Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Microbiol Resour Announc ; 13(10): e0064424, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39297631

RESUMEN

Bacillus velezensis is commonly found in soil and has various antibacterial activities against animal and plant pathogens. Here, we present the complete genome sequence of Bacillus velezensis strain M4019, isolated from a euryhaline aquaculture pond water in Yong-An, Kaohsiung City, Taiwan. This pond-water-derived isolate, unlike common soil-derived isolates, may provide potentially different adaptations and antimicrobial cues for future research.

2.
Cureus ; 16(3): e57168, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38681331

RESUMEN

Introduction Gonorrhea has become an emerging sexually transmitted infection worldwide. The multi-antibiotic resistance facilitates the transmission; thus, new antibiotics or alternatives are needed. Antimicrobial peptides (AMP) are antimicrobials naturally secreted by the host as a defense material. Teleost-derived AMP have gained attention over the past two decades due to their potent efficacy toward microorganisms. This study examines teleost-derived AMP against Neisseria gonorrhoeae (GC), the responsible bacteria for gonorrhea, to evaluate the antibiotic potential as a future alternative for preventing gonorrhea. Methods Minimal inhibitory concentration (MIC) and time-killed assay were conducted to evaluate the inhibition concentration of each AMP. Transmission electron microscopy was used to confirm the potential mode of action. The inhibition of microcolony formation and adherence to epithelial cells were examined to assess the infection inhibition. Results Pardaxin-based (flatfish pardaxin {PB2}) and piscidin-based (striped bass piscidin 1 {PIS} and tilapia piscidin {TP} 4) AMP were effective toward GC under or equal to 7.5 µg/mL as of minimal inhibitory concentration. Transmission electron microscopy images revealed that these AMP attack bacterial membranes as membrane blebbing and breakage were observed. These AMP also effectively reduced the GC biofilm formation, as well as their adherence to human endocervical epithelial cells. Conclusion Pardaxin-based (PB2) and piscidin-based (PIS and TP4) teleost-derived AMP can inhibit GC and potentially serve as the new antibiotic alternative for preventing GC colonization and infection. This study will shed some light on the future development of teleost-derived AMP in treating gonorrhea and maintaining reproductive health.

3.
J Microbiol Immunol Infect ; 56(5): 1016-1025, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37516546

RESUMEN

BACKGROUND: The issue of carbapenem-resistant Escherichia coli was aggravated yearly. The previous studies reported the varied but critical epidemiology of carbapenem-resistant E. coli among which the carbapenemase-producing strains were regarded as one of the most notorious issues. AS101, an organic tellurium-containing compound undergoing clinical trials, was revealed with antibacterial activities. However, little is known about the antibacterial effect of AS101 against carbapenemase-producing E. coli (CPEC). MATERIALS AND METHODS: The minimum inhibitory concentration (MIC) of AS101 against the 15 isolates was examined using a broth microdilution method. The scanning electron microscopy, pharmaceutical manipulations, reactive oxygen species level, and DNA fragmentation assay were carried out to investigate the antibacterial mechanism. The sepsis mouse model was employed to assess the in vivo treatment effect. RESULTS: The blaNDM (33.3%) was revealed as the dominant carbapenemase gene among the 15 CPEC isolates, followed by the blaKPC gene (26.7%). The MICs of AS101 against the 15 isolates ranged from 0.5 to 32 µg/ml, and 99.9% of bacterial eradication was observed at 8 h, 4 h, and 2 h for 1×, 2×, and 4 × MIC, respectively. The mechanistic investigations suggest that AS101 would enter the bacterial cell, and induce ROS generation, leading to DNA fragmentation. The in vivo study exhibited that AS101 possessed a steady treatment effect in a sepsis mouse model, with an up to 83.3% of survival rate. CONCLUSION: The in vitro activities, mechanisms, and in vivo study of AS101 against CPEC were unveiled. Our finding provided further evidence for the antibiotic development of AS101.

4.
Immunopharmacol Immunotoxicol ; 45(6): 692-700, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37358143

RESUMEN

OBJECTIVE: Treatment with TNF-α inhibitors improve psoriasis with minimize/minor neutrophils infiltration and CXCL-1/8 expression in psoriatic lesions. However, the fine mechanism of TNF-α initiating psoriatic inflammation by tuning keratinocytes is unclear. Our previous research identified the deficiency of intracellular galectin-3 was sufficient to promote psoriasis inflammation characterized by neutrophil accumulation. This study aims to investigate whether TNF-α participated in psoriasis development through dysregulating galectin-3 expression. METHODS: mRNA levels were assessed through quantitative real-time PCR. Flow cytometry was used to detect cell cycle/apoptosis. Western blot was used to evaluate the activation of the NF-κB signaling pathway. HE staining and immunochemistry were used to detect epidermal thickness and MPO expression, respectively. Specific small interfering RNA (siRNA) was used to knock down hsa-miR-27a-3p while plasmids transfection was used to overexpress galectin-3. Further, the multiMiR R package was utilized to predict microRNA-target interaction. RESULTS AND DISCUSSION: We found that TNF-α stimulation altered cell proliferation and differentiation and promoted the production of psoriasis-related inflammatory mediators along with the inhibition of galectin-3 expression in keratinocytes. Supplement of galectin-3 could counteract the rise of CXCL-1/8 but not the other phenotypes of keratinocytes induced by TNF-α. Mechanistically, inhibition of the NF-κB signaling pathway could counteract the decrease of galectin-3 and the increase of hsa-miR-27a-3p expression whereas silence of hsa-miR-27a-3p could counteract the decrease of galectin-3 expression induced by TNF-α treatment in keratinocytes. Intradermal injection of murine anti-CXCL-2 antibody greatly alleviated imiquimod-induced psoriasis-like dermatitis. CONCLUSION: TNF-α initiates psoriatic inflammation by increasing CXCL-1/8 in keratinocytes mediated by the axis of NF-κB-hsa-miR-27a-3p-galectin-3 pathway.


Asunto(s)
Galectina 3 , Queratinocitos , MicroARNs , Psoriasis , Factor de Necrosis Tumoral alfa , Factor de Necrosis Tumoral alfa/farmacología , Queratinocitos/metabolismo , Células HaCaT , Humanos , MicroARNs/genética , Quimiocina CXCL1/metabolismo , Interleucina-8/metabolismo , Galectina 3/genética , Psoriasis/genética , Psoriasis/patología , FN-kappa B/metabolismo , Transducción de Señal , Femenino , Animales , Ratones , Ratones Endogámicos C57BL
5.
Fish Shellfish Immunol ; 139: 108869, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37285875

RESUMEN

The mucosal microbiome plays a role in regulating host health. The research conducted in humans and mice has governed and detailed the information on microbiome-host immunity interactions. Teleost fish, different from humans and mice, lives in and relies on the aquatic environment and is subjected to environmental variation. The growth of teleost mucosal microbiome studies, the majority in the gastrointestinal tract, has emphasized the essential role of the teleost microbiome in growth and health. However, research in the teleost external surface microbiome, as the skin microbiome, has just started. In this review, we examine the general findings in the colonization of the skin microbiome, how the skin microbiome is subjected to environmental change and the reciprocal regulation with the host immune system, and the current challenges that potential study models can address. The information collected from teleost skin microbiome-host immunity research would help future teleost culturing from the potential parasitic infestation and bacterial infection as foreseeing growing threats.


Asunto(s)
Infecciones Bacterianas , Microbiota , Humanos , Animales , Ratones , Piel , Membrana Mucosa , Tracto Gastrointestinal
6.
Microbiol Spectr ; : e0149622, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36877078

RESUMEN

Neisseria gonorrhoeae (GC) is a obligate human pathogen responsible for gonorrhea, one of the most common sexually transmitted infections. The yearly increased multidrug resistance in GC has led to treatment failure clinically, suggesting an urgent need for novel therapy to combat this global health issue. AS101 [ammonium trichloro(dioxoethylene-O,O'-)tellurate], a tellurium-based compound previously used as an immunomodulatory agent, was found to have antimicrobial effects against Klebsiella pneumoniae via a high-throughput drug screening and showed antibacterial activity against Acinetobacter spp. This study aimed to evaluate the in vitro anti-gonococcal activity of AS101, including its antimicrobial activity, biofilm and infectivity inhibition, and potential underlying mechanisms. The agar-dilution-based MIC was used. The inhibition of GC microcolony formation and continual growth by AS101 was assessed by microscopy. The effect of AS101 on GC infectivity was evaluated by infecting endocervical ME180 and colorectal T84 epithelial cell lines. The mode of action was evaluated by a time-killing curve, transmission electron microscopy (TEM), and the level of reactive oxygen species (ROS). The MICs of MS11 and WHO GC isolates were both found to be 0.05 µg/mL. The biofilm formation, continual growth, and infectivity of two epithelial cell lines were significantly decreased with AS101 treatment. The time-kill curve, similar to that of azithromycin, suggested that AS101 is a bacteriostatic antimicrobial. However, TEM and ROS levels implied a mode of action different from that of azithromycin. Our findings highlighted the robust anti-gonococcal activities of AS101, which potentiates its use as a future antimicrobial for GC. IMPORTANCE Neisseria gonorrhoeae is an obligate human pathogen responsible for gonorrhea, one of the most common sexually transmitted infections. The yearly increased multidrug resistance in GC has led to treatment failure clinically, suggesting an urgent need for novel therapy to combat the global health issue. This study aimed to evaluate the in vitro anti-gonococcal activity of a previous immunomodulatory agent, AS101, and its underlying mechanisms. Here, we report that AS101 possesses remarkable anti-gonococcal activity. These findings supported further studies on in vivo experiments and formulations for the clinical application of AS101 as an anti-gonococcal agent.

7.
Reprod Med Biol ; 22(1): e12495, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36699957

RESUMEN

Purpose: The cervicovaginal microbiota is essential for maintaining the health of the female reproductive tract. However, whether cervicovaginal microbiota status prior to frozen embryo transfer (FET) associates with pregnancy outcomes is largely unexplored. Methods: Cervical mucus from 29 women who had undergone FET was collected. Microbial composition was analyzed using 16 S rRNA gene sequence to assess the correlation to the pregnancy outcomes. Results: CST-categorized Lactobacillus was the most dominant (41.71%) in the pregnant group, while CST-IV-based and BV-related Gardnerella (34.96%) prevailed in the non-pregnant group. The average abundance of Gardnerella compared non-pregnant to pregnant women was the highest (34.96% vs. 4.22%, p = 0.0015) among other CST-IV indicator bacteria. Multivariate analysis revealed that CST-IV-related bacteria have a significantly adverse effect on ongoing pregnancy outcomes (odds ratio, 0.083; 95% confidence index, 0.012-0.589, p = 0.013*). Conclusions: The study found that the CST-IV microbiota, with significantly increasing Gardnerella and the loss of Lactobacilli as the dominant bacteria, can potentially contribute to pregnancy failure. Therefore, dysbiotic microbiota may be a risk factor in women undergoing FET. Assessing the health of the cervicovaginal microbiota prior to FET would enable couples to make a more thoughtful decision on the timing and might improve pregnancy outcomes.

8.
Microbiol Resour Announc ; 11(9): e0040822, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35993779

RESUMEN

Aeromonas hydrophila is the most common opportunistic pathogen that plagues freshwater and euryhaline fishponds. Here, we present the complete genome sequence of A. hydrophila strain LP0103, which was isolated from a bacterial septicemia outbreak among suckermouth catfish (Pterygoplichthys pardalis) at Lotus Pond in Kaohsiung City, Taiwan.

9.
mSphere ; 7(4): e0019422, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35766485

RESUMEN

Bacterial pathogens are well equipped to adhere to and initiate infection in teleost fish. Fish skin mucus serves as the first barrier against environmental pathogens. The mucus harbors commensal microbes that impact host physiological and immunological responses. However, how the skin mucosal microbiota responds to the presence of pathogens remains largely unexplored. Thus, little is known about the status of skin mucus prior to infection with noticeable symptoms. In this study, we investigated the interactions between pathogens and the skin mucosal microbiota as well as the fish skin immune responses in the presence of pathogens. Striped catfish (Pangasianodon hypophthalmus) were challenged with different concentrations of the bacterial pathogen Aeromonas hydrophila (AH), and the skin immune response and the mucosal microbiota were examined by quantitative PCR (qPCR) and 16S rRNA gene sequence analysis. We determined that the pathogen concentration needed to stimulate the skin immune response was associated with significant mucosal microbiota changes, and we reconfirmed these observations using an ex vivo fish skin model. Further analysis indicated that changes in the microbiota were attributed to a significant increase in opportunistic pathogens over AH. We concluded that the presence and increase of AH result in dysbiosis of the mucosal microbiota that can stimulate skin immune responses. We believe that our work sheds light on host-pathogen-commensal microbiota interactions and therefore contributes to aquaculture fish health. IMPORTANCE The fish skin mucosal microbiota is essential in modulating the host response to the presence of pathogens. Our study provides a platform to study both the correlation and causation of the interactions among the pathogen, fish skin, and the skin mucosal microbiota. Based on these findings, we provide the first mechanistic information on how mucosal microbiota changes induced by the pathogen AH result in skin disturbance with immune stimulation in striped catfish in the natural state and a potential direction for early-infection screening. Thus, this study is highly significant in the prevention of fish disease.


Asunto(s)
Bagres , Microbiota , Aeromonas hydrophila , Animales , Disbiosis/veterinaria , ARN Ribosómico 16S/genética
10.
Pathogens ; 11(2)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35215160

RESUMEN

Gonorrhea is the second most common sexually transmitted infection, which is primarily localized but can be disseminated systemically. The mechanisms by which a localized infection becomes a disseminated infection are unknown. We used five pairs of Neisseria gonorrhoeae isolates from the cervix/urethra (localized) and the blood (disseminated) of patients with disseminated gonococcal infection to examine the mechanisms that confine gonococci to the genital tract or enable them to disseminate to the blood. Multilocus sequence analysis found that the local and disseminated isolates from the same patients were isogenic. When culturing in vitro, disseminated isolates aggregated significantly less and transmigrated across a polarized epithelial monolayer more efficiently than localized isolates. While localized cervical isolates transmigrated across epithelial monolayers inefficiently, those transmigrated bacteria self-aggregated less and transmigrated more than cervical isolates but comparably to disseminating isolates. The local cervical isolates recruited the host receptors of gonococcal Opa proteins carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) on epithelial cells. However, the transmigrated cervical isolate and the disseminated blood isolates recruit CEACAMs significantly less often. Our results collectively suggest that switching off the expression of CEACAM-binding Opa(s), which reduces self-aggregation, promotes gonococcal dissemination.

11.
J Microbiol Immunol Infect ; 55(1): 86-94, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33678555

RESUMEN

BACKGROUND: Imipenem-relebactam is a new ß-lactam and ß-lactamase inhibitor combination to treat carbapenem-resistant gram-negative bacteria infections. However, difference in carbapenem resistant mechanisms existed with geographic variations. OBJECTIVE: To evaluate the susceptibility of imipenem-relebactam to 660 carbapenem-nonsusceptible Enterobacteriaceae isolates in Taiwan and to identify the in vivo efficacy with a Caenorhabditis elegans model. METHODS: 188 carbapenem-nonsusceptible Escherichia coli isolates and 472 carbapenem-nonsusceptible Klebsiella pneumoniae isolates were collected from a national surveillance study in Taiwan. The antimicrobial susceptibility profiles and carbapenemase distributions were determined. An agar dilution method was performed to evaluate the in vitro activities of imipenem monotherapy and imipenem-relebactam combination. Contributions of metallo-carbapenemase to imipenem-relebactam susceptibility was investigated via EDTA treatment. A C. elegans model was used to evaluate the in vivo efficacy of imipenem-relebactam combination. RESULTS: 87.8% and 82.2% susceptibility to imipenem-relebactam was observed for 188 carbapenem-nonsusceptible E. coli and 472 carbapenem-nonsusceptible K. pneumoniae, respectively. However, poor activities of imipenem-relebactam was observed against 23 metallo-carbapenemase producers tested in this study. In the in vivo C. elegans model, imipenem-relebactam significantly rescued nematodes from the infection of a blaKPC-producing K. pneumoniae isolate. CONCLUSION: Our study supports that imipenem-relebactam is a potential therapy against carbapenem-nonsusceptible Enterobacteriaceae, and to our knowledge, this is the first report of evaluation for imipenem-relebactam efficacy against carbapenem-nonsusceptible Enterobacteriaceae in Taiwan.


Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Enterobacteriaceae , Imipenem , Animales , Antibacterianos/farmacología , Compuestos de Azabiciclo/farmacología , Proteínas Bacterianas , Caenorhabditis elegans , Carbapenémicos/farmacología , Combinación de Medicamentos , Farmacorresistencia Bacteriana , Enterobacteriaceae/efectos de los fármacos , Escherichia coli , Humanos , Imipenem/farmacología , Pruebas de Sensibilidad Microbiana , Taiwán , beta-Lactamasas
12.
PLoS Pathog ; 17(12): e1009592, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34852011

RESUMEN

Neisseria gonorrhoeae (GC) establishes infection in women from the cervix, lined with heterogeneous epithelial cells from non-polarized stratified at the ectocervix to polarized columnar at the endocervix. We have previously shown that GC differentially colonize and transmigrate across the ecto and endocervical epithelia. However, whether and how GC invade into heterogeneous cervical epithelial cells is unknown. This study examined GC entry of epithelial cells with various properties, using human cervical tissue explant and non-polarized/polarized epithelial cell line models. While adhering to non-polarized and polarized epithelial cells at similar levels, GC invaded into non-polarized more efficiently than polarized epithelial cells. The enhanced GC invasion in non-polarized epithelial cells was associated with increased ezrin phosphorylation, F-actin and ezrin recruitment to GC adherent sites, and the elongation of GC-associated microvilli. Inhibition of ezrin phosphorylation inhibited F-actin and ezrin recruitment and microvilli elongation, leading to a reduction in GC invasion. The reduced GC invasion in polarized epithelial cells was associated with non-muscle myosin II-mediated F-actin disassembly and microvilli denudation at GC adherence sites. Surprisingly, intraepithelial GC were only detected inside epithelial cells shedding from the cervix by immunofluorescence microscopy, but not significantly in the ectocervical and the endocervical regions. We observed similar ezrin and F-actin recruitment in exfoliated cervical epithelial cells but not in those that remained in the ectocervical epithelium, as the luminal layer of ectocervical epithelial cells expressed ten-fold lower levels of ezrin than those beneath. However, GC inoculation induced F-actin reduction and myosin recruitment in the endocervix, similar to what was seen in polarized epithelial cells. Collectively, our results suggest that while GC invade non-polarized epithelial cells through ezrin-driven microvilli elongation, the apical polarization of ezrin and F-actin inhibits GC entry into polarized epithelial cells.


Asunto(s)
Polaridad Celular , Proteínas del Citoesqueleto/metabolismo , Gonorrea/microbiología , Neisseria gonorrhoeae/genética , Actinas/metabolismo , Cuello del Útero/microbiología , Células Epiteliales/microbiología , Células Epiteliales/ultraestructura , Epitelio/microbiología , Femenino , Humanos , Microvellosidades/ultraestructura , Membrana Mucosa/microbiología , Neisseria gonorrhoeae/fisiología , Fosforilación
13.
Pathogens ; 10(12)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34959507

RESUMEN

Owing to the over usage of carbapenems, carbapenem resistance has become a vital threat worldwide, and, thus, the World Health Organization announced the carbapenem-resistant Enterobacteriaceae (CRE) as the critical priority for antibiotic development in 2017. In the current situation, combination therapy would be one solution against CRE. Azidothymidine (AZT), a thymidine analog, has demonstrated its synergistically antibacterial activities with other antibiotics. The unexpected antimicrobial activity of the immunomodulator ammonium trichloro(dioxoethylene-o,o')tellurate (AS101) has been reported against carbapenem-resistant Klebsiella pneumoniae (CRKP). Here, we sought to investigate the synergistic activity between AS101 and AZT against 12 CRKP clinical isolates. According to the gene detection results, the blaOXA-1 (7/12, 58.3%), blaDHA (7/12, 58.3%), and blaKPC (7/12, 58.3%) genes were the most prevalent ESBL, AmpC, and carbapenemase genes, respectively. The checkerboard analysis demonstrated the remarkable synergism between AS101 and AZT, with the observable decrease in the MIC value for two agents and the fractional inhibitory concentration (FIC) index ≤0.5 in all strains. Hence, the combination of AS101 and azidothymidine could be a potential treatment option against CRKP for drug development.

14.
Sci Rep ; 11(1): 19057, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34561532

RESUMEN

Teleost fish skin serves as the first line of defense against pathogens. The interaction between pathogen and host skin determines the infection outcome. However, the mechanism(s) that modulate infection remain largely unknown. A proper tissue culture model that is easier to handle but can quantitatively and qualitatively monitor infection progress may shed some lights. Here, we use striped catfish (Pangasius hypophthalmus) to establish an ex vivo skin explant tissue culture model to explore host pathogen interactions. The skin explant model resembles in vivo skin in tissue morphology, integrity, and immune functionality. Inoculation of aquatic pathogen Aeromonas hydrophila in this model induces epidermal exfoliation along with epithelial cell dissociation and inflammation. We conclude that this ex vivo skin explant model could serve as a teleost skin infection model for monitoring pathogenesis under various infection conditions. The model can also potentially be translated into a platform to study prevention and treatment of aquatic infection on the skin in aquaculture applications.


Asunto(s)
Aeromonas hydrophila/patogenicidad , Acuicultura , Enfermedades de los Peces/patología , Infecciones por Bacterias Gramnegativas/patología , Piel/inmunología , Animales , Bagres , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/microbiología
15.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34451891

RESUMEN

Colistin- and carbapenem-resistant Enterobacteriaceae cases are increasing at alarming rates worldwide. Drug repurposing is receiving greater attention as an alternative approach in light of economic and technical barriers in antibiotics research. The immunomodulation agent ammonium trichloro(dioxoethylene-O,O'-)tellurate (AS101) was repurposed as an antimicrobial agent against colistin- and carbapenem-resistant Klebsiella pneumoniae (CRKP). 134 CRKP isolates were collected between 2012 and 2015 in Taiwan. The in vitro antibacterial activities of AS101 was observed through broth microdilution, time-kill assay, and electron microscopy. Pharmaceutical manipulation and RNA microarray were applied to investigate these antimicrobial mechanisms. Caenorhabditis elegans, a nematode animal model, and the Institute for Cancer Research (ICR) mouse model was employed for the evaluation of in vivo efficacy. The in vitro antibacterial results were found for AS101 against colistin- and CRKP isolates, with minimum inhibitory concentration (MIC) values ranging from <0.5 to 32 µg/mL. ROS-mediated antibacterial activity eliminated 99.9% of bacteria within 2-4 h. AS101 also extended the median survival time in a C. elegans animal model infected with a colistin-resistant CRKP isolate and rescued lethally infected animals in a separate mouse model of mono-bacterial sepsis by eliminating bacterial organ loads. These findings support the use of AS101 as an antimicrobial agent for addressing the colistin and carbapenem resistance crisis.

16.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34451920

RESUMEN

The increasing trend of carbapenem-resistant Acinetobacter baumannii (CRAB) worldwide has become a concern, limiting therapeutic alternatives and increasing morbidity and mortality rates. The immunomodulation agent ammonium trichloro (dioxoethylene-O,O'-) tellurate (AS101) was repurposed as an antimicrobial agent against CRAB. Between 2016 and 2018, 27 CRAB clinical isolates were collected in Taiwan. The in vitro antibacterial activities of AS101 were evaluated using broth microdilution, time-kill assay, reactive oxygen species (ROS) detection and electron microscopy. In vivo effectiveness was assessed using a sepsis mouse infection model. The MIC range of AS101 for 27 CRAB isolates was from 0.5 to 32 µg/mL, which is below its 50% cytotoxicity (approximately 150 µg/mL). Bactericidal activity was confirmed using a time-kill assay. The antibacterial mechanism of AS101 was the accumulation of the ROS and the disruption of the cell membrane, which, in turn, results in cell death. The carbapenemase-producing A. baumannii mouse sepsis model showed that AS101 was a better therapeutic effect than colistin. The mice survival rate after 120 h was 33% (4/12) in the colistin-treated group and 58% (7/12) in the high-dose AS101 (3.33 mg/kg/day) group. Furthermore, high-dose AS101 significantly decreased bacterial population in the liver, kidney and spleen (all p < 0.001). These findings support the concept that AS101 is an ideal candidate for further testing in future studies.

17.
Mater Sci Eng C Mater Biol Appl ; 125: 112093, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33965103

RESUMEN

In 2017 the World Health Organization listed carbapenem-resistant K. pneumoniae as a critical priority for developing a novel antimicrobial agent. Here we report on our investigation of the antibacterial efficacy of silver nanoparticles (AgNPs), confined to a mesostructured material and designated as an Ag/80S bioactive nanocomposite, against carbapenem-resistant K. pneumoniae. Results from a textural analysis indicate a 7.5 nm mesopore size and 307.6 m2/g surface area for Ag/80S. UV-Vis spectrum and transmission electron microscope images of Ag/80S revealed a uniform AgNP size distribution with an approximately 3.5 nm average. ICP-MS analysis demonstrated a significantly higher silver content in TSB (a protein-rich environment) compared to ultrapure water, suggesting a controllable release of Ag/80S and thus designated as the inspired Ag/80S. Minimum inhibitory concentration (MIC) values against 16 K. pneumoniae isolates ranged from 0.25 to 0.5% (2.5 to 5.0 mg/ml). NIH 3T3 fibroblast viability at 0.25% exceeded 80% and at 0.5% just under 70%, suggesting low cytotoxicity. Mechanistic study results indicate that the inspired Ag/80S attached to and deformed bacterial cells and induced a time-dependent accumulation of reactive oxygen species, leading to bacterial death. Further, inspired Ag/80S significantly extended median survival time in a Caenorhabditis elegans animal model infected with carbapenem-resistant K. pneumoniae ATCC BAA-1705. Combined, we found a novel Ag/80S which could prevent aggregation of AgNP and control its release via a specific environment for medical use against carbapenem-resistant K. pneumoniae.


Asunto(s)
Nanopartículas del Metal , Nanocompuestos , Animales , Antibacterianos/farmacología , Carbapenémicos/farmacología , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Plata/farmacología
18.
Microorganisms ; 8(12)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322306

RESUMEN

Carbapenem-resistant Enterobacteriaceae (CRE) is listed as an urgent threat by the World Health Organization because of the limited therapeutic options, rapid evolution of resistance mechanisms, and worldwide dissemination. Colistin is a common backbone agent among the "last-resort" antibiotics for CRE; however, its emerging resistance among CRE has taken the present dilemma to the next level. Azidothymidine (AZT), a thymidine analog used to treat human immunodeficiency virus/acquired immunodeficiency syndrome, has been known to possess antibacterial effects against Enterobacteriaceae. In this study, we investigated the combined effects of AZT and colistin in 40 clinical isolates of colistin-resistant, carbapenem-resistant K. pneumoniae (CCRKP). Eleven of the 40 isolates harbored Klebsiella pneumoniae carbapenemase. The in vitro checkerboard method and in vivo nematode killing assay both revealed synergistic activity between the two agents, with fractional inhibitory concentration indexes of ≤0.5 in every strain. Additionally, a significantly lower hazard ratio was observed for the nematodes treated with combination therapy (0.288; p < 0.0001) compared with either AZT or colistin treatment. Toxicity testing indicated potentially low toxicity of the combination therapy. Thus, the AZT-colistin combination could be a potentially favorable therapeutic option for treating CCRKP.

19.
Microorganisms ; 8(12)2020 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-33322803

RESUMEN

Increasing carbapenem resistance rates worldwide underscored the urgent need of novel antimicrobials. Ceftazidime-avibactam and aztreonam-avibactam combinations are developed to combat carbapenem resistance, but biological and geographic variations must be considered for antibiotic susceptibility patterns varied. Thus, we sought to assess the susceptibilities of ceftazidime-avibactam and aztreonam-avibactam against 660 carbapenem-nonsusceptible Enterobacteriaceae isolates (472 Klebsiella pneumoniae and 188 Escherichia coli) collected during an earlier Taiwan surveillance study. Agar dilution method was used to determine ceftazidime-avibactam and aztreonam-avibactam susceptibility. Metallo-carbapenemase's contribution to resistance were investigated with EDTA addition. The in vivo efficacies were evaluated using a Caenorhabditis elegans model. High susceptibility rates were observed for ceftazidime-avibactam and aztreonam-avibactam against the 472 carbapenem-nonsusceptible K. pneumoniae (CnsKP) (85.2% and 95.3%, respectively) and 188 carbapenem-nonsusceptible E. coli (CnsEC) isolates (91.5% and 94.1%, respectively). For non-metallo-carbapenemase producers, the susceptibility rates for ceftazidime-avibactam were 93.6% for CnsKP and 97.7% for CnsEC, whereas only 7.1% CnsKP and 11.1% CnsEC in metallo-carbapenemase producers were susceptible to ceftazidime-avibactam. Of all isolates, 95.3% CnsKP and 94.1% CnsEC were susceptible to aztreonam-avibactam. In C. elegans model, ceftazidime-avibactam and aztreonam-avibactam revealed effective against a blaKPC-producing K. pneumoniae isolate in vivo. Our results propose a positive therapeutic approach for both combinations against carbapenem-nonsusceptible Enterobacteriaceae in Taiwan.

20.
Microbiol Insights ; 13: 1178636120947077, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848409

RESUMEN

Gonorrhea, caused by Neisseria gonorrhoeae, is a common sexually transmitted infection and an urgent public health problem. Humans are the exclusive host, and the genital tract with heterogeneous epithelia is the primary niche of this bacterium, creating unique challenges for understanding its pathogenesis. The cervical tissue explant model that we have developed enabled us to show that the properties of the epithelial cells in the female reproductive tract are the main factors driving gonococcal adaptation. Gonococcal variants that colonize strongly and penetrate poorly, thereby causing asymptomatic infection, survive better in the cervix. Gonococci adapt to different epithelial cell types by varying their surfaces and modulating distinct epithelial cell-cell adhesion complexes through manipulation of host cell signaling. These findings provide critical new insights on the mechanisms by which N. gonorrhoeae adapts to the human mucosal surface and causes asymptomatic infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA