RESUMEN
A proper diagnostic and treatment planning process for dental implant rehabilitations should include a checklist of key factors to help clinicians avoid potential complications. Such a checklist should encompass evaluation of the soft- and hard-tissue volume buccal to each implant, as this has been shown to aid in maintaining marginal bone levels long-term. Thus, as part of surgical planning, a decision to augment the soft tissue should be considered. The autogenous palatal graft has long been considered the "gold standard" for soft-tissue augmentation; however, the benefits of this approach should be weighed against the potential complications associated with a secondary surgical site as well as the patient's desire for as pain-free an experience as possible. The volume-stable collagen matrix (VSCM) is a promising material with favorable healing characteristics and volume thickness maintenance of up to 3 years in current literature. This article presents two cases that demonstrate the clinical advantages of a VSCM over the use of autogenous palatal grafts as part of the authors' "10 Keys" principles of augmenting the volume and thickness of peri-implant tissues.
Asunto(s)
Tejido Conectivo , Implantes Dentales , Colágeno , Tejido Conectivo/trasplante , Implantación Dental Endoósea , Encía/cirugía , Humanos , Hueso PaladarRESUMEN
Gingival augmentation therapy is intended to create a healthy band of attached keratinized tissue to inhibit further gingival recession, facilitate plaque control, and improve patient comfort. Although an effective treatment for gingival augmentation procedures, the often-used autogenous epithelialized palatal graft has several drawbacks, including the need for a second surgical site to harvest the graft, the risk of such complications as damage to neurovascular tissue and poor healing of the donor site, and potential color and texture discrepancies of the grafted site. The use of a resorbable xenogeneic collagen-based matrix may be considered as a treatment alternative to augment soft tissue. The authors describe the application of such a graft that is made from purified porcine type I and type III collagen and processed without the addition of chemical cross-linkers. Two cases are presented that demonstrate the clinical advantages of this material compared to autogenous palatal grafts when augmenting the width and thickness of attached keratinized gingiva.
Asunto(s)
Encía , Recesión Gingival , Animales , Colágeno , Tejido Conectivo , Gingivoplastia , Humanos , Hueso Paladar , PorcinosRESUMEN
It was reported that pancreatic arteries constricted during the early phase of bile salt-induced acute pancreatitis (AP), leading to pancreatic microcirculatory disturbance. We conducted this experiment to verify whether the above-mentioned finding was true. AP was induced with intraductal injection of taurodeoxyholate. Small pancreatic artery pressure in dogs was recorded. Functional capillaries were counted and calibrated by multiplying wet weight of pancreas. Pancreatic perfusion was measured with Laser Doppler flowmeter. Pancreatic arterioles of rats dilated during the initial 20 min of AP, and pancreatic arterial pressure declined during the early phase of AP in dogs (from 104.5 +/- 4.8 mmHg to 54.6 +/- 5.6 mmHg). The hematocrit of blood from inferior vena cava was significantly lower than that of portal vein at 5 min after pancreatitis induction. The "true" pancreatic functional capillary density increased. The early pancreatic microcirculatory disturbance coincided with a marked increase of portal vein pressure (PVP) as high as 9.18 +/- 0.78 mmHg. Reduction of PVP to baseline level was followed by a marked increase of pancreatic perfusion (by 1.4-fold). Arterial dilatation, but not constriction, occurred during the early phase of bile salt-induced AP. The pancreatic microcirculatory disturbance was due to a marked rise in PVP that greatly reduced the pressure difference in the pancreatic blood vessels and increased plasma extravasation which led. to local hemoconcentration.