Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Cell Rep Med ; 5(9): 101729, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39243753

RESUMEN

Mother's milk contains diverse bacterial communities, although their impact on microbial colonization in very-low-birth-weight (VLBW, <1,500 g) infants remains unknown. Here, we examine relationships between the microbiota in preterm mother's milk and the VLBW infant gut across initial hospitalization (n = 94 mother-infant dyads, 422 milk-stool pairs). Shared zero-radius operational taxonomic units (zOTUs) between milk-stool pairs account for ∼30%-40% of zOTUs in the VLBW infant's gut. We show dose-response relationships between intakes of several genera from milk and their concentrations in the infant's gut. These relationships and those related to microbial sharing change temporally and are modified by in-hospital feeding practices (especially direct breastfeeding) and maternal-infant antibiotic use. Correlations also exist between milk and stool microbial consortia, suggesting that multiple milk microbes may influence overall gut communities together. These results highlight that the mother's milk microbiota may shape the gut colonization of VLBW infants by delivering specific bacteria and through intricate microbial interactions.


Asunto(s)
Heces , Microbioma Gastrointestinal , Recién Nacido de muy Bajo Peso , Leche Humana , Leche Humana/microbiología , Humanos , Microbioma Gastrointestinal/fisiología , Femenino , Recién Nacido , Heces/microbiología , Consorcios Microbianos , Lactancia Materna , Adulto , Masculino , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Recien Nacido Prematuro , Madres
2.
Genome Biol Evol ; 16(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101619

RESUMEN

The plant Arabidopsis thaliana is a model system used by researchers through much of plant research. Recent efforts have focused on discovering the genomic variation found in naturally occurring ecotypes isolated from around the world. These ecotypes have come from diverse climates and therefore have faced and adapted to a variety of abiotic and biotic stressors. The sequencing and comparative analysis of these genomes can offer insight into the adaptive strategies of plants. While there are a large number of ecotype genome sequences available, the majority were created using short-read technology. Mapping of short-reads containing structural variation to a reference genome bereft of that variation leads to incorrect mapping of those reads, resulting in a loss of genetic information and introduction of false heterozygosity. For this reason, long-read de novo sequencing of genomes is required to resolve structural variation events. In this article, we sequenced the genomes of eight natural variants of A. thaliana using nanopore sequencing. This resulted in highly contiguous assemblies with >95% of the genome contained within five contigs. The sequencing results from this study include five ecotypes from relict and African populations, an area of untapped genetic diversity. With this study, we increase the knowledge of diversity we have across A. thaliana ecotypes and contribute to ongoing production of an A. thaliana pan-genome.


Asunto(s)
Arabidopsis , Ecotipo , Genoma de Planta , Arabidopsis/genética , Cromosomas de las Plantas/genética , Anotación de Secuencia Molecular , Variación Genética
3.
Nat Commun ; 15(1): 5102, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877009

RESUMEN

Tomato (Solanum lycopersicum) is one of the world's most important food crops, and as such, its production needs to be protected from infectious diseases that can significantly reduce yield and quality. Here, we survey the effector-triggered immunity (ETI) landscape of tomato against the bacterial pathogen Pseudomonas syringae. We perform comprehensive ETI screens in five cultivated tomato varieties and two wild relatives, as well as an immunodiversity screen on a collection of 149 tomato varieties that includes both wild and cultivated varieties. The screens reveal a tomato ETI landscape that is more limited than what was previously found in the model plant Arabidopsis thaliana. We also demonstrate that ETI eliciting effectors can protect tomato against P. syringae infection when the effector is delivered by a non-virulent strain either prior to or simultaneously with a virulent strain. Overall, our findings provide a snapshot of the ETI landscape of tomatoes and demonstrate that ETI can be used as a biocontrol treatment to protect crop plants.


Asunto(s)
Enfermedades de las Plantas , Inmunidad de la Planta , Pseudomonas syringae , Solanum lycopersicum , Solanum lycopersicum/microbiología , Solanum lycopersicum/inmunología , Pseudomonas syringae/inmunología , Pseudomonas syringae/patogenicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Plantas/inmunología , Virulencia , Regulación de la Expresión Génica de las Plantas , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/inmunología
4.
Gut Microbes ; 16(1): 2356277, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38798005

RESUMEN

Gestational diabetes mellitus (GDM) is a metabolic complication that manifests as hyperglycemia during the later stages of pregnancy. In high resource settings, careful management of GDM limits risk to the pregnancy, and hyperglycemia typically resolves after birth. At the same time, previous studies have revealed that the gut microbiome of infants born to mothers who experienced GDM exhibit reduced diversity and reduction in the abundance of several key taxa, including Lactobacillus. What is not known is what the functional consequences of these changes might be. In this case control study, we applied 16S rRNA sequence surveys and metatranscriptomics to profile the gut microbiome of 30 twelve-month-old infants - 16 from mothers with GDM, 14 from mothers without - to examine the impact of GDM during pregnancy. Relative to the mode of delivery and sex of the infant, maternal GDM status had a limited impact on the structure and function of the developing microbiome. While GDM samples were associated with a decrease in alpha diversity, we observed no effect on beta diversity and no differentially abundant taxa. Further, while the mode of delivery and sex of infant affected the expression of multiple bacterial pathways, much of the impact of GDM status on the function of the infant microbiome appears to be lost by twelve months of age. These data may indicate that, while mode of delivery appears to impact function and diversity for longer than anticipated, GDM may not have persistent effects on the function nor composition of the infant gut microbiome.


Asunto(s)
Bacterias , Diabetes Gestacional , Microbioma Gastrointestinal , ARN Ribosómico 16S , Humanos , Diabetes Gestacional/microbiología , Femenino , Embarazo , Lactante , ARN Ribosómico 16S/genética , Masculino , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Estudios de Casos y Controles , Adulto , Heces/microbiología
5.
New Phytol ; 241(1): 409-429, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37953378

RESUMEN

The emergence of new pathogens is an ongoing threat to human health and agriculture. While zoonotic spillovers received considerable attention, the emergence of crop diseases is less well studied. Here, we identify genomic factors associated with the emergence of Pseudomonas syringae bacterial blight of coffee. Fifty-three P. syringae strains from diseased Brazilian coffee plants were sequenced. Comparative and evolutionary analyses were used to identify loci associated with coffee blight. Growth and symptomology assays were performed to validate the findings. Coffee isolates clustered in three lineages, including primary phylogroups PG3 and PG4, and secondary phylogroup PG11. Genome-wide association study of the primary PG strains identified 37 loci, including five effectors, most of which were encoded on a plasmid unique to the PG3 and PG4 coffee strains. Evolutionary analyses support the emergence of coffee blight in PG4 when the coffee-associated plasmid and associated effectors derived from a divergent plasmid carried by strains associated with other hosts. This plasmid was only recently transferred into PG3. Natural diversity and CRISPR-Cas9 plasmid curing were used to show that strains with the coffee-associated plasmid grow to higher densities and cause more severe disease symptoms in coffee. This work identifies possible evolutionary mechanisms underlying the emergence of a new lineage of coffee pathogens.


Asunto(s)
Genoma Bacteriano , Pseudomonas syringae , Humanos , Pseudomonas syringae/genética , Café , Estudio de Asociación del Genoma Completo , Plásmidos/genética , Enfermedades de las Plantas/microbiología
6.
PLoS Comput Biol ; 19(9): e1011424, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37672526

RESUMEN

Chronic Pseudomonas aeruginosa (Pa) lung infections are the leading cause of mortality among cystic fibrosis (CF) patients; therefore, the eradication of new-onset Pa lung infections is an important therapeutic goal that can have long-term health benefits. The use of early antibiotic eradication therapy (AET) has been shown to clear the majority of new-onset Pa infections, and it is hoped that identifying the underlying basis for AET failure will further improve treatment outcomes. Here we generated machine learning models to predict AET outcomes based on pathogen genomic data. We used a nested cross validation design, population structure control, and recursive feature selection to improve model performance and showed that incorporating population structure control was crucial for improving model interpretation and generalizability. Our best model, controlling for population structure and using only 30 recursively selected features, had an area under the curve of 0.87 for a holdout test dataset. The top-ranked features were generally associated with motility, adhesion, and biofilm formation.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Humanos , Niño , Fibrosis Quística/complicaciones , Fibrosis Quística/tratamiento farmacológico , Pseudomonas aeruginosa , Agregación Celular , Infecciones por Pseudomonas/complicaciones , Infecciones por Pseudomonas/tratamiento farmacológico , Pulmón , Antibacterianos/uso terapéutico
7.
Nat Microbiol ; 8(4): 640-650, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36782026

RESUMEN

Although virulence is typically attributed to single pathogenic strains, here we investigated whether effectors secreted by a population of non-virulent strains could function as public goods to enable the emergence of collective virulence. We disaggregated the 36 type III effectors of the phytopathogenic bacterium Pseudomonas syringae strain PtoDC3000 into a 'metaclone' of 36 coisogenic strains, each carrying a single effector in an effectorless background. Each coisogenic strain was individually unfit, but the metaclone was collectively as virulent as the wild-type strain on Arabidopsis thaliana, suggesting that effectors can drive the emergence of cooperation-based virulence through their public action. We show that independently evolved effector suits can equally drive this cooperative behaviour by transferring the effector alleles native to the strain PmaES4326 into the conspecific but divergent strain PtoDC3000. Finally, we transferred the disaggregated PtoDC3000 effector arsenal into Pseudomonas fluorescens and show that their cooperative action was sufficient to convert this rhizosphere-inhabiting beneficial bacterium into a phyllosphere pathogen. These results emphasize the importance of microbial community interactions and expand the ecological scale at which disease may be attributed.


Asunto(s)
Arabidopsis , Proteínas Bacterianas , Virulencia , Proteínas Bacterianas/genética , Pseudomonas syringae/genética , Bacterias , Arabidopsis/microbiología
8.
Mol Plant Microbe Interact ; 36(3): 165-175, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36463399

RESUMEN

The root microbiome is composed of distinct epiphytic (rhizosphere) and endophytic (endosphere) habitats. Differences in abiotic and biotic factors drive differences in microbial community diversity and composition between these habitats, though how they shape the interactions among community members is unknown. Here, we coupled a large-scale characterization of the rhizosphere and endosphere bacterial communities of 30 plant species across two watering treatments with co-occurrence network analysis to understand how root habitats and soil moisture shape root bacterial network properties. We used a novel bootstrapping procedure and null network modeling to overcome some of the limitations associated with microbial co-occurrence network construction and analysis. Endosphere networks had elevated node betweenness centrality versus the rhizosphere, indicating greater overall connectivity among core bacterial members of the root endosphere. Taxonomic assortativity was higher in the endosphere, whereby positive co-occurrence was more likely between bacteria within the same phylum while negative co-occurrence was more likely between bacterial taxa from different phyla. This taxonomic assortativity could be driven by positive and negative interactions among members of the same or different phylum, respectively, or by similar niche preferences associated with phylum rank among root inhabiting bacteria across plant host species. In contrast to the large differences between root habitats, drought had limited effects on network properties but did result in a higher proportion of shared co-occurrences between rhizosphere and endosphere networks. Our study points to fundamentally different ecological processes shaping bacterial co-occurrence across root habitats. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Microbiota , Microbiología del Suelo , Raíces de Plantas/microbiología , Bacterias/genética , Rizosfera
9.
NEJM Evid ; 2(3): EVIDoa2200203, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38320044

RESUMEN

BACKGROUND: Environmental surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through wastewater has become a useful tool for population-level surveillance. Built environment sampling may provide a more spatially refined approach for surveillance in congregate living settings. METHODS: We conducted a prospective study in 10 long-term care homes (LTCHs) between September 2021 and November 2022. Floor surfaces were sampled weekly at multiple locations within each building and analyzed for the presence of SARS-CoV-2 using quantitative reverse transcriptase polymerase chain reaction. The primary outcome was the presence of a coronavirus disease 2019 (Covid-19) outbreak in the week that floor sampling was performed. RESULTS: Over the 14-month study period, we collected 4895 swabs at 10 LTCHs. During the study period, 23 Covid-19 outbreaks occurred with 119 cumulative weeks under outbreak. During outbreak periods, the proportion of floor swabs that were positive for SARS-CoV-2 was 54.3% (95% confidence interval [CI], 52 to 56.6), and during non-outbreak periods it was 22.3% (95% CI, 20.9 to 23.8). Using the proportion of floor swabs positive for SARS-CoV-2 to predict Covid-19 outbreak status in a given week, the area under the receiver-operating characteristic curve was 0.84 (95% CI, 0.78 to 0.9). Among 10 LTCHs with an outbreak and swabs performed in the prior week, eight had positive floor swabs exceeding 10% at least 5 days before outbreak identification. For seven of these eight LTCHs, positivity of floor swabs exceeded 10% more than 10 days before the outbreak was identified. CONCLUSIONS: Detection of SARS-CoV-2 on floors is strongly associated with Covid-19 outbreaks in LTCHs. These data suggest a potential role for floor sampling in improving early outbreak identification.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Prueba de COVID-19 , Cuidados a Largo Plazo , Brotes de Enfermedades
10.
Sci Rep ; 12(1): 21444, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36509824

RESUMEN

We previously demonstrated that P. aeruginosa isolates that persisted in children with cystic fibrosis (CF) despite inhaled tobramycin treatment had increased anti-Psl antibody binding in vitro compared to those successfully eradicated. We aimed to validate these findings by directly visualizing P. aeruginosa in CF sputum. This was a prospective observational study of children with CF with new-onset P. aeruginosa infection who underwent inhaled tobramycin eradication treatment. Using microbial identification passive clarity technique (MiPACT), P. aeruginosa was visualized in sputum samples obtained before treatment and classified as persistent or eradicated based on outcomes. Pre-treatment isolates were also grown as biofilms in vitro. Of 11 patients enrolled, 4 developed persistent infection and 7 eradicated infection. P. aeruginosa biovolume and the number as well as size of P. aeruginosa aggregates were greater in the sputum of those with persistent compared with eradicated infections (p < 0.01). The amount of Psl antibody binding in sputum was also greater overall (p < 0.05) in samples with increased P. aeruginosa biovolume. When visualized in sputum, P. aeruginosa had a greater biovolume, with more expressed Psl, and formed more numerous, larger aggregates in CF children who failed eradication therapy compared to those who successfully cleared their infection.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Niño , Humanos , Pseudomonas aeruginosa/metabolismo , Fibrosis Quística/complicaciones , Fibrosis Quística/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/complicaciones , Tobramicina/uso terapéutico , Tobramicina/metabolismo , Esputo
11.
Microbiome ; 10(1): 127, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35965349

RESUMEN

BACKGROUND: The emergence of antimicrobial resistance is a major threat to global health and has placed pressure on the livestock industry to eliminate the use of antibiotic growth promotants (AGPs) as feed additives. To mitigate their removal, efficacious alternatives are required. AGPs are thought to operate through modulating the gut microbiome to limit opportunities for colonization by pathogens, increase nutrient utilization, and reduce inflammation. However, little is known concerning the underlying mechanisms. Previous studies investigating the effects of AGPs on the poultry gut microbiome have largely focused on 16S rDNA surveys based on a single gastrointestinal (GI) site, diet, and/or timepoint, resulting in an inconsistent view of their impact on community composition. METHODS: In this study, we perform a systematic investigation of both the composition and function of the chicken gut microbiome, in response to AGPs. Birds were raised under two different diets and AGP treatments, and 16S rDNA surveys applied to six GI sites sampled at three key timepoints of the poultry life cycle. Functional investigations were performed through metatranscriptomics analyses and metabolomics. RESULTS: Our study reveals a more nuanced view of the impact of AGPs, dependent on age of bird, diet, and intestinal site sampled. Although AGPs have a limited impact on taxonomic abundances, they do appear to redefine influential taxa that may promote the exclusion of other taxa. Microbiome expression profiles further reveal a complex landscape in both the expression and taxonomic representation of multiple pathways including cell wall biogenesis, antimicrobial resistance, and several involved in energy, amino acid, and nucleotide metabolism. Many AGP-induced changes in metabolic enzyme expression likely serve to redirect metabolic flux with the potential to regulate bacterial growth or produce metabolites that impact the host. CONCLUSIONS: As alternative feed additives are developed to mimic the action of AGPs, our study highlights the need to ensure such alternatives result in functional changes that are consistent with site-, age-, and diet-associated taxa. The genes and pathways identified in this study are therefore expected to drive future studies, applying tools such as community-based metabolic modeling, focusing on the mechanistic impact of different dietary regimes on the microbiome. Consequently, the data generated in this study will be crucial for the development of next-generation feed additives targeting gut health and poultry production. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Animales , Antibacterianos/farmacología , Pollos , ADN Ribosómico , Suplementos Dietéticos , Microbioma Gastrointestinal/genética
12.
Cell Host Microbe ; 30(9): 1328-1339.e5, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35987195

RESUMEN

Nutrient fortifiers are added to human milk to support the development of very-low-birth-weight infants. Currently, bovine-milk-based fortifiers (BMBFs) are predominantly administered, with increasing interest in adopting human-milk-based fortifiers (HMBFs). Although beneficial for growth, their effects on the gastrointestinal microbiota are unclear. This triple-blind, randomized clinical trial (NCT02137473) tested how nutrient-enriching human milk with HMBF versus BMBF affects the gastrointestinal microbiota of infants born < 1,250 g during hospitalization. HMBF-fed infants (n = 63, n = 269 stools) showed lower microbial diversity, altered microbial community structure, and changes in predicted microbial functions compared with BMBF-fed infants (n = 56, n = 239 stools). HMBF-fed infants had higher relative and normalized abundances of unclassified Enterobacteriaceae and lower abundances of Clostridium sensu stricto. Post hoc analyses identified dose-dependent relationships between individual feed components (volumes of mother's milk, donor milk, and fortifiers) and the microbiota. These results highlight how nutrient fortifiers impact the microbiota of very-low-birth-weight infants during a critical developmental window.


Asunto(s)
Microbioma Gastrointestinal , Leche Humana , Animales , Bovinos , Alimentos Fortificados , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Recién Nacido de muy Bajo Peso , Nutrientes
13.
PLoS Pathog ; 18(7): e1010716, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35877772

RESUMEN

Pseudomonas syringae is a genetically diverse bacterial species complex responsible for numerous agronomically important crop diseases. Individual P. syringae isolates are assigned pathovar designations based on their host of isolation and the associated disease symptoms, and these pathovar designations are often assumed to reflect host specificity although this assumption has rarely been rigorously tested. Here we developed a rapid seed infection assay to measure the virulence of 121 diverse P. syringae isolates on common bean (Phaseolus vulgaris). This collection includes P. syringae phylogroup 2 (PG2) bean isolates (pathovar syringae) that cause bacterial spot disease and P. syringae phylogroup 3 (PG3) bean isolates (pathovar phaseolicola) that cause the more serious halo blight disease. We found that bean isolates in general were significantly more virulent on bean than non-bean isolates and observed no significant virulence difference between the PG2 and PG3 bean isolates. However, when we compared virulence within PGs we found that PG3 bean isolates were significantly more virulent than PG3 non-bean isolates, while there was no significant difference in virulence between PG2 bean and non-bean isolates. These results indicate that PG3 strains have a higher level of host specificity than PG2 strains. We then used gradient boosting machine learning to predict each strain's virulence on bean based on whole genome k-mers, type III secreted effector k-mers, and the presence/absence of type III effectors and phytotoxins. Our model performed best using whole genome data and was able to predict virulence with high accuracy (mean absolute error = 0.05). Finally, we functionally validated the model by predicting virulence for 16 strains and found that 15 (94%) had virulence levels within the bounds of estimated predictions. This study strengthens the hypothesis that P. syringae PG2 strains have evolved a different lifestyle than other P. syringae strains as reflected in their lower level of host specificity. It also acts as a proof-of-principle to demonstrate the power of machine learning for predicting host specific adaptation.


Asunto(s)
Phaseolus , Pseudomonas syringae , Árboles de Decisión , Especificidad del Huésped , Phaseolus/microbiología , Enfermedades de las Plantas/microbiología , Virulencia
14.
PLoS Pathog ; 18(5): e1010541, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35576228

RESUMEN

The bacterial plant pathogen Pseudomonas syringae requires type III secreted effectors (T3SEs) for pathogenesis. However, a major facet of plant immunity entails the recognition of a subset of P. syringae's T3SEs by intracellular host receptors in a process called Effector-Triggered Immunity (ETI). Prior work has shown that ETI-eliciting T3SEs are pervasive in the P. syringae species complex raising the question of how P. syringae mitigates its ETI load to become a successful pathogen. While pathogens can evade ETI by T3SE mutation, recombination, or loss, there is increasing evidence that effector-effector (a.k.a., metaeffector) interactions can suppress ETI. To study the ETI-suppression potential of P. syringae T3SE repertoires, we compared the ETI-elicitation profiles of two genetically divergent strains: P. syringae pv. tomato DC3000 (PtoDC3000) and P. syringae pv. maculicola ES4326 (PmaES4326), which are both virulent on Arabidopsis thaliana but harbour largely distinct effector repertoires. Of the 529 T3SE alleles screened on A. thaliana Col-0 from the P. syringae T3SE compendium (PsyTEC), 69 alleles from 21 T3SE families elicited ETI in at least one of the two strain backgrounds, while 50 elicited ETI in both backgrounds, resulting in 19 differential ETI responses including two novel ETI-eliciting families: AvrPto1 and HopT1. Although most of these differences were quantitative, three ETI responses were completely absent in one of the pathogenic backgrounds. We performed ETI suppression screens to test if metaeffector interactions contributed to these ETI differences, and found that HopQ1a suppressed AvrPto1m-mediated ETI, while HopG1c and HopF1g suppressed HopT1b-mediated ETI. Overall, these results show that P. syringae strains leverage metaeffector interactions and ETI suppression to overcome the ETI load associated with their native T3SE repertoires.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/genética , Humanos , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Pseudomonas syringae
15.
JCI Insight ; 7(5)2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35133979

RESUMEN

IgA nephropathy (IgAN) is a leading cause of kidney failure, yet little is known about the immunopathogenesis of this disease. IgAN is characterized by deposition of IgA in the kidney glomeruli, but the source and stimulus for IgA production are not known. Clinical and experimental data suggest a role for aberrant immune responses to mucosal microbiota in IgAN, and in some countries with high disease prevalence, tonsillectomy is regarded as standard-of-care therapy. To evaluate the relationship between microbiota and mucosal immune responses, we characterized the tonsil microbiota in patients with IgAN versus nonrelated household-matched control group participants and identified increased carriage of the genus Neisseria and elevated Neisseria-targeted serum IgA in IgAN patients. We reverse-translated these findings in experimental IgAN driven by BAFF overexpression in BAFF-transgenic mice rendered susceptible to Neisseria infection by introduction of a humanized CEACAM-1 transgene (B × hC-Tg). Colonization of B × hC-Tg mice with Neisseria yielded augmented levels of systemic Neisseria-specific IgA. Using a custom ELISPOT assay, we discovered anti-Neisseria-specific IgA-secreting cells within the kidneys of these mice. These findings suggest a role for cytokine-driven aberrant mucosal immune responses to oropharyngeal pathobionts, such as Neisseria, in the immunopathogenesis of IgAN. Furthermore, in the presence of excess BAFF, pathobiont-specific IgA can be produced in situ within the kidney.


Asunto(s)
Glomerulonefritis por IGA , Microbiota , Animales , Humanos , Inmunidad Humoral , Inmunoglobulina A , Ratones , Tonsila Palatina/patología
16.
Nat Commun ; 12(1): 6729, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795270

RESUMEN

Supplementation with micronutrients, including vitamins, iron and zinc, is a key strategy to alleviate child malnutrition. However, association of gastrointestinal disorders with iron has led to ongoing debate over their administration. To better understand their impact on gut microbiota, we analyse the bacterial, protozoal, fungal and helminth communities of stool samples collected from a subset of 80 children at 12 and 24 months of age, previously enrolled into a large cluster randomized controlled trial of micronutrient supplementation in Pakistan (ClinicalTrials.gov identifier NCT00705445). We show that while bacterial diversity is reduced in supplemented children, vitamins and iron (as well as residence in a rural setting) may promote colonization with distinct protozoa and mucormycetes, whereas the addition of zinc appears to ameliorate this effect. We suggest that the risks and benefits of micronutrient interventions may depend on eukaryotic communities, potentially exacerbated by exposure to a rural setting. Larger studies are needed to evaluate the clinical significance of these findings and their impact on health outcomes.


Asunto(s)
Suplementos Dietéticos , Intestinos/efectos de los fármacos , Micronutrientes/administración & dosificación , Micobioma/efectos de los fármacos , Animales , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Preescolar , Femenino , Hongos/clasificación , Hongos/efectos de los fármacos , Hongos/genética , Humanos , Lactante , Intestinos/microbiología , Intestinos/parasitología , Hierro/administración & dosificación , Masculino , Micobioma/genética , Parásitos/clasificación , Parásitos/efectos de los fármacos , Parásitos/genética , Filogenia , Estudios Prospectivos , Vitaminas/administración & dosificación , Zinc/administración & dosificación
17.
J Vis Exp ; (175)2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34633367

RESUMEN

Pseudomonas aeruginosa is an opportunistic bacterial pathogen that causes infections in the airways of cystic fibrosis (CF) patients. P. aeruginosa is known for its ability to form biofilms that are protected by a matrix of exopolysaccharides. This matrix allows the microorganisms to be more resilient to external factors, including antibiotic treatment. One of the most common methods of biofilm growth for research is in microtiter plates or chambered slides. The advantage of these systems is that they allow for the testing of multiple growth conditions, but their disadvantage is that they produce limited amounts of biofilm for RNA extraction. The purpose of this article is to provide a detailed, step by step protocol on how to extract total RNA from small amounts of biofilm of sufficient quality and quantity for high throughput sequencing. This protocol allows for the study of gene expression within these biofilm systems.


Asunto(s)
Fibrosis Quística , Pseudomonas aeruginosa , Biopelículas , Expresión Génica , Humanos , Pseudomonas aeruginosa/genética , ARN
18.
J Nutr ; 151(11): 3431-3441, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34510198

RESUMEN

BACKGROUND: Human milk is a rich source of human milk oligosaccharides (HMOs) and bacteria. It is unclear how these components interact within the breast microenvironment. OBJECTIVES: The objectives were first, to investigate the association between maternal characteristics and HMOs, and second, to assess the association between HMOs and microbial community composition and predicted function in milk from women with high rates of gestational glucose intolerance. METHODS: This was an exploratory analysis of a previously completed prospective cohort study (NCT01405547) where milk samples (n = 107) were collected at 3 mo postpartum. Milk microbiota composition was analyzed by V4-16S ribosomal RNA gene sequencing and HMOs by rapid high-throughput HPLC. Data were stratified and analyzed by maternal secretor status phenotype and associations between HMOs and microbiota were determined using linear regression models (ɑ-diversity), Adonis (B-diversity), Poisson regression models (differential abundance), and general linear models (predicted microbial function). RESULTS: Prepregnancy BMI, race, and frequency of direct breastfeeding, but not gestational glucose intolerance, were found to be significantly associated with a number of HMOs among secretors and non-secretors. Fucosyllacto-N-hexaose was negatively associated with microbial richness (Chao1) among secretors [B-estimate (SE): -9.3 × 102 (3.4 × 102); P = 0.0082] and difucosyllacto-N-hexaose was negatively associated with microbiota diversity (Shannon index) [-1.7 (0.78); P = 0.029] among secretors. Lacto-N-neotetraose (LNnT) was associated with both microbial B-diversity (weighted UniFrac R2 = 0.040, P = 0.036) and KEGG ortholog B-diversity (Bray-Curtis R2 = 0.039, P = 0.043) in secretors. Additionally, difucosyllactose in secretors and disialyllacto-N-hexaose and LNnT in non-secretors were associated with enrichment of predicted microbial genes encoding for metabolism- and infection-related pathways (P-false discovery rate < 0.1). CONCLUSIONS: HMOs are associated with the microbial composition and predicted microbial functions in human milk at 3 mo postpartum. Further research is needed to investigate the role these relations play in maternal and infant health.


Asunto(s)
Intolerancia a la Glucosa , Microbiota , Lactancia Materna , Estudios de Cohortes , Femenino , Humanos , Leche Humana , Oligosacáridos , Periodo Posparto , Prevalencia , Estudios Prospectivos
19.
Microb Genom ; 7(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34227931

RESUMEN

Pseudomonas is a highly diverse genus that includes species that cause disease in both plants and animals. Recently, pathogenic pseudomonads from the Pseudomonas syringae and Pseudomonas fluorescens species complexes have caused significant outbreaks in several agronomically important crops in Turkey, including tomato, citrus, artichoke and melon. We characterized 169 pathogenic Pseudomonas strains associated with recent outbreaks in Turkey via multilocus sequence analysis and whole-genome sequencing, then used comparative and evolutionary genomics to characterize putative virulence mechanisms. Most of the isolates are closely related to other plant pathogens distributed among the primary phylogroups of P. syringae, although there are significant numbers of P. fluorescens isolates, which is a species better known as a rhizosphere-inhabiting plant-growth promoter. We found that all 39 citrus blast pathogens cluster in P. syringae phylogroup 2, although strains isolated from the same host do not cluster monophyletically, with lemon, mandarin orange and sweet orange isolates all being intermixed throughout the phylogroup. In contrast, 20 tomato pith pathogens are found in two independent lineages: one in the P. syringae secondary phylogroups, and the other from the P. fluorescens species complex. These divergent pith necrosis strains lack characteristic virulence factors like the canonical tripartite type III secretion system, large effector repertoires and the ability to synthesize multiple bacterial phytotoxins, suggesting they have alternative molecular mechanisms to cause disease. These findings highlight the complex nature of host specificity among plant pathogenic pseudomonads.


Asunto(s)
Productos Agrícolas/microbiología , Genoma Bacteriano/genética , Enfermedades de las Plantas/microbiología , Pseudomonas fluorescens/genética , Pseudomonas syringae/genética , Tipificación de Secuencias Multilocus , Plantas/microbiología , Pseudomonas fluorescens/aislamiento & purificación , Pseudomonas fluorescens/patogenicidad , Pseudomonas syringae/aislamiento & purificación , Pseudomonas syringae/patogenicidad , Turquía , Sistemas de Secreción Tipo III/genética , Factores de Virulencia/genética , Secuenciación Completa del Genoma
20.
Sci Rep ; 11(1): 9157, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33911107

RESUMEN

Antimicrobial susceptibility testing (AST) is essential for detecting resistance in Pseudomonas aeruginosa and other bacterial pathogens. Here we evaluated the performance of broth microdilution (BMD) panels created using a semi-automated liquid handler, the D300e Digital Dispenser (Tecan Group Ltd., CH) that relies on inkjet printing technology. Microtitre panels (96-well) containing nine twofold dilutions of 12 antimicrobials from five classes (ß-lactams, ß-lactam/ß-lactamase inhibitors, aminoglycosides, fluoroquinolones, polymyxins) were prepared in parallel using the D300e Digital Dispenser and standard methods described by CLSI/ISO. To assess performance, panels were challenged with three well characterized quality control organisms and 100 clinical P. aeruginosa isolates. Traditional agreement and error measures were used for evaluation. Essential (EA) and categorical (CA) agreements were 92.7% and 98.0% respectively for P. aeruginosa isolates with evaluable on-scale results. The majority of minor errors that fell outside acceptable EA parameters (≥ ± 1 dilution, 1.9%) were seen with aztreonam (5%) and ceftazidime (4%), however all antimicrobials displayed acceptable performance in this situation. Differences in MIC were often log2 dilution lower for D300e dispensed panels. Major and very major errors were noted for aztreonam (2.6%) and cefepime (1.7%) respectively. The variable performance of D300e panels suggests that further testing is required to confirm their diagnostic utility for P. aeruginosa.


Asunto(s)
Pruebas de Sensibilidad Microbiana/instrumentación , Pruebas de Sensibilidad Microbiana/métodos , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/farmacología , Aztreonam/farmacología , Cefepima/farmacología , Ceftazidima/farmacología , Humanos , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/aislamiento & purificación , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA