Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
J Dent ; : 105108, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38844153

RESUMEN

OBJECTIVES: This study aimed to propose a standardized protocol for the fabrication of three-dimensionally (3D)-printed curvature-adaptive splints (CASs) and assess the precision of CASs on dentitions with different depths of the curve of Spee (COS). METHODS: 76 lower dental resin models, each exhibiting one of the four types of COS (0-, 2-, 4-, and 6-mm deep), were selected and digitally scanned. CASs were designed, 3D printed, and grouped into C0, C2, C4, and C6, corresponding to the four types of COS depths. To assess precision, the CASs occluded with the resin model were scanned as a whole and compared with the originally designed ones. RESULTS: In terms of translational deviations observed in the CASs, the mean value of absolute sagittal deviation (0.136mm) was significantly higher than those of vertical (0.091mm) and transversal deviations (0.045mm) (P < 0.01). Regarding rotational deviations of the CASs, the mean deviation in pitch (0.323°) was significantly higher than those in yaw (0.083°) and roll (0.110°) (P < 0.01). However, when comparing the accuracy of CASs across C0, C2, C4, and C6 groups, no statistically significant difference was found. Additionally, the translational deviations, rotational deviations, and RMSE of all groups were significantly lower than the clinically acceptable limits of 0.5mm, 1°, and 0.25mm, respectively (P<0.01). CONCLUSIONS: The depth of the COS has no significant impact on the precision of CASs, as evidenced by the absence of statistically significant differences in translational, rotational deviations, and RMSE among all groups (C0, C2, C4, and C6). Moreover, despite relatively high deviations in the sagittal dimension and pitch, all dimensional deviations and RMSE remained statistically significantly lower than the corresponding clinically acceptable limits (CALs) in all groups. CLINICAL SIGNIFICANCE: This standardized protocol incorporating "curvature-adaptation" represents an optimized approach to fabricating diverse 3D-printed splints tailored to dentitions with different anatomical features in contemporary digital dentistry.

2.
Clin Oral Investig ; 28(5): 296, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700536

RESUMEN

OBJECTIVES: The purpose of the present study was to evaluate the prevalence of somatic pain in orthodontic patients and determine whether somatic pain contributes to worsening oral health-related quality of life (OHRQoL) through the mediating effect of psychological discomfort. MATERIALS AND METHODS: Scale measurements and analyses were conducted on a cohort of 769 orthodontic outpatients, encompassing Patient Health Questionnaire-15-pain (PHQ-15-P), Hua-Xi Emotional-Distress Index (HEI), Psychosocial Impact of Dental Aesthetics Questionnaire (PIDAQ), and Oral Health Impact Profile-14 (OHIP-14). RESULTS: Among the respondents, 56.3% (N = 433) reported somatic pain and 20.0% (N = 154) had mental discomfort based on PHQ-15-P and HEI scores. Patients with somatic pain symptoms had significantly higher scores of HEI and OHIP-14 (P < 0.001), and higher PHQ-15-P and HEI scores emerged as statistically significant predictors of lower OHIP-14 scores (P < 0.001). HEI scores which assessed anxiety and depression partially mediated the correlation between PHQ-15-P and OHIP-14 scores, of which anxiety accounted for 52.9% of the overall mediation effect, dominating the indirect effect. CONCLUSION: Orthodontic patients reporting somatic pains were at a significantly higher risk of worsening OHRQoL during treatment, and this adverse effect is partially mediated by anxiety and depression. CLINICAL RELEVANCE: Our findings highlight the necessity for the assessment of general health and mental well-being during orthodontic interventions. To prevent delays in treating general disorders and the potential failure of orthodontic treatments, we encourage increased attentiveness towards patients with somatic symptoms and consideration of the adverse effects of comorbid mental distress.


Asunto(s)
Salud Bucal , Calidad de Vida , Humanos , Femenino , Masculino , Encuestas y Cuestionarios , Adolescente , Prevalencia , Adulto , Comorbilidad , Distrés Psicológico , Dolor Nociceptivo/epidemiología , Dolor Nociceptivo/psicología , Dimensión del Dolor
3.
Physiol Meas ; 45(5)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38697205

RESUMEN

Objectives.The purpose of this study is to investigate the age dependence of bilateral frontal electroencephalogram (EEG) coupling characteristics, and find potential age-independent depth of anesthesia monitoring indicators for the elderlies.Approach.We recorded bilateral forehead EEG data from 41 patients (ranged in 19-82 years old), and separated into three age groups: 18-40 years (n= 12); 40-65 years (n= 14), >65 years (n= 15). All these patients underwent desflurane maintained general anesthesia (GA). We analyzed the age-related EEG spectra, phase amplitude coupling (PAC), coherence and phase lag index (PLI) of EEG data in the states of awake, GA, and recovery.Main results.The frontal alpha power shows age dependence in the state of GA maintained by desflurane. Modulation index in slow oscillation-alpha and delta-alpha bands showed age dependence and state dependence in varying degrees, the PAC pattern also became less pronounced with increasing age. In the awake state, the coherence in delta, theta and alpha frequency bands were all significantly higher in the >65 years age group than in the 18-40 years age group (p< 0.05 for three frequency bands). The coherence in alpha-band was significantly enhanced in all age groups in GA (p< 0.01) and then decreased in recovery state. Notably, the PLI in the alpha band was able to significantly distinguish the three states of awake, GA and recovery (p< 0.01) and the results of PLI in delta and theta frequency bands had similar changes to those of coherence.Significance.We found the EEG coupling and synchronization between bilateral forehead are age-dependent. The PAC, coherence and PLI portray this age-dependence. The PLI and coherence based on bilateral frontal EEG functional connectivity measures and PAC based on frontal single-channel are closely associated with anesthesia-induced unconsciousness.


Asunto(s)
Desflurano , Electroencefalografía , Humanos , Desflurano/farmacología , Adulto , Persona de Mediana Edad , Anciano , Electroencefalografía/efectos de los fármacos , Adulto Joven , Masculino , Femenino , Anciano de 80 o más Años , Adolescente , Envejecimiento/fisiología , Envejecimiento/efectos de los fármacos , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/fisiología , Isoflurano/análogos & derivados , Isoflurano/farmacología , Anestésicos por Inhalación/farmacología , Anestesia General
4.
Nat Commun ; 15(1): 2433, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499545

RESUMEN

Nonlinear optical processing of ambient natural light is highly desired for computational imaging and sensing. Strong optical nonlinear response under weak broadband incoherent light is essential for this purpose. By merging 2D transparent phototransistors (TPTs) with liquid crystal (LC) modulators, we create an optoelectronic neuron array that allows self-amplitude modulation of spatially incoherent light, achieving a large nonlinear contrast over a broad spectrum at orders-of-magnitude lower intensity than achievable in most optical nonlinear materials. We fabricated a 10,000-pixel array of optoelectronic neurons, and experimentally demonstrated an intelligent imaging system that instantly attenuates intense glares while retaining the weaker-intensity objects captured by a cellphone camera. This intelligent glare-reduction is important for various imaging applications, including autonomous driving, machine vision, and security cameras. The rapid nonlinear processing of incoherent broadband light might also find applications in optical computing, where nonlinear activation functions for ambient light conditions are highly sought.

5.
J Hepatol ; 80(6): 834-845, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38331323

RESUMEN

BACKGROUND & AIMS: Accumulating evidence has indicated the presence of mature microRNAs (miR) in the nucleus, but their effects on steatohepatitis remain elusive. We have previously demonstrated that the intranuclear miR-204-3p in macrophages protects against atherosclerosis, which shares multiple risk factors with metabolic dysfunction-associated steatotic liver disease (MASLD). Herein, we aimed to explore the functional significance of miR-204-3p in steatohepatitis. METHODS: miR-204-3p levels and subcellular localization were assessed in the livers and peripheral blood mononuclear cells of patients with MASLD. Wild-type mice fed high-fat or methionine- and choline-deficient diets were injected with an adeno-associated virus system containing miR-204-3p to determine the effect of miR-204-3p on steatohepatitis. Co-culture systems were applied to investigate the crosstalk between macrophages and hepatocytes or hepatic stellate cells (HSCs). Multiple high-throughput epigenomic sequencings were performed to explore miR-204-3p targets. RESULTS: miR-204-3p expression decreased in livers and macrophages in mice and patients with fatty liver. In patients with MASLD, miR-204-3p levels in peripheral blood mononuclear cells were inversely related to the severity of hepatic inflammation and damage. Macrophage-specific miR-204-3p overexpression reduced steatohepatitis in high-fat or methionine- and choline-deficient diet-fed mice. miR-204-3p-overexpressing macrophages inhibited TLR4/JNK signaling and pro-inflammatory cytokine release, thereby limiting fat deposition and inflammation in hepatocytes and fibrogenic activation in HSCs. Epigenomic profiling identified miR-204-3p as a specific regulator of ULK1 expression. ULK1 transcription and VPS34 complex activation by intranuclear miR-204-3p improved autophagic flux, promoting the anti-inflammatory effects of miR-204-3p in macrophages. CONCLUSIONS: miR-204-3p inhibits macrophage inflammation, coordinating macrophage actions on hepatocytes and HSCs to ameliorate steatohepatitis. Macrophage miR-204-3p may be a therapeutic target for MASLD. IMPACT AND IMPLICATIONS: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic inflammatory disease ranging from simple steatosis to steatohepatitis. However, the molecular mechanisms underlying the progression of MASLD remain incompletely understood. Here, we demonstrate that miR-204-3p levels in circulating peripheral blood mononuclear cells are negatively correlated with disease severity in patients with MASLD. Nuclear miR-204-3p activates ULK1 transcription and improves autophagic flux, limiting macrophage activation and hepatic steatosis. Our study provides a novel understanding of the mechanism of macrophage autophagy and inflammation in steatohepatitis and suggests that miR-204-3p may act as a potential therapeutic target for MASLD.


Asunto(s)
MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Animales , Ratones , Humanos , Masculino , Hígado Graso/metabolismo , Hígado Graso/genética , Hígado Graso/etiología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Hepatocitos/metabolismo , Hígado/metabolismo , Hígado/patología , Dieta Alta en Grasa/efectos adversos , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Modelos Animales de Enfermedad , Homólogo de la Proteína 1 Relacionada con la Autofagia
6.
Nature ; 626(7997): 98-104, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297176

RESUMEN

The sulfur reduction reaction (SRR) plays a central role in high-capacity lithium sulfur (Li-S) batteries. The SRR involves an intricate, 16-electron conversion process featuring multiple lithium polysulfide intermediates and reaction branches1-3. Establishing the complex reaction network is essential for rational tailoring of the SRR for improved Li-S batteries, but represents a daunting challenge4-6. Herein we systematically investigate the electrocatalytic SRR to decipher its network using the nitrogen, sulfur, dual-doped holey graphene framework as a model electrode to understand the role of electrocatalysts in acceleration of conversion kinetics. Combining cyclic voltammetry, in situ Raman spectroscopy and density functional theory calculations, we identify and directly profile the key intermediates (S8, Li2S8, Li2S6, Li2S4 and Li2S) at varying potentials and elucidate their conversion pathways. Li2S4 and Li2S6 were predominantly observed, in which Li2S4 represents the key electrochemical intermediate dictating the overall SRR kinetics. Li2S6, generated (consumed) through a comproportionation (disproportionation) reaction, does not directly participate in electrochemical reactions but significantly contributes to the polysulfide shuttling process. We found that the nitrogen, sulfur dual-doped holey graphene framework catalyst could help accelerate polysulfide conversion kinetics, leading to faster depletion of soluble lithium polysulfides at higher potential and hence mitigating the polysulfide shuttling effect and boosting output potential. These results highlight the electrocatalytic approach as a promising strategy for tackling the fundamental challenges regarding Li-S batteries.

7.
Angle Orthod ; 94(1): 59-67, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37503736

RESUMEN

OBJECTIVES: To study whether and how the clinical experience of the operator affects the accuracy of bracket placement using guided bonding devices (GBDs) in vitro. MATERIALS AND METHODS: Five resin models were bonded virtually with brackets, and the corresponding GBDs were generated and three-dimensionally printed. Nine operators, which included three dental students, three orthodontic students, and three orthodontists, bonded the brackets on the resin models using GBDs on a dental mannequin. After being bonded with brackets, the models were scanned, and the actual and designed positions of the brackets were compared. RESULTS: There was no immediate debonding. The orthodontists spent a significantly shorter time (22.36 minutes) in bracket bonding than the dental students (24.62 minutes; P < .05). The brackets tended to deviate to the buccal side in the dental student group. Linear deviations tended to be smallest in the orthodontic student group, but no significant difference was found among operators with different clinical experience (P > .5). All linear and angular deviations in each group were under 0.5 mm and 2°, respectively. CONCLUSIONS: Clinical experience was positively related to the bonding accuracy using GBDs, especially in the buccolingual dimension. Inexperience also led to longer bonding duration. However, bonding accuracy was clinically acceptable in general.


Asunto(s)
Recubrimiento Dental Adhesivo , Soportes Ortodóncicos , Humanos , Recubrimiento Dental Adhesivo/métodos , Ortodoncistas , Estudiantes
8.
Angle Orthod ; 94(1): 68-74, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37839805

RESUMEN

OBJECTIVES: To determine the optimal settings for reconstructing the buccal surfaces of different tooth types using the virtual bracket removal (VBR) technique. MATERIALS AND METHODS: Ten postbonded digital dentitions (with their original prebonded dentitions) were enrolled. The VBR protocol was carried out under five settings from three commonly used computer-aided design (CAD) systems: OrthoAnalyzer (O); Meshmixer (M); and curvature (G2), tangent (G1), and flat (G0) from Geomagic Studio. The root mean squares (RMSs) between the reconstructed and prebonded dentitions were calculated for each tooth and compared with the clinically acceptable limit (CAL) of 0.10 mm. RESULTS: The overall prevalences of RMSs below the CAL were 66.80%, 70.08%, 62.30%, 94.83%, and 56.15% under O, M, G2, G1, and G0, respectively. For the upper dentition, the mean RMSs were significantly lower than the CAL for all tooth types under G1 and upper incisors and canines under M and G2. For the lower dentition, the mean RMSs were significantly lower than the CAL for all tooth types under G1 and lower incisors and canines under M, G2, and G0 (all P < .05). Additionally, the mean RMSs of all teeth under G1 were significantly lower than those under the other settings (all P < .001). CONCLUSIONS: The optimal settings varied among different tooth types. G1 performed best for most tooth types compared to the other four settings.


Asunto(s)
Incisivo , Raíz del Diente , Diseño Asistido por Computadora
9.
BMC Genomics ; 24(1): 763, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38082219

RESUMEN

BACKGROUND: Safflower (Carthamus tinctorius L.) is an oilseed crop with substantial medicinal and economic value. However, the methods for constructing safflower core germplasm resources are limited, and the molecular mechanisms of lipid biosynthesis in safflower seeds are not well understood. RESULTS: In this study, 11 oil-related quantitative traits and 50 pairs of InDel markers were used to assess the diversity of a collection of 605 safflower germplasms. The original safflower germplasm exhibited rich phenotypic diversity, with high variation for most of the phenotypic traits under investigation. Similarly, high genetic diversity was evaluated in the original germplasm, in which the mean Shannon's information index (I), observed heterozygosity (H0), and expected heterozygosity (He) were 0.553, 0.182, and 0.374, respectively. Four subgroups with strong genetic structures were identified and a core germplasm of 214 cultivars was constructed, which is well represented in the original germplasm. Meanwhile, differential expression analysis of the transcriptomes of high and low linoleic acid safflower varieties at two stages of seed development identified a total of 47 genes associated with lipid biosynthesis. High expression of the genes KAS II and SAD enhanced the synthesis and accumulation of oleic acid, while FAD genes like FAD2 (Chr8G0104100), FAD3, FAD7 and FAD8 promoted the consumption of oleic acid conversion. The coordinated regulation of these multiple genes ensures the high accumulation of oleic acid in safflower seed oil. CONCLUSIONS: Based on these findings, a core germplasm of 214 cultivars was constructed and 47 candidate genes related to unsaturated fatty acid biosynthesis and lipid accumulation were identified. These results not only provide guidance for further studies to elucidate the molecular basis of oil lipid accumulation in safflower seeds, but also contribute to safflower cultivar improvements.


Asunto(s)
Carthamus tinctorius , Carthamus tinctorius/genética , Ácido Oléico , Fenotipo , Semillas/genética , Semillas/química , Ácido Linoleico
10.
Oral Dis ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37983852

RESUMEN

OBJECTIVES: Abnormal mechanical stress is the pivotal risk factor of temporomandibular joint osteoarthritis (TMJOA). This study investigated the pathogenic mechanism by which abnormal mechanical stress induced chondrocyte senescence. MATERIALS AND METHODS: Cellular senescence was investigated in the rodent model of unilateral anterior crossbite and in the chondrocytes subjected to mechanical overloading in vitro. The effects of Yes-associated protein (YAP) in chondrocyte senescence and its correlation with methyltransferase-like 3 (METTL3) and N6 -methyladenosine (m6 A) modification were evaluated. The role of m6 A modification in chondrocyte senescence was determined. The therapeutic effects of m6 A inhibition in TMJOA were investigated. RESULTS: Senescent chondrocytes were accumulated in the mechanically induced TMJOA lesions in rats and mechanical overloading could trigger chondrocyte senescence in vitro. This mechanical stress-induced cellular senescence was revealed to be mediated by YAP deficiency that promoted METTL3-dependent m6 A modification. Moreover, inhibition of m6 A modification rescued chondrocyte senescence in vitro and in vivo, and suppressed TMJOA progression in rats. CONCLUSIONS: This study uncovered the underlying mechanism of mechanically induced senescence in TMJOA from the perspective of epitranscriptomics and revealed the therapeutic potential of m6 A inhibition in TMJOA.

11.
Hortic Res ; 10(11): uhad197, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38023481

RESUMEN

Safflower (Carthamus tinctorius) is widely cultivated around the world for its seeds and flowers. The presence of linoleic acid (LA) in its seeds and hydroxysafflor yellow A (HSYA) in its flowers are the crucial traits that enable safflower to be used for industrial and medicinal purposes. Understanding the genetic control of these traits is essential for optimizing the quality of safflower and its breeding. To further this research, we present a chromosome-scale assembly of the genome of the safflower variety 'Chuanhonghua 1', which was achieved using an integrated strategy combining Illumina, Oxford Nanopore, and Hi-C sequencing. We obtained a 1.17-Gb assembly with a contig N50 of 1.08 Mb, and all assembled sequences were assigned to 12 pseudochromosomes. Safflower's evolution involved the core eudicot γ-triplication event and a whole-genome duplication event, which led to large-scale genomic rearrangements. Extensive genomic shuffling has occurred since the divergence of the ancestor of dicotyledons. We conducted metabolite and transcriptome profiles with time- and part-dependent changes and screened candidate genes that significantly contribute to seed lipid biosynthesis. We also analyzed key gene families that participate in LA and HSYA biosynthesis. Additionally, we re-sequenced 220 safflower lines and carried out a genome-wide association study using high-quality SNP data for eight agronomic traits. We identified SNPs related to important traits in safflower. Besides, the candidate gene HH_034464 (CtCGT1) was shown to be involved in the biosynthesis of HSYA. Overall, we provide a high-quality reference genome and elucidate the genetic basis of LA and HSYA biosynthesis in safflower. This vast amount of data will benefit further research for functional gene mining and breeding in safflower.

12.
Cancer Genomics Proteomics ; 20(6): 567-581, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37889059

RESUMEN

BACKGROUND/AIM: Recent studies have demonstrated the crucial regulatory roles of circular RNAs (circRNAs) in cancer initiation and progression. The sponge mechanism of circRNAs has been shown to be widely active in various types of tumors. However, many circRNAs still have not been verified to function through this mechanism. This study aimed to investigate the regulatory mechanism of hsa_circ_0079557 in colorectal cancer (CRC) and its role in CRC progression. MATERIALS AND METHODS: Raw gene expression profile datasets were downloaded from Gene Expression Omnibus (GEO) and combined to form a new dataset. Hsa_circ_0079557 was found to be highly expressed in CRC. Its role was evaluated in vitro and in vivo through a series of experiments, including quantitative real-time polymerase chain reaction (qRT-PCR), flow cytometry, colony formation, cell counting kit-8 (CCK-8), transwell assays, scratch wound healing assays, nude mice experiments, and immunohistochemistry (IHC). The association between hsa_circ_0079557 and the identified target microRNAs (miRNA) was confirmed through fluorescence in situ hybridization (FISH) and dual-luciferase reporter assays. The downstream target proteins were predicted using the web-based tool "TargetScan," and their expressions were determined using Western blot (WB). RESULTS: Hsa_circ_0079557 was found to be relatively up-regulated in CRC tissues and cell lines. Suppression of hsa_circ_0079557 expression inhibited cell proliferation in vitro and in vivo. Additionally, hsa_circ_0079557 acted as a "molecular sponge" for miR-502-5p, up-regulating the expression of Cyclin D1 (CCND1). CONCLUSION: In this study, we identify a highly expressed circRNA in CRC and propose a novel pathway of hsa_circ_0079557/miR-502-5p/CCND1 in CRC.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Humanos , Animales , Ratones , Ciclina D1 , Hibridación Fluorescente in Situ , Ratones Desnudos , ARN Circular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/genética , MicroARNs/genética
13.
Plants (Basel) ; 12(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37765392

RESUMEN

The bZIP (basic leucine zipper) proteins play crucial roles in various biological functions. Nitrogen (N) is an essential element for plant growth, especially in cucumber (Cucumis sativus) due to its shallow roots. However, the regulation of bZIP genes in cucumber nitrogen metabolism has not been studied yet. In this study, we identified a total of 72 bZIP genes (CsbZIPs) in the cucumber genome that could be classified into 13 groups. These genes were unevenly distributed on seven chromosomes, and synteny analysis showed that the CsbZIP genes were expanded in a segmentally duplicating manner. Furthermore, our genome-wide expression analysis suggested that CsbZIP genes had different patterns and that five CsbZIP genes were regulated by nitrogen treatment in both leaves and roots. Consistent with CsNPF, CsbZIP55 and CsbZIP65 were regulated by nitrogen treatment in leaves and roots. Moreover, the subcellular localization showed that CsbZIP55 and CsbZIP65 were specifically located in the nucleus, and the transcriptional activation assay showed that CsbZIP55 and CsbZIP65 have transcriptional activation activity. Additionally, in the CsbZIP55 and CsbZIP65 overexpression plants, most nitrogen-regulated CsNPF genes were downregulated. Taken together, our comprehensive analysis of the bZIP gene family lays a foundation for understanding the molecular and physiological functions of CsbZIPs.

14.
Hell J Nucl Med ; 26(2): 114-122, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37527047

RESUMEN

OBJECTIVE: To construct a novel targeted drug delivery nanoprobe: iodine-131-arginine-glycine-aspartate-tyrosine-cysteine peptide-polyethylene glycol-fifth generation polyamide-amine-docetaxel (131I-RGDyC-PEG-PAMAM-DTX) and to investigate its physicochemical properties and biological activity. MATERIALS AND METHODS: Docetaxel was wrapped by solvent volatilization method, and the regression curve of DTX was constructed by high-performance liquid chromatography to determine its drug loading. The particle size of RGDyC-PEG-PAMAM-DTX was detected by dynamic light scattering. The 131I labeling was performed by a chloramine-T method and purified by Sephadex-G50 column chromatography, and it is in vitro stability and lipid-water partition coefficient was investigated. The cytotoxicity of RGDyC-PEG-PAMAM-DTX and 131I-RGDyC-PEG-PAMAM-DTX on A549 cells in vitro was detected by Cell Counting Kit-8 assay. RESULTS: Arginine-glycine-aspartate-tyrosine-cysteine peptide-PEG-PAMAM-DTX was successfully prepared by solvent volatilization with a loading capacity of about 44µg/mg. The average particle size of RGDyC-PEG-PAMAM-DTX was 57.8nm; the labeling rate of 131I-RGDyC-PEG-PAMAM-DTX by the chloramine-T method was 74.09%-76.09%, and the radiochemical purity was 88.9%-92.6% after purification. The in vitro stability showed that the radiochemical purity was above 80% after 72h in fetal bovine serum and PBS buffer (25oC and 37oC).CCK-8 assay showed that RGDyC-PEG-PAMAM-DTX and 131I-RGDyC-PEG-PAMAM-DTX had more pronounced cytotoxic effects than free DTX and 131I. CONCLUSION: Iodine-131-RGDyC-PEG-PAMAM-DTX has good physicochemical properties and apparent cytotoxic effectsandis expected to be used in treating tumors.


Asunto(s)
Antineoplásicos , Ácido Aspártico , Humanos , Docetaxel/uso terapéutico , Cisteína , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Polietilenglicoles/química , Arginina , Solventes , Péptidos , Glicina , Tirosina
15.
Clin Oral Investig ; 27(9): 5141-5151, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37415046

RESUMEN

OBJECTIVE: This study evaluated the effect of offset on the precision of three-dimensional (3D)-printed splints, proposing to optimize the splint design to compensate for systematic errors. MATERIALS AND METHODS: 14 resin model sets were scanned and offset as a whole by given distances (0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, and 0.40 mm). Intermediate splints (ISs) and final splints (FSs) were generated from the non-offset and offset models and grouped correspondingly, named as splint type-offset value, IS-0.05, for instance. Dentitions occluded with the splint were scanned. Translational and rotational deviations of the lower dentition relative to the upper dentition were 3D measured. RESULTS: Deviations of ISs and FSs were more evident in the vertical and pitch dimensions, and were mostly acceptable in other dimensions. ISs with offset ≥ 0.05 mm showed vertical deviations significantly below 1 mm (P < 0.05) while ISs with 0.10- to 0.30-mm offsets had pitch rotations significantly lower than 1° (P < 0.05). The Pitch of IS-0.35 was significantly larger than ISs with 0.15- to 0.30-mm offsets (P < 0.05). Meanwhile, FSs fit better as the offset increased and FSs with offsets ≥ 0.15 mm all had deviations significantly lower than 1 mm (for translation) or 1° (for rotation) (P < 0.05). CONCLUSIONS: Offset affects the precision of 3D-printed splints. Moderate offset values of 0.10 to 0.30 mm are recommendable for ISs. Offset values ≥ 0.15 mm are recommended for FSs in cases with stable final occlusion. CLINICAL RELEVANCE: This study found the optimal offset ranges for 3D-printed ISs and FSs via a standardized protocol.


Asunto(s)
Exostosis , Procedimientos Quirúrgicos Ortognáticos , Humanos , Férulas (Fijadores) , Ferulas Oclusales , Procedimientos Quirúrgicos Ortognáticos/métodos , Oclusión Dental , Impresión Tridimensional , Diseño Asistido por Computadora
16.
Medicine (Baltimore) ; 102(20): e33802, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37335716

RESUMEN

RATIONALE: Neoplasms with perivascular epithelioid cell differentiation (PEComas) are mesenchymal tumors that rarely occur in the colon. Here, we report the occurrence of a malignant PEcoma in the colon using 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). PATIENT CONCERNS: A 55-year-old woman was admitted to the hospital with abdominal pain for 10 days and a self-induced abdominal mass for 3 days. 18F-FDG PET/CT imaging showed a large hypermetabolic nodule and mass in the right mid-upper abdomen with heterogeneous density and a further increase in metabolism on the delayed scan. DIAGNOSES: PEComa of the colon. INTERVENTIONS: Tumor resection was performed. OUTCOMES: The patient is well after 2 months of treatment, pending further follow-up. LESSONS: Malignant perivascular epithelioid cell tumors originating in the colon are extremely rare, and our report suggests that PEComa should be considered as a differential diagnosis for 18F-FDG gastrointestinal malignancies. Additionally, 18F-FDG PET/CT may play a key role in the staging and extent of lesions in intestinal malignancies.


Asunto(s)
Neoplasias del Colon , Neoplasias de Células Epitelioides Perivasculares , Femenino , Humanos , Persona de Mediana Edad , Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Neoplasias de Células Epitelioides Perivasculares/diagnóstico por imagen , Neoplasias de Células Epitelioides Perivasculares/cirugía , Neoplasias de Células Epitelioides Perivasculares/patología , Neoplasias del Colon/diagnóstico por imagen , Neoplasias del Colon/cirugía , Células Epiteliales/patología , Radiofármacos , Tomografía de Emisión de Positrones
17.
MedComm (2020) ; 4(3): e246, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37197086

RESUMEN

Bone remodeling is vital to the maintenance of bone homeostasis and may lead to destructive skeletal diseases once the balance is disrupted. Crosstalk between Wnt and estrogen receptor (ER) signaling has been proposed in bone remodeling, but the underlying mechanism remains unclear. This study was designed to explore the effect of Wnt-ER signaling during the osteogenic differentiation of bone marrow stromal cells (BMSCs). Rat BMSCs were isolated and identified using flow cytometry and stimulated with Wnt3a. Wnt3a treatment promoted osteogenic differentiation and mineralization of the BMSCs. Meanwhile, Wnt3a enhanced the expression of ERα as well as the canonical Wnt signaling mediator ß-catenin and the alternative Wnt signaling effector Yes-associated protein 1 (YAP1). Interestingly, DNA pulldown assay revealed direct binding of transcriptional enhanced associate domain 1 (TEAD1) and lymphoid enhancer binding factor 1 (LEF1), transcriptional partners of YAP1 and ß-catenin, respectively, to the promoter region of ERα. In addition, inhibition of TEAD1 and LEF1 suppressed Wnt3-promoted BMSC osteogenic differentiation and blocked Wnt3a-induced ERα expression. Furthermore, an in vivo model of femoral bone defect also supported that Wnt3a facilitated bone healing in an ERα-dependent way. Together, we suggest that Wnt3a promotes the osteogenic activity of BMSCs through YAP1 and ß-catenin-dependent activation of ERα, via direct binding of TEAD1 and LEF1 to the ERα promoter.

19.
Chem Commun (Camb) ; 59(26): 3821-3826, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36880285

RESUMEN

Enantiomerically enriched sulfones occupy a prominent position in pharmaceutical chemistry and synthetic chemistry. Compared with conventional methods, a direct asymmetric sulfonylation reaction with the fixation of sulfur dioxide represents an attractive strategy for the rapid assembly of chiral sulfones with enantiopurity. In this highlight, we survey recent exciting advances in asymmetric sulfonylation by using sulfur dioxide surrogates, and discuss asymmetric induction modes, reaction mechanisms, substrate scope and opportunities for further studies.

20.
J Dent ; 131: 104456, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36849067

RESUMEN

OBJECTIVE: To compare the bracket bonding accuracy, efficiency, reproducibility, and three-dimensional (3D) printing duration of the computer-aided design/computer-aided manufacturing (CAD/CAM) unilateral contact guided bonding device (GBD-U) and the bilateral contact guided bonding device (GBD-B) in vitro. METHODS: Five resin dental model sets were scanned and virtually bonded with brackets. GBD-U and GBD-B were designed and 3D printed for each model. GBD-Us had guide blocks that fit the occlusal sides of the bracket tie-wings, while GBD-Bs had guide arms that fit the occlusal and distal sides of the tie-wings. Five orthodontic residents were recruited to bond brackets on the same 3D-printed copies of resin models in a dental mannequin using GBD-Us and GBD-Bs, respectively. The time for 3D printing of GBDs and bracket bonding was recorded. The linear and angular deviations between the bonded brackets and the virtually bonded ones were measured. RESULTS: A total of 50 sets of resin models (1000 brackets/tubes) were bonded. The time for 3D printing and bracket bonding was shorter for GBD-Us (41.96 mins/6.38 mins) than for GBD-Bs (78.04 mins/7.20 mins). In both devices, 100% linear deviations and over 95% angular deviations were below 0.5 mm or 2°, respectively. Deviations in the mesiodistal dimension, torque, angulation, and rotation were significantly lower in the GBD-U group (P<0.01). High inter-operator reproducibility of bracket bonding was confirmed for both devices. CONCLUSION: GBD-U was more time-efficient in 3D printing. Both GBDs showed clinically acceptable accuracy, whereas GBD-U had higher bonding accuracy in the mesiodistal dimension, torque, angulation, and rotation than GBD-B. CLINICAL SIGNIFICANCE: CAD/CAM GBD-U provides high bracket bonding accuracy in a time-efficient manner and has the potential to be clinically applied.


Asunto(s)
Recubrimiento Dental Adhesivo , Soportes Ortodóncicos , Reproducibilidad de los Resultados , Carga Global de Enfermedades , Recubrimiento Dental Adhesivo/métodos , Modelos Dentales , Diseño Asistido por Computadora
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA