Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Microbiome ; 12(1): 83, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725008

RESUMEN

BACKGROUND: Fungi and bacteria coexist in a wide variety of environments, and their interactions are now recognized as the norm in most agroecosystems. These microbial communities harbor keystone taxa, which facilitate connectivity between fungal and bacterial communities, influencing their composition and functions. The roots of most plants are associated with arbuscular mycorrhizal (AM) fungi, which develop dense networks of hyphae in the soil. The surface of these hyphae (called the hyphosphere) is the region where multiple interactions with microbial communities can occur, e.g., exchanging or responding to each other's metabolites. However, the presence and importance of keystone taxa in the AM fungal hyphosphere remain largely unknown. RESULTS: Here, we used in vitro and pot cultivation systems of AM fungi to investigate whether certain keystone bacteria were able to shape the microbial communities growing in the hyphosphere and potentially improved the fitness of the AM fungal host. Based on various AM fungi, soil leachates, and synthetic microbial communities, we found that under organic phosphorus (P) conditions, AM fungi could selectively recruit bacteria that enhanced their P nutrition and competed with less P-mobilizing bacteria. Specifically, we observed a privileged interaction between the isolate Streptomyces sp. D1 and AM fungi of the genus Rhizophagus, where (1) the carbon compounds exuded by the fungus were acquired by the bacterium which could mineralize organic P and (2) the in vitro culturable bacterial community residing on the surface of hyphae was in part regulated by Streptomyces sp. D1, primarily by inhibiting the bacteria with weak P-mineralizing ability, thereby enhancing AM fungi to acquire P. CONCLUSIONS: This work highlights the multi-functionality of the keystone bacteria Streptomyces sp. D1 in fungal-bacteria and bacterial-bacterial interactions at the hyphal surface of AM fungi. Video Abstract.


Asunto(s)
Hifa , Microbiota , Micorrizas , Raíces de Plantas , Microbiología del Suelo , Streptomyces , Micorrizas/fisiología , Micorrizas/clasificación , Streptomyces/clasificación , Streptomyces/aislamiento & purificación , Streptomyces/genética , Streptomyces/fisiología , Hifa/crecimiento & desarrollo , Raíces de Plantas/microbiología , Fósforo/metabolismo , Interacciones Microbianas/fisiología , Suelo/química , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo
2.
Lipids ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637329

RESUMEN

The monocyte-to-high-density lipoprotein cholesterol ratio (MHR) is a novel marker that can help estimate the degree of atherosclerosis by considering inflammation and lipid abnormalities. This study aimed to assess the association between the MHR and prevalent heart failure (HF) and to explore the value of the MHR in detecting prevalent HF in the general US population. Our study included 25,374 participants from the National Health and Nutrition Examination Survey (1999-2018). Among the participants, 749 (2.95%) reported a history of HF, and the HF group had a significantly higher MHR than the non-HF group. Adjusted analyses revealed that each standard deviation increase in the MHR was associated with a 27.8% increase in the risk of HF. The association between the MHR and prevalent HF was linear across the entire MHR range. Adding the MHR to conventional cardiovascular risk factors significantly improved the area under the curve (0.875; p < 0.001), continuous net reclassification index (0.187; p < 0.001), and integrated discrimination index (0.004; p < 0.001). Our study suggests a potential association between the MHR and HF risk, and the findings enhance HF risk stratification and provide novel insights into the interplay between the coronary atherosclerotic burden and HF in clinical settings.

3.
ACS Appl Mater Interfaces ; 16(4): 4581-4591, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38232351

RESUMEN

Converting CO2 into energy-rich fuels by using solar energy is a sustainable solution that promotes a carbon-neutral economy and mitigates our reliance on fossil fuels. However, affordable and efficient CO2 conversion remains an ongoing challenge. Here, we introduce polymeric g-C3N4 into the pores of a hollow In2O3 microtube. This architecture results in a compact and staggered arrangement between g-C3N4 and In2O3 components with an increased contact interface for improved charge separation. The hollow interior further contributes to strengthening light absorption. The resulting g-C3N4-In2O3 hollow tubes exhibit superior activity (274 µmol·g-1·h-1) toward CO2 to CO conversion in comparison with those of pure In2O3 and g-C3N4 (5.5 and 93.6 µmol·g-1·h-1, respectively), underlining the role of integrating g-C3N4 and In2O3 in this advanced system. This work offers a strategy for the advanced design and preparation of hollow heterostructures for optimizing CO2 adsorption and conversion by integrating inorganic and organic semiconductors.

4.
New Phytol ; 2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38044555

RESUMEN

Arbuscular mycorrhizal (AM) fungi-associated hyphosphere microbiomes can be considered as the second genome of the mycorrhizal phosphorus uptake pathway. Their composition can be thought of as a stably recurring component of a holobiont, defined by the hyphosphere core microbiome, which is thought to benefit AM fungal fitness. Here, we review evidence indicating the existence of the hyphosphere core microbiome, highlight its functions linked to those functions lacking in AM fungi, and further explore the mechanisms by which different core members ensure their stable coexistence. We conclude that deciphering and utilizing the hyphosphere core microbiome provides an entry point for understanding the complex interactions among plants, AM fungi, and bacteria.

5.
Polymers (Basel) ; 15(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37631508

RESUMEN

As a remarkable multifunctional material, ferroferric oxide (Fe3O4) exhibits considerable potential for applications in many fields, such as energy storage and conversion technologies. However, the poor electronic and ionic conductivities of classical Fe3O4 restricts its application. To address this challenge, Fe3O4 nanoparticles are combined with graphene oxide (GO) via a typical hydrothermal method, followed by a conductive wrapping using poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic sulfonate) (PEDOT:PSS) for the fabrication of composite films. Upon acid treatment, a highly conductive porous Fe3O4@RGO/PEDOT:PSS hybrid is successfully constructed, and each component exerts its action that effectively facilitates the electron transfer and subsequent performance improvement. Specifically, the Fe3O4@RGO/PEDOT:PSS porous film achieves a high specific capacitance of 244.7 F g-1 at a current of 1 A g-1. Furthermore, due to the facial fabrication of the highly conductive networks, the free-standing film exhibits potential advantages in flexible thermoelectric (TE) materials. Notably, such a hybrid film shows a high electric conductivity (σ) of 507.56 S cm-1, a three times greater value than the Fe3O4@RGO component, and achieves an optimized Seebeck coefficient (S) of 13.29 µV K-1 at room temperature. This work provides a novel route for the synthesis of Fe3O4@RGO/PEDOT:PSS multifunctional films that possess promising applications in energy storage and conversion.

6.
Front Pharmacol ; 14: 1210667, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456755

RESUMEN

Introduction: Type 2 diabetes (T2D) is a multifactorial complex chronic disease with a high prevalence worldwide, and Type 2 diabetes patients with different comorbidities often present multiple phenotypes in the clinic. Thus, there is a pressing need to improve understanding of the complexity of the clinical Type 2 diabetes population to help identify more accurate disease subtypes for personalized treatment. Methods: Here, utilizing the traditional Chinese medicine (TCM) clinical electronic medical records (EMRs) of 2137 Type 2 diabetes inpatients, we followed a heterogeneous medical record network (HEMnet) framework to construct heterogeneous medical record networks by integrating the clinical features from the electronic medical records, molecular interaction networks and domain knowledge. Results: Of the 2137 Type 2 diabetes patients, 1347 were male (63.03%), and 790 were female (36.97%). Using the HEMnet method, we obtained eight non-overlapping patient subgroups. For example, in H3, Poria, Astragali Radix, Glycyrrhizae Radix et Rhizoma, Cinnamomi Ramulus, and Liriopes Radix were identified as significant botanical drugs. Cardiovascular diseases (CVDs) were found to be significant comorbidities. Furthermore, enrichment analysis showed that there were six overlapping pathways and eight overlapping Gene Ontology terms among the herbs, comorbidities, and Type 2 diabetes in H3. Discussion: Our results demonstrate that identification of the Type 2 diabetes subgroup based on the HEMnet method can provide important guidance for the clinical use of herbal prescriptions and that this method can be used for other complex diseases.

7.
J Sci Food Agric ; 103(10): 4899-4907, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36929328

RESUMEN

BACKGROUND: To study the effects of quercetin on the functionality of myofibrillar proteins (MPs), various levels of quercetin (0, 10, 50, 100 and 200 µmol g-1 protein) were added to MP solution and the structure and gel properties of MPs were determined. RESULTS: Compared with the control MPs not treated with quercetin, adding 10, 50 and 100 µmol g-1 quercetin caused a significant (P < 0.05) loss of sulfhydryls; 10 and 50 µmol g-1 quercetin enhanced the surface hydrophobicity significantly (P < 0.05), and 50, 100 and 200 µmol g-1 quercetin reduced the fluorescence intensity of tryptophan. Additions of 50, 100 and 200 µmol g-1 quercetin resulted in a significant (P < 0.05) reduction in MP solubility. Adding 10, 50 and 100 µmol g-1 quercetin did not significantly (P > 0.05) change the gel strength and water-holding ability of MPs than control, but 200 µmol g-1 quercetin declined the gel properties significantly (P < 0.05). The microstructure and dynamic rheological properties confirmed the results of the gel properties of MPs affected by various levels of quercetin. CONCLUSION: The results obtained in the present study show that mildly high levels of quercetin can maintain the gel properties of MPs, which may be a result of the moderate MP cross-linkage and aggregation caused by the covalent and non-covalent interactions of MPs. © 2023 Society of Chemical Industry.


Asunto(s)
Carne de Cerdo , Carne Roja , Animales , Porcinos , Quercetina/análisis , Proteínas Musculares/química , Carne Roja/análisis , Miofibrillas/química , Conformación Proteica , Geles/química
8.
New Phytol ; 238(2): 859-873, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36444521

RESUMEN

The mycorrhizal pathway is an important phosphorus (P) uptake pathway for more than two-thirds of land plants. The arbuscular mycorrhizal (AM) fungi-associated hyphosphere microbiome has been considered as the second genome of mycorrhizal P uptake pathway and functionality in mobilizing soil organic P (Po). However, whether there is a core microbiome in the hyphosphere and how this is implicated in mining soil Po are less understood. We established on-site field trials located in humid, semiarid, and arid zones and a microcosm experiment in a glasshouse with specific AM fungi and varying soil types to answer the above questions. The hyphosphere microbiome of AM fungi enhanced soil phosphatase activity and promoted Po mineralization in all sites. Although the assemblage of hyphosphere microbiomes identified in three climate zones was mediated by environmental factors, we detected a core set in three sites and the subsequent microcosm experiment. The core members were co-enriched in the hyphosphere and dominated by Alphaproteobacteria, Actinobacteria, and Gammaproteobacteria. Moreover, these core bacterial members aggregate into stable guilds that contributed to phosphatase activity. The core hyphosphere microbiome is taxonomically conserved and provides functions, with respect to the mineralization of Po, that AM fungi lack.


Asunto(s)
Microbiota , Micorrizas , Micorrizas/metabolismo , Fósforo/metabolismo , Hongos/metabolismo , Bacterias/metabolismo , Suelo , Microbiología del Suelo , Monoéster Fosfórico Hidrolasas/metabolismo , Raíces de Plantas/metabolismo
9.
Eur J Anaesthesiol ; 39(9): 758-765, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35919026

RESUMEN

BACKGROUND: Identifying the interscalene brachial plexus can be challenging during ultrasound-guided interscalene block. OBJECTIVE: We hypothesised that an algorithm based on deep learning could locate the interscalene brachial plexus in ultrasound images better than a nonexpert anaesthesiologist, thus possessing the potential to aid anaesthesiologists. DESIGN: Observational study. SETTING: A tertiary hospital in Shanghai, China. PATIENTS: Patients undergoing elective surgery. INTERVENTIONS: Ultrasound images at the interscalene level were collected from patients. Two independent image datasets were prepared to train and evaluate the deep learning model. Three senior anaesthesiologists who were experts in regional anaesthesia annotated the images. A deep convolutional neural network was developed, trained and optimised to locate the interscalene brachial plexus in the ultrasound images. Expert annotations on the datasets were regarded as an accurate baseline (ground truth). The test dataset was also annotated by five nonexpert anaesthesiologists. MAIN OUTCOME MEASURES: The primary outcome of the research was the distance between the lateral midpoints of the nerve sheath contours of the model predictions and ground truth. RESULTS: The data set was obtained from 1126 patients. The training dataset comprised 11 392 images from 1076 patients. The test dataset constituted 100 images from 50 patients. In the test dataset, the median [IQR] distance between the lateral midpoints of the nerve sheath contours of the model predictions and ground truth was 0.8 [0.4 to 2.9] mm: this was significantly shorter than that between nonexpert predictions and ground truth (3.4 mm [2.1 to 4.5] mm; P < 0.001). CONCLUSION: The proposed model was able to locate the interscalene brachial plexus in ultrasound images more accurately than nonexperts. TRIAL REGISTRATION: ClinicalTrials.gov (https://clinicaltrials.gov) identifier: NCT04183972.


Asunto(s)
Bloqueo del Plexo Braquial , Plexo Braquial , Anestésicos Locales , Inteligencia Artificial , Plexo Braquial/diagnóstico por imagen , Bloqueo del Plexo Braquial/métodos , China , Humanos , Redes Neurales de la Computación , Ultrasonografía Intervencional/métodos
10.
Nanomaterials (Basel) ; 12(15)2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35893495

RESUMEN

CuZnO/Al2O3 is the industrial catalyst used for methanol synthesis from syngas (CO + H2) and is also promising for the hydrogenation of CO2 to methanol. In this work, we synthesized Al2O3 nanorods (n-Al2O3) and impregnated them with the CuZnO component. The catalysts were evaluated for the hydrogenation of CO2 to methanol in a fixed-bed reactor. The support and the catalysts were characterized, including via in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The study of the CO2 adsorption, activation, and hydrogenation using in situ DRIFT spectroscopy revealed the different roles of the catalyst components. CO2 mainly adsorbed on the n-Al2O3 support, forming carbonate species. Cu was found to facilitate H2 dissociation and further reacted with the adsorbed carbonates on the n-Al2O3 support, transforming them to formate or additional intermediates. Like the n-Al2O3 support, the ZnO component contributed to improving the CO2 adsorption, facilitating the formation of more carbonate species on the catalyst surface and enhancing the efficiency of the CO2 activation and hydrogenation into methanol. The synergistic interaction between Cu and ZnO was found to be essential to increase the space-time yield (STY) of methanol but not to improve the selectivity. The 3% CuZnO/n-Al2O3 displayed improved catalytic performance compared to 3% Cu/n-Al2O3, reaching a CO2 conversion rate of 19.8% and methanol STY rate of 1.31 mmolgcat-1h-1 at 300 °C. This study provides fundamental and new insights into the distinctive roles of the different components of commercial methanol synthesis catalysts.

11.
J Enzyme Inhib Med Chem ; 37(1): 629-640, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35100926

RESUMEN

Pancreatic lipase (PL) is a well-known key target for the prevention and treatment of obesity. Human carboxylesterase 1A (hCES1A) has become an important target for the treatment of hyperlipidaemia. Thus, the discovery of potent dual-target inhibitors based on PL and hCES1A hold great potential for the development of remedies for treating related metabolic diseases. In this study, a series of natural triterpenoids were collected and the inhibitory effects of these triterpenoids on PL and hCES1A were determined using fluorescence-based biochemical assays. It was found that oleanolic acid (OA) and ursolic acid (UA) have the excellent inhibitory effects against PL and hCES1A, and highly selectivity over hCES2A. Subsequently, a number of compounds based on the OA and UA skeletons were synthesised and evaluated. Structure-activity relationship (SAR) analysis of these compounds revealed that the acetyl group at the C-3 site of UA (compound 41) was very essential for both PL and hCES1A inhibition, with IC50 of 0.75 µM and 0.014 µM, respectively. In addition, compound 39 with 2-enol and 3-ketal moiety of OA also has strong inhibitory effects against both PL and hCES1A, with IC50 of 2.13 µM and 0.055 µM, respectively. Furthermore, compound 39 and 41 exhibited good selectivity over other human serine hydrolases including hCES2A, butyrylcholinesterase (BChE) and dipeptidyl peptidase IV (DPP-IV). Inhibitory kinetics and molecular docking studies demonstrated that both compounds 39 and 41 were effective mixed inhibitors of PL, while competitive inhibitors of hCES1A. Further investigations demonstrated that both compounds 39 and 41 could inhibit adipocyte adipogenesis induced by mouse preadipocytes. Collectively, we found two triterpenoid derivatives with strong inhibitory ability on both PL and hCES1A, which can be served as promising lead compounds for the development of more potent dual-target inhibitors targeting on PL and hCES1A.


Asunto(s)
Hidrolasas de Éster Carboxílico/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Lipasa/antagonistas & inhibidores , Páncreas/enzimología , Triterpenos/farmacología , Hidrolasas de Éster Carboxílico/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Lipasa/metabolismo , Estructura Molecular , Relación Estructura-Actividad , Triterpenos/síntesis química , Triterpenos/química
12.
Front Plant Sci ; 12: 780454, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956276

RESUMEN

Maximizing the function of indigenous arbuscular mycorrhizal (AM) fungi by choosing specific crop genotypes offers one of the few untapped opportunities to improve the sustainability of agriculture. In this study, the differences in mycorrhizal responsiveness (MR) in plant growth and shoot phosphorus (P) content among cotton (Gossypium spp. L.) genotypes from different release dates were compared and then the relationships between MR and P uptake-related traits were determined. The experimental design in a greenhouse included 24 genotypes released from 1950 to present in Xinjiang Province, inoculation with or without AM fungi, and P levels (15 and 150 mg P kg-1 added as KH2PO4). Results showed that the modern cotton genotypes exhibited a higher degree of mycorrhizal colonization, the hyphal length density (HLD), and mycorrhizae-induced changes in shoot growth than the old genotypes when inoculated with indigenous AM fungi at both the P levels. Moreover, MR was highly correlated with the HLD at low P levels and the HLD may provide useful insights for future cotton breeding aimed at delivering crop genotypes that can benefit more from AM fungi.

13.
Opt Express ; 28(10): 14300-14309, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403471

RESUMEN

In this study, we observe and study the early evolution of cavitation bubbles generated during pulsed laser ablation of titanium targets in different liquid environments utilizing a high-resolution stroboscopic shadowgraphy system. A hydrodynamic model is proposed to calculate the early pressure changes within the bubble and in the surrounding fluid. Our results show that the cavitation bubble is a low-pressure region that is bounded by a high-pressure fluid lamina after the incipient stage, and its evolution is primarily affected by the liquid density. Moreover, the initial bubble pressure increases substantially in high viscosity liquids. This work illuminates how the liquid properties affect the early bubble dynamics and is a step towards a deeper understanding of laser-materials interactions in liquid environments.

14.
Opt Lett ; 45(4): 901-904, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32058500

RESUMEN

We report a facile top-flat square nanosecond (ns) laser direct writing ablation technique in a thin silver film substrate to fabricate the silver square-shaped cell structure of flexible transparent electrodes. Square silver cell structures feature smooth surface morphology, excellent edge definition, mechanical stability, strong adhesion to the substrate, and favorable resistance and transparency. In particular, this strategy enables fabrication of a high square-shaped cell areal density (ablated square cell to the total area) Ag mesh, substantially improving transparency ($ {\gt} {85}\% $>85%) without considerably sacrificing conductivity ($ {\lt} {5}\;\Omega \;{{\rm sq}^{ - 1}}$<5Ωsq-1 unit of resistance). Consequently, the proposed metallic square-shaped structure shows compatibility with a polyethylene naphthalate flexible substrate for silver-based wearable electronic devices without any protective layer over the electrodes.

15.
Anal Chem ; 92(1): 1138-1146, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31820637

RESUMEN

With currently available molecular imaging techniques, hepatocellular carcinoma (HCC), a liver cancer with high mortality rates and poor treatment responses, is mostly diagnosed at its late stage. This is largely due to the lack of highly sensitive contrast agents with high liver specificity. Herein, we report a novel bimodal contrast agent molecule CNCI-1 for the effective detection of HCC at its early stage both in vitro and in vivo. The agent has high liver specificity with effective X-ray computed tomography (CT)/near-infrared (NIR) imaging functions. It has been successfully applied to in vivo NIR imaging with high sensitivity and high selectivity to the HCC region of the HepG2 tumor-xenografted mice model and LM3 orthotopic hepatoma mice model. Moreover, the agent was found to be noninvasive and hepatocarcinoma cells preferential. Furthermore, it also enhanced the tumor imaging by revealing the blood vessels nearby for the CT image acquisition in the VX2 orthotopic hepatoma rabbit model. Our design strategy provides a new avenue to develop the medical relevant bimodal contrast agents for diagnosis of HCC at its early stage.


Asunto(s)
Carcinoma Hepatocelular/diagnóstico por imagen , Medios de Contraste/química , Neoplasias Hepáticas/diagnóstico por imagen , Acetanilidas/síntesis química , Acetanilidas/química , Acetanilidas/toxicidad , Animales , Carcinoma Hepatocelular/patología , Medios de Contraste/síntesis química , Medios de Contraste/toxicidad , Células Hep G2 , Humanos , Indoles/síntesis química , Indoles/química , Indoles/toxicidad , Neoplasias Hepáticas/patología , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Conejos , Tomografía Computarizada por Rayos X
16.
ACS Appl Mater Interfaces ; 11(44): 41717-41725, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31619041

RESUMEN

Organic semiconductors (OSCs) offer a new avenue to the next-generation electronics, but the lack of a scalable and inexpensive nanoscale patterning/deposition technique still limits their use in electronic applications. Recently, a new lithographic etching technique has been introduced that uses molecular dopants to reduce semiconducting polymer solubility in solvents and a direct-write laser to remove dopants locally, enabling rapid OSC etching with diffraction limited resolution. Previous publications postulated that the reaction that enables patterning is a photochemical reaction between photoexcited dopants with neutral solvent molecules. In this work, we analyze the photoinduced dissolution kinetics of F4TCNQ doped P3HT films using time-resolved in situ optical probing. We find two competing mechanisms that control de-doping and dissolution: the first is the photochemical reaction posited in the literature, and the second involves direct heating of the polymer by the laser, inducing increased solubility for both the polymer and dopant. We show that the wavelength-specific photochemical effect is dominant in low photon doses while the photothermal effect is dominant with high excitation rates regardless of laser wavelength. With sufficiently high optical intensity input, the photothermal mechanism can in principle achieve a high writing speed up to 1 m/s. Our findings bring new insights into the mechanisms behind laser direct writing of OSCs based on dopant induced solubility control and enable ultraprecise fabrications of various device configurations in large-scale manufacturing.

17.
ACS Appl Mater Interfaces ; 11(42): 39385-39393, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31553575

RESUMEN

Various exotic optoelectronic properties of two-dimensional (2D) transition metal dichalcogenides (TMDCs) strongly depend on their number of layers, and typically manifest in ultrathin few-layer or monolayer formats. Thus, precise manipulation of thickness and shape is essential to fully access their potential in optoelectronic applications. Here, we demonstrate site-selective atomic layer precision thinning of exfoliated MoS2 flake by laser. The oxidation mediated anisotropic chemical etching initiated from edge defects and progressed by controlled scanning of the laser beam. Thereby, the topmost layer can be preferentially removed in designed patterns without damaging the bottom flake. In addition, we could monitor the deceleration of the thinning by in situ reflectance measurement. The apparent slow down of the thinning rate is attributed to the sharp reduction in the temperature of the flake due to thickness dependent optical properties. Fabrication of monolayer stripes by laser thinning suggests potential applications in nonlinear optical gratings. The proposed thinning method would offer a unique and rather straightforward way to obtain arbitrary shape and thickness of a TMDCs flake for various optoelectronic applications.

18.
Food Chem ; 301: 125206, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31377630

RESUMEN

Effects of different levels of rutin (0, 10, 50, 100 and 200 µmol/g protein) on the conformational changes and gel properties of myofibrillar protein (MP) were investigated. Rutin at 200 µmol/g caused the greatest carbonyl content. The incorporation of rutin caused the losses of thiol, free amine and α-helix contents, reduction in tryptophan intrinsic fluorescence intensity, and enhanced exposure of hydrophobic groups and protein cross-linking. When compared with control, the MP gels with 10, 50 and 100 µmol/g rutin had higher gel strength but slight lower water-holding capacity; the gels appeared to have compact microstructure with few visible pores. However, 200 µmol/g rutin was detrimental to gel properties. All the gels with rutin presented higher final storage modulus and converted to elasticity-dominant gel types. The results indicate that a slightly high concentration of rutin could improve MP gel properties which are related to the protein conformational changes induced by rutin.


Asunto(s)
Proteínas Musculares/química , Miofibrillas/química , Rutina/química , Elasticidad , Geles/química , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Proteica , Carne Roja , Espectrometría de Fluorescencia , Triptófano/química , Agua/química
19.
ACS Appl Mater Interfaces ; 11(37): 34416-34423, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31438669

RESUMEN

Nonvacuum printing of single crystals would be ideal for high-performance functional device (such as electronics) fabrication yet challenging for most materials, especially for inorganic semiconductors. Currently, the printed films are dominant in amorphous, polycrystalline, or nanoparticle films. In this article, manufacturing of single-crystal silicon micro/nano-islands is attempted. Different from traditional vapor deposition for silicon thin-film preparation, silicon nanoparticle ink was aerosol-printed followed by confined laser melting and crystallization, allowing potential fabrication of single-crystal silicon micro/nano-islands. It is also shown that as-fabricated Si islands can be transfer-printed onto polymer substrates for potential application of flexible electronics. The additive nature of this technique suggests a scalable and economical approach for high-crystallinity semiconductor printing.

20.
Chem Commun (Camb) ; 55(54): 7860-7863, 2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31215921

RESUMEN

We report here the synthesis of water soluble selenopolypeptides via the ring-opening polymerization of N-carboxyanhydrides. The oligoethylene glycol-bearing selenopolypeptides are thermally responsive in aqueous solutions with tunable lower critical solution temperatures. The polymers can also undergo rapid and reversible helix-coil transitions upon responding to the added redox cycle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA