN

The current biocatalytic method of industrial Cytidine triphosphate (CTP) production suffers from reaction rate loss. It is caused by gradually increasing acetate salt concentration, which inhibits enzyme activities and decreases the final yield. This work gave a possible solution to this problem through computational aided design of CMP kinase (CMPK), an enzyme in the CTP production system, to increase its stability in solution with high acetate salt concentration. Enlightened by the features of natural halophilic enzymes, the basic and neutral surface residues were replaced with acidic amino acids. This protein design strategy effectively increased the activity of CMPK in the working condition (acetate concentration over 1200 mM). The halotolerant CMPK was applied in fed-batch production of CTP. The maximum titer was 201.4 ± 1.6 mM, and the productivity was 12.6 mM L-1 h-1, increased 26.4% and 27.8% from the process using wild-type CMPK, respectively.


Asunto(s)
Nucleósido-Fosfato Quinasa , Citidina Trifosfato , Nucleósido-Fosfato Quinasa/metabolismo
17.
Hum Vaccin Immunother ; 19(1): 2164140, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36600518

RESUMEN

Coxsackievirus A6 (CA6) is one of the major causative agents of herpangina and hand-foot-mouth disease (HFMD). Since 2008, CA6 has circulated widely around the world. Especially in Asia-Pacific region CA6 had even replaced enterovirus A71 (EV71) and coxsackievirus A16 (CA16) as the main prevalent strain of HFMD. In the recent 10 years, monovalent and multivalent vaccines against CA6 have been researched and developed by manufacturers from China, Korea, and the USA. The neutralizing antibody titer is a key indicator for accurately evaluating immunogenicity of vaccine. However, so far, the World Health Organization international standard for CA6 neutralizing antibody has not been available. In order to meet the needs of evaluating the immunogenicity of vaccines against CA6, the first Chinese national standard for CA6 neutralizing antibody was established, which was conducted to ensure that methods used to measure the neutralizing antibody titers against CA6 are accurate, reliable, and comparable. Three lyophilized candidate standards (29#, 39# and 44#) were produced with 0.40 ml/vial from plasma samples donated by healthy individuals. The collaborative study showed that the 29# candidate standard could effectively minimize the variability in neutralization titers between labs and across challenging viruses of different genotypes (A, D1, and D3). Therefore, the 29# candidate sample was established as the first Chinese national standard for CA6 neutralizing antibody test. This standard has good long-term stability and was assigned a potency of 150 units per milliliter (U/ml) of CA6 neutralizing antibody. It will contribute to ensure uniformity of potency or activity of vaccines and potentially therapeutic antibody preparations.


Asunto(s)
Enterovirus Humano A , Enterovirus , Enfermedad de Boca, Mano y Pie , Humanos , Enterovirus/genética , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Vacunas Combinadas
18.
Anal Sci Adv ; 4(9-10): 282-292, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38715593

RESUMEN

IL-1ß is a essential molecule in inflammatory signalling pathways and plays an essential role in inflammatory diseases. Accordingly, the development of monoclonal antibodies (mAbs) that target IL-1ß has become the focus of developing new anti-inflammatory drugs. The successful clinical application of therapeutic antibodies is dependent on good quality control, which is based on accurate bioactivity determination. The aim of this work was to develop an elegant and accurate reporter gene assay to determine the bioactivity of anti-IL-1ß antibody drugs. The D10-G4-1 cell line with a naturally high expression of IL-1 receptor was selected as the effector cell, and the plasmid containing luciferase reporter gene with NF-κB as a regulatory element was transfected into D10-G4-1 cells. After a period of pressure screening, a monoclonal cell line with good reactivity and stable expression of reporter gene was finally screened out. Stimulation of this cell line via IL-1ß addition increased the expression of the luciferase gene by activating the NF-κB signalling pathway, with the addition of luciferase substrate, which can be quantified by relative luminescence units. When anti-IL-1ß antibodies are present in the system, the expression of luciferase gene is inhibited, which demonstrates the bioactivity of anti-IL-1ß antibodies. Detailed methodological optimization and comprehensive methodological validation were followed to establish a reporter gene assay for the bioactivity of anti-IL-1ß antibodies.

19.
MedComm (2020) ; 3(4): e188, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36474858

RESUMEN

Integrating different types of vaccines into a singular immunization regimen is an effective and accessible approach to strengthen and broaden the immunogenicity of existing coronavirus disease 2019 (COVID-19) vaccine candidates. To optimize the immunization strategy of the novel mRNA-based vaccine and recombinant protein subunit vaccine that attracted much attention in COVID-19 vaccine development, we evaluated the immunogenicity of different combined regimens with the mRNA vaccine (RNA-RBD) and protein subunit vaccine (PS-RBD) in mice. Compared with homologous immunization of RNA-RBD or PS-RBD, heterologous prime-boost strategies for mRNA and protein subunit vaccines failed to simultaneously enhance neutralizing antibody (NAb) and Th1 cellular response in this study, showing modestly higher serum neutralizing activity and antibody-dependent cell-mediated cytotoxicity for "PS-RBD prime, RNA-RBD boost" and robust Th1 type cellular response for "RNA-RBD prime, PS-RBD boost". Interestingly, immunizing the mice with the mixed formulation of the two aforementioned vaccines in various proportions further significantly enhanced the NAb responses against ancestral, Delta, and Omicron strains and manifested increased Th1-type responses, suggesting that a mixed formulation of mRNA and protein vaccines might be a more prospective vaccination strategy. This study provides basic research data on the combined vaccination strategies of mRNA and protein-based COVID-19 vaccines.

20.
Front Genet ; 13: 1034832, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406123

RESUMEN

We previously screened 6 differentially expressed miRNAs in ovarian tissues of 4-vinylcyclohexene diepoxide (VCD)-treated premature ovarian failure (POF) model in SD rats, including miRNA-190a-5p, miRNA-98-5p, miRNA-29a-3p, miRNA-144-5p, miRNA-27b-3p, miRNA-151-5p. In this study, to investigate the mechanisms causing the onset of POF, we first identified miRNAs with earlier differential expression at consecutive time points in the VCD-treated rat POF model and explored the mechanisms by which the target miRNAs promote POF. The SD rats were injected with VCD for 15 days to induce POF. Additionally, we collected rat blood and ovaries at the same time every day for 15 consecutive days, and luteinizing hormone (LH), follicle-stimulating hormone (FSH), Anti-Mullerian hormone (AMH), and estradiol (E2) serum levels were detected by ELISA. Six miRNAs expression were measured in rat ovaries by qRT-PCR. Dual-luciferase reporter gene assays were employed to predict and verify the target gene (PHLPP1) of target miRNAs (miRNA-190a-5p). Western blot was examined to detect the expression levels of PHLPP1, AKT, p-AKT, FOXO3a, p-FOXO3a, and LHR proteins on the target gene PHLPP1 and its participation in the primordial follicular hyperactivation-related pathways (AKT-FOXO3a and AKT-LH/LHR). During the VCD modeling POF rat ovaries, miRNA-190a-5p was the first to show significant differential expression, i.e., 6th of VCD treating, and PHLPP1 was verified to be a direct downstream target of it. Starting from the 6th of VCD treatment, the more significant the up-regulation trend of miRNA-190a-5p expression, the more obvious the down-regulation trend of PHLPP1 and LHR mRNA and protein expression, accompanied by the more severe phosphorylation of AKT and FOXO3a proteins, thus continuously over-activating the rat primordial follicle to promote the development of POF. In conclusion, miRNA-190a-5p may become a potential biomarker for early screening of POF, and it can continuously activate primordial follicles in rats by targeting the expression of PHLPP1 and key proteins in the AKT-FOXO3a and AKT-LH/LHR pathways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA