Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Heliyon ; 10(13): e34214, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39091943

RESUMEN

Purpose: This study aimed to investigated the key chemical components and the effect of the aqueous extract of Schisandra sphenanthera (SSAE) on alcoholic liver disease (ALD) and the related molecular mechanism. Methods: This study employed UPLC-Q-TOF-MS/MS to identify the chemical compositions in SSAE. ALD rat model was established through oral administration of white spirit. Transcriptome sequencing, weighted gene co-expression network construction analysis (WGCNA), and network pharmacology were used to predict key compositions and pathways targeted by SSAE for the treatment of ALD. Enzyme-linked immunosorbent assay (ELISA), biochemical kits, hematoxylin-eosin (HE) staining, Western blotting (WB) analysis, and immunohistochemical analysis were used to validate the mechanism of action of SSAE in treating ALD. Results: Active ingredients such as schisandrin A, schisandrol A, and schisandrol B were found to regulate the PI3K/AKT/IKK signaling pathway. Compared to the model group, the SSAE group demonstrated significant improvements in cellular solidification and tissue inflammation in the liver tissues of ALD model rats. Additionally, SSAE regulated the levels of a spartate aminotransferase (AST), alanine aminotransferase (ALT), alcohol dehydrogenase (ADH), and aldehyde Dehydrogenase (ALDH) in serum (P < 0.05); Western blotting and immunohistochemical analyses showed that the expression levels of phosphorylated PI3K, AKT, IKK, NFκB, and FOXO1 proteins were significantly reduced in liver tissues (P < 0.05), whereas the expression level of Bcl-2 proteins was significantly increased (P < 0.05). Conclusion: The active components of SSAE were schisandrin A, schisandrol A, and schisandrol B, which regulated the phosphorylation levels of PI3K, AKT, IKK, and NFκB and the expression of FOXO1 protein and upregulated the expression of Bcl-2 protein in the liver tissues of ALD rats. These findings indicate that SSAE acts against ALD partly through the PI3K-AKT-IKK signaling pathway. This study provided a reference for future research and treatment of ALD and the development of novel natural hepatoprotective drugs.

2.
Infect Drug Resist ; 17: 2975-2985, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045108

RESUMEN

Objective: We aimed to investigate dysregulated metabolic pathways and identify diagnostic and therapeutic targets in patients with tuberculosis-diabetes (TB-DM). Methods: In our prospective cohort study, plasma samples were collected from healthy individuals, diabetic (DM) patients, untreated TB-only (TB-0)/TB-DM patients (TB-DM-0), and cured TB (TB-6)/TB-DM patients (TB-DM-6) to measure the levels of amino acids, fatty acids, and other metabolites in plasma using high-throughput targeted quantification methods. Results: Significantly different biological processes and biomarkers were identified in DM, TB-DM-0, and TB-DM-6 patients. Moreover, quinolinic acid (QA) showed excellent predictive accuracy for distinguishing between DM patients and TB-DM-0 patients, with an AUC of 1 (95% CI 1-1). When differentiating between TB-DM-0 patients and TB-DM-6 patients, the AUC was 0.9297 (95% CI 0.8460-1). Compared to those in DM patients, the QA levels were significantly elevated in TB-DM-0 patients and decreased significantly after antituberculosis treatment. We simultaneously compared healthy controls and untreated tuberculosis patients and detected an increase in the level of QA in the plasma of tuberculosis patients, which decreased following treatment. Conclusion: These findings improve the current understanding of tuberculosis treatment in patients with diabetes. QA may serve as an ideal diagnostic biomarker for TB-DM patients and contribute to the development of more effective treatments.

3.
Nanomaterials (Basel) ; 14(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38998680

RESUMEN

With the rapid growth of the economy, people are increasingly reliant on energy sources. However, in recent years, the energy crisis has gradually intensified. As a clean energy source, methane has garnered widespread attention for its development and utilization. This study employed both large-scale computational screening and machine learning to investigate the adsorption and diffusion properties of thousands of metal-organic frameworks (MOFs) in six gas binary mixtures of CH4 (H2/CH4, N2/CH4, O2/CH4, CO2/CH4, H2S/CH4, He/CH4) for methane purification. Firstly, a univariate analysis was conducted to discuss the relationships between the performance indicators of adsorbents and their characteristic descriptors. Subsequently, four machine learning methods were utilized to predict the diffusivity/selectivity of gas, with the light gradient boosting machine (LGBM) algorithm emerging as the optimal one, yielding R2 values of 0.954 for the diffusivity and 0.931 for the selectivity. Furthermore, the LGBM algorithm was combined with the SHapley Additive exPlanation (SHAP) technique to quantitatively analyze the relative importance of each MOF descriptor, revealing that the pore limiting diameter (PLD) was the most critical structural descriptor affecting molecular diffusivity. Finally, for each system of CH4 mixture, three high-performance MOFs were identified, and the commonalities among high-performance MOFs were analyzed, leading to the proposals of three design principles involving changes only to the metal centers, organic linkers, or topological structures. Thus, this work reveals microscopic insights into the separation mechanisms of CH4 from different binary mixtures in MOFs.

4.
Phytomedicine ; 132: 155792, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-39059090

RESUMEN

BACKGROUND: Numerous studies indicate that natural polysaccharides have immune-enhancing effects as a host defense potentiator. Few reports are available on hormetic effects of natural polysaccharides, and the underlying mechanisms remain unclear. PURPOSE: AELP-B6 (arabinose- and galactose-rich pectin polysaccharide) from Aralia elata (Miq.) Seem was taken as a case study to clarify the potential mechanism of hormetic effects of natural polysaccharides. METHODS: The pharmacodynamic effect of AELP-B6 was verified by constructing the CTX-immunosuppressive mouse model. The hormetic effects were explored by TMT-labeled proteomics, energy metabolism analysis, flow cytometry and western blot. The core-affinity target of AELP-B6 was determined by pull down, nanoLC-nanoESI+-MS, CETSA, immunoblot and SPR assay. The RAW264.7Clec4G-RFP and RAW264.7Rab1A-RFP cell lines were simultaneously constructed to determine the affinity difference between AELP-B6 and targets by confocal laser scanning live-cell imaging. Antibody blocking assays were further used to verify the mechanism of hormetic effects. RESULTS: AELP-B6 at low and medium doses may maintain the structural integrity of thymus and spleen, increase the concentrations of TNF-α, IFN-γ, IL-3 and IL-8, and alleviate CTX-induced reduction of immune cell viability in vivo. Proteomics and energy metabolism analysis revealed that AELP-B6 regulate HIF-1α-mediated metabolic programming, causing Warburg effects in macrophages. AELP-B6 at low and medium doses promoted the release of intracellular immune factors, and driving M1-like polarization of macrophages. As a contrast, AELP-B6 at high dose enhanced the expression levels of apoptosis related proteins, indicating activation of the intrinsic apoptotic cascade. Two highly expressed transmembrane proteins in macrophages, Clec4G and Rab1A, were identified as the primary binding targets of AELP-B6 which co-localized with the cell membrane and directly impacted with immune cell activation and apoptosis. AELP-B6 exhibits affinity differences with Clec4G and Rab1A, which is the key to the hormetic effects. CONCLUSION: We observed hormesis of natural polysaccharide (AELP-B6) for the first time, and AELP-B6 mediates the hormetic effects through two dose-related targets. Low dose of AELP-B6 targets Clec4G, thereby driving the M1-like polarization via regulating NF-κB signaling pathway and HIF-1α-mediated metabolic programming, whereas high dose of AELP-B6 targets Rab1A, leading to mitochondria-dependent apoptosis.

6.
mSphere ; 9(7): e0025724, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38920406

RESUMEN

Myriocin is an inhibitor of de novo synthesis of sphingolipids and ceramides. In this research, we showed myriocin could significantly reduce Mtb burden and histopathological inflammation in mice. However, the underlying mechanism remains unclear. RNA-seq analysis revealed a significant increase in gene expression of PLIN2/CD36/CERT1 after myriocin treatment. The reduced bactericidal burden was only reversed after silencing the lipid droplets (LDs) surface protein PLIN2. This suggests that myriocin enhances the ability of macrophages to clear Mtb depending on the PLIN2 gene, which is part of the PPARγ pathway. Indeed, we observed a significant increase in the number of LDs following myriocin treatment.IMPORTANCEMycobacterium tuberculosis has the ability to reprogram host cell lipid metabolism and alter the antimicrobial functions of infected macrophages. The sphingolipids, such as ceramides, are the primary host lipids utilized by the bacteria, making the sphingomyelinase/ceramide system critical in Mtb infections. Surprisingly, the antimicrobial effect of myriocin was found to be independent of its role in reducing ceramides, but instead, it depends on the lipid droplets surface protein PLIN2. Our findings provide a novel mechanism for how myriocin enhances Mtb clearance in macrophages.


Asunto(s)
Ácidos Grasos Monoinsaturados , Macrófagos , Mycobacterium tuberculosis , Perilipina-2 , Animales , Macrófagos/microbiología , Macrófagos/efectos de los fármacos , Ratones , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Perilipina-2/genética , Perilipina-2/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Ácidos Grasos Monoinsaturados/metabolismo , Tuberculosis/microbiología , Tuberculosis/tratamiento farmacológico , Tuberculosis/inmunología , Ratones Endogámicos C57BL , Gotas Lipídicas/metabolismo , Gotas Lipídicas/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Femenino
7.
Pest Manag Sci ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808579

RESUMEN

BACKGROUND: Transketolase (TKL, EC 2.2.1.1) is a key enzyme in the pentose phosphate pathway and Calvin cycle, and is expected to act as a herbicidal site-of-action. On the basis of TKL, we designed and synthesized a series of 1-oxy-propionamide-pyrazole-3-carboxylate analogues and evaluated their herbicidal activities. RESULTS: Methyl 1-methyl-5-((1-oxo-1-((4-(trifluoromethyl)phenyl)amino)propan-2-yl)oxy)-1H-pyrazole-3-carboxylate (C23) and methyl 1-methyl-5-((1-oxo-1-((perfluorophenyl)amino)propan-2-yl)oxy)-1H-pyrazole-3-carboxylate (C33) were found to provide better growth-inhibition activities against Digitaria sanguinalis root than those of nicosulfuron, mesotrione and pretilachlor at 200 mg L-1 using the small-cup method. These compounds were also identified as promising compounds in pre-emergence and postemergence herbicidal-activity experiments, with relatively good inhibitory effects toward Amaranthus retroflexus and D. sanguinalis at 150 g ai ha-1. In addition, enzyme inhibition assays and molecular docking studies revealed that C23 and C33 interact favourably with SvTKL (Setaria viridis TKL). CONCLUSION: C23 and C33 are promising lead TKL inhibitors for the optimization of new herbicides. © 2024 Society of Chemical Industry.

8.
Biology (Basel) ; 13(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38785801

RESUMEN

Hyaluronic acid (HA) is a new functional food additive which has the potential to ameliorate persistent inflammation, immunosuppression and catabolism syndrome (PICS), but the biological effects of HA with various molecular weights differ dramatically. To systematically investigate the efficacy of HA in altering PICS symptoms, medium-molecular-weight (MMW) HA was specifically selected to test its intervention effect on a PICS mouse model induced by CLP through oral administration, with high-molecular-weight (HMW) and low-molecular-weight (LMW) HA also participating in the experimental validation process. The results of pathological observations and gut flora showed that MMW HA rapidly alleviated lung lesions and intestinal structural changes in PICS mice in the short term. However, although long-term MMW HA administration significantly reduced the proportions of harmful bacteria in gut flora, inflammatory responses in the intestines and lungs of PICS mice were significantly higher in the MMW HA group than in the HMW HA and LMW HA groups. The use of HMW HA not only rapidly reduced the mortality rate of PICS mice but also improved their grip strength and the recovery of spleen and thymus indices. Furthermore, it consistently promoted the recovery of lung and intestinal tissues in PICS mice, and it also assisted in the sustained restoration of their gut microbiota. These effects were superior to those of LMW HA and MMW HA. The experimental results indicate that HMW weight HA has the greatest potential to be an adjunct in alleviating PICS as a food additive, while the safety of other HAs requires further attention.

9.
Int J Biol Macromol ; 267(Pt 2): 131487, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599430

RESUMEN

Oral absorption of ginsenoside Rb1 (Rb1) is often hindered by the gastrointestinal tract. Carboxymethyl chitosan deoxycholic acid loaded with ginsenoside Rb1 nanoparticles (CMDA@Rb1-NPs), were prepared as a delivery system using a self-assembly technique with amphipathic deoxycholic acid grafted carboxymethyl chitosan as the carrier, which improved the stability and embedding rate of Rb1. In addition, the CMDA@Rb1-NPs was encapsulated with sodium alginate by ion crosslinking method with additional layer (CMDAlg@Rb1-NPs). Scanning electron microscopy showed that the nanoparticles were spherical, evenly distributed, smooth and without obvious adhesion. By evaluating drug loading, entrapment efficiency, the encapsulation efficiency of Rb1 increased from 60.07 % to 72.14 % after grafting deoxycholic acid improvement and optimization. In vitro release results showed that the cumulative release of Rb1 by CMDAlg-NPs showed a pH dependent effect, which was <10 % in simulated gastric juice with pH 1.2, completely released with pH 7.4 for about 48 h. In addition, Rb1 and CMDAlg@Rb1-NPs had inhibitory effects on A549 cells, and the inhibitory effect of CMDAlg@Rb1-NPs was better. Therefore, all results indicated that CMDA/Alg@Rb1 nanoparticles might be a novel drug delivery system to improve the stability and embedding rate of Rb1, and has the potential to be applied in oral pharmaceutical preparations.


Asunto(s)
Quitosano , Portadores de Fármacos , Liberación de Fármacos , Ginsenósidos , Nanopartículas , Quitosano/química , Quitosano/análogos & derivados , Ginsenósidos/química , Ginsenósidos/farmacología , Ginsenósidos/farmacocinética , Concentración de Iones de Hidrógeno , Nanopartículas/química , Humanos , Portadores de Fármacos/química , Línea Celular Tumoral , Tamaño de la Partícula
10.
BMC Surg ; 24(1): 117, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643065

RESUMEN

BACKGROUND: This study investigated the clinical application of the indocyanine green (ICG) fluorescence navigation technique in bile duct identification during laparoscopic common bile duct exploration (LCBDE) for complex hepatolithiasis. METHODS: Eighty patients with complex hepatolithiasis were admitted to our department between January 2022 and June 2023 and randomly divided into control and observation groups. The control group underwent conventional LCBDE, while the observation group underwent LCBDE guided by ICG fluorescence. RESULTS: Intraoperatively, the observation group had shorter operation and search times for the common bile duct (CBD), as well as reduced intraoperative blood loss and fewer complications, such as conversion to laparotomy and various injuries (gastroduodenal, colon, pancreatic, and vascular) than the control group, with statistical significance (P < 0.05). Postoperatively, the observation group had lower rates of postoperative bile leakage, abdominal infection, postoperative hemorrhage, and residual stone than the control group. Additionally, the observation group demonstrated significantly shorter times for resuming flatus, removal of the abdominal drainage tube, and hospitalization than the control group, with statistical significance (P < 0.05). CONCLUSION: ICG fluorescence navigation technology effectively visualizes the bile duct, improves its identification rate, shortens the operation time, prevents biliary tract injury, and reduces the occurrence of complications.


Asunto(s)
Coledocolitiasis , Laparoscopía , Litiasis , Hepatopatías , Humanos , Coledocolitiasis/cirugía , Conducto Colédoco/cirugía , Verde de Indocianina , Laparoscopía/métodos , Tiempo de Internación , Litiasis/cirugía , Hepatopatías/cirugía , Estudios Retrospectivos
11.
Phytomedicine ; 129: 155661, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38677269

RESUMEN

BACKGROUND: Gallbladder cancer (GBC) poses a significant risk to human health. Its development is influenced by numerous factors, particularly the homeostasis of reactive oxygen species (ROS) within cells. This homeostasis is crucial for tumor cell survival, and abnormal regulation of ROS is associated with the occurrence and progression of many cancers. Dihydrotanshinone I (DHT I), a biologically effective ingredient isolated from Salvia miltiorrhiza, has exhibited cytotoxic properties against various tumor cells by inducing apoptosis. However, the precise molecular mechanisms by which dht I exerts its cytotoxic effects remain unclear. PURPOSE: To explore the anti-tumor impact of dht I on GBC and elucidate the potential molecular mechanisms. METHODS: The proliferation of GBC cells, NOZ and SGC-996, was assessed using various assays, including CCK-8 assay, colony formation assay and EdU staining. We also examined cell apoptosis, cell cycle progression, ROS levels, and alterations in mitochondrial membrane potential to delve into the intricate molecular mechanism. Quantitative PCR (qPCR), immunofluorescence staining, and Western blotting were performed to evaluate target gene expression at both the mRNA and protein levels. The correlation between nuclear factor erythroid 2-related factor 2 (Nrf2) and kelch-like ECH-associated protein 1 (Keap1) were examined using co-immunoprecipitation. Finally, the in vivo effect of dht I was investigated using a xenograft model of gallbladder cancer in mice. RESULTS: Our research findings indicated that dht I exerted cytotoxic effects on GBC cells, including inhibiting proliferation, disrupting mitochondrial membrane potential, inducing oxidative stress and apoptosis. Our in vivo studies substantiated the inhibition of dht I on tumor growth in xenograft nude mice. Mechanistically, dht I primarily targeted Nrf2 by promoting Keap1 mediated Nrf2 degradation and inhibiting protein kinase C (PKC) induced Nrf2 phosphorylation. This leads to the suppression of Nrf2 nuclear translocation and reduction of its target gene expression. Moreover, Nrf2 overexpression effectively counteracted the anti-tumor effects of dht I, while Nrf2 knockdown significantly enhanced the inhibitory effect of dht I on GBC. Meanwhile, PKC inhibitors and nuclear import inhibitors increased the sensitivity of GBC cells to dht I treatment. Conversely, Nrf2 activators, proteasome inhibitors, antioxidants and PKC activators all antagonized dht I induced apoptosis and ROS generation in NOZ and SGC-996 cells. CONCLUSION: Our findings indicated that dht I inhibited the growth of GBC cells by regulating the Keap1-Nrf2 signaling pathway and Nrf2 phosphorylation. These insights provide a strong rationale for further investigation of dht I as a potential therapeutic agent for GBC treatment.


Asunto(s)
Apoptosis , Proliferación Celular , Neoplasias de la Vesícula Biliar , Proteína 1 Asociada A ECH Tipo Kelch , Ratones Desnudos , Factor 2 Relacionado con NF-E2 , Fenantrenos , Especies Reactivas de Oxígeno , Transducción de Señal , Animales , Humanos , Ratones , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Furanos/farmacología , Neoplasias de la Vesícula Biliar/tratamiento farmacológico , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos BALB C , Factor 2 Relacionado con NF-E2/metabolismo , Fenantrenos/farmacología , Fosforilación/efectos de los fármacos , Quinonas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Salvia miltiorrhiza/química , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
13.
J Agric Food Chem ; 72(14): 7727-7734, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38530940

RESUMEN

To discover novel transketolase (TKL, EC 2.2.1.1) inhibitors with potential herbicidal applications, a series of pyrazole acyl thiourea derivatives were designed based on a previously obtained pyrazolamide acyl lead compound, employing a scaffold hopping strategy. The compounds were synthesized, their structures were characterized, and they were evaluated for herbicidal activities. The results indicate that 7a exhibited exceptional herbicidal activity against Digitaria sanguinalis and Amaranthus retroflexus at a dosage of 90 g ai/ha, using the foliar spray method in a greenhouse. This performance is comparable to that of commercial products, such as nicosulfuron and mesotrione. Moreover, 7a showed moderate growth inhibitory activity against the young root and stem of A. retroflexus at 200 mg/L in the small cup method, similar to that of nicosulfuron and mesotrione. Subsequent mode-of-action verification experiments revealed that 7a and 7e inhibited Setaria viridis TKL (SvTKL) enzyme activity, with IC50 values of 0.740 and 0.474 mg/L, respectively. Furthermore, they exhibited inhibitory effects on the Brassica napus acetohydroxyacid synthase enzyme activity. Molecular docking predicted potential interactions between these (7a and 7e) and SvTKL. A greenhouse experiment demonstrated that 7a exhibited favorable crop safety at 150 g ai/ha. Therefore, 7a is a promising herbicidal candidate that is worthy of further development.


Asunto(s)
Ciclohexanonas , Herbicidas , Piridinas , Compuestos de Sulfonilurea , Herbicidas/farmacología , Herbicidas/química , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Esqueleto , Pirazoles/farmacología , Pirazoles/química , Tiourea
14.
Inflamm Bowel Dis ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531068

RESUMEN

BACKGROUND: Pivotal trials have shown that ustekinumab is effective in ulcerative colitis (UC). However, the population included in these trials do not represent the cohort of patients treated in the real world. In this study, we aimed to describe the effectiveness and safety of ustekinumab in a clinical cohort of patients with UC. METHODS: We performed a multicenter retrospective cohort study and included patients with active UC starting ustekinumab. Variables collected included demographics, clinical data, and disease activity (measured using partial Mayo score [PMS] and endoscopic Mayo score) at follow-up. The primary outcomes were cumulative rates of steroid-free clinical and biochemical remission (SFCBR), defined as a PMS <2 while off steroids and a normal C-reactive protein and/or fecal calprotectin. RESULTS: A total of 245 patients met inclusion criteria. The median time of follow-up was 33 (interquartile range, 17-53) weeks, and 214 (87.3%) had previous exposure to a biologic and/or tofacitinib. Rates of SFCBR, clinical remission, and endoscopic remission at 6 and 12 months were 12.0% (n = 16 of 139), 29.0% (n = 71 of 175), and 18.0% (n = 7 of 39), and 23.8% (n = 15 of 63), 54.3% (n = 57 of 105), and 31.0% (n = 9 of 29), respectively. Non-Hispanic White race, higher baseline PMS, and the use of concomitant corticosteroids were independently associated with failure to achieve SFCBR. Of the 73 that were dose escalated, 28.4% did not respond, 49.3% experienced a benefit, and 21.6% achieved remission. CONCLUSIONS: In a population enriched with refractory UC, ustekinumab was well tolerated and induced remission in a significant number of patients. Larger studies with a longer follow-up are warranted.


Ustekinumab was shown to be efficacious and safe in a population of patients with refractory ulcerative colitis. Those patients with exposure to multiple drug classes and higher disease burden at baseline are less likely to respond.

15.
J Gastrointest Oncol ; 15(1): 190-202, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38482211

RESUMEN

Background: The long non-coding RNA (lncRNA) prostate cancer-associated transcript 6 (PCAT6) has been studied in many cancers, yet its relationship with colorectal cancer (CRC) remains poorly defined. Here, we conducted an analysis of The Cancer Genome Atlas (TCGA) database to better clarify the role of PCAT6 in this cancer type. Methods: Wilcoxon rank-sum tests were utilized to assess relative levels of PCAT6 in CRC tumors and normal tissues, while logistic regression analyses were utilized to compare the relationships between PCAT6 levels and clinicopathological findings. Kaplan-Meier curves and Cox regression analyses were used to gauge correlations between PCAT6 and patient survival outcomes, while the biological roles of this lncRNA were investigated via a gene set enrichment analysis (GSEA) approach. The expression level of PCAT6 in CRC cell lines was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results: PCAT6 levels were significantly correlated with CRC patient lymph node metastasis (N) stage [odds ratio (OR) =1.8 for N1 & N2 vs. N0], lymphatic invasion [OR =1.9 for yes vs. no), distant metastasis (M stage) (OR =2.1 for M1 vs. M0), carcinoembryonic antigen (CEA) level (OR =1.9 for >5 vs. ≤5), perineural invasion (OR =1.9 for yes vs. no), pathologic stage (OR =1.9 for stage III/IV vs. stage I/II), and neoplasm type (OR =2.1 for rectal adenocarcinoma vs. colon adenocarcinoma) (all P<0.05). CRC patients expressing higher PCAT6 levels exhibited poorer survival outcomes than those expressing low levels of this lncRNA (P=0.017), and in univariate analyses, higher PCAT6 levels were linked to worse overall survival [hazard ratio (HR) =1.540; 95% confidence interval (CI): 1.079-2.199; P=0.017], with this relationship also being preserved in a multivariate analysis (HR =6.892; 95% CI: 1.713-27.727, P=0.007). GSEA revealed high PCAT6 expression to be linked to differential DNA methylation enrichment, with high PCAT6 levels being associated with changes in base excision repair, cellular senescence, G2/M DNA damage checkpoint, chromatin-modifying enzyme, and gene silencing by RNA activity. The high expression of lncRNA PCAT6 in CRC cell lines was demonstrated by PCR experiments. Conclusions: PCAT6 represents a promising prognostic biomarker of poor CRC patient survival outcomes, with DNA methylation and RNA-mediated gene silencing being potentially promising mechanistic pathways whereby this lncRNA may shape patient outcomes.

16.
Infect Drug Resist ; 17: 595-604, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38390619

RESUMEN

Background: The rising prevalence and limited efficacy of treatments for pre-extensively drug-resistant tuberculosis (pre-XDR-TB) underscore an immediate need for innovative therapeutic options. A combination of host-directed therapy (HDT) and anti-TB treatment presents a viable alternative for pre-XDR-TB management. Sulfasalazine (SASP), by targeting the amino acid transport system xc (xCT), potentially reduces the intracellular Mycobacterium tuberculosis load and mitigates lung pathology, positioning it as a promising TB HDT agent. This study aims to assess the efficacy of SASP as a supplementary therapy for pre-XDR-TB. Methods: A pilot study examined the safety and effectiveness of two 9-month short-course, all-oral regimens for pre-XDR-TB treatment: Bdq-regimen (consisting of Bdq, linezolid, cycloserine, clofazimine, and pyrazinamide) and SASP-regimen (comprising SASP, linezolid, cycloserine, clofazimine, and pyrazinamide). The primary endpoint was the incidence of unfavorable outcomes 12 months post-treatment. Results: Of the 44 participants enrolled, 43 were assessable 12 months post-treatment. Culture conversion rates stood at 73.2% by Month 2 and escalated to 95.1% by Month 6. Overall, 88.4% (38/43) of the participants exhibited favorable outcomes, 85.2% (19/23) for the Bdq-regimen and 93.8% (14/15) for the SASP-regimen. The SASP-regimen group recorded no deaths or treatment failures. Conclusion: Both 9-month short-course, all-oral regimens manifested commendable primary efficacy in treating pre-XDR-TB patients. The SASP-regimen emerged as effective, safe, well-tolerated, and cost-effective.

17.
J Proteomics ; 297: 105127, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38367771

RESUMEN

Jacalin-related lectins (JALs) are a unique group of plant lectins derived from the jacalin protein family, which play important roles in plant defense responses. JAL30/PBP1 (PYK10 binding protein 1) interacts with inactive PYK10, exerting negative regulatory control over the size of the PYK10 complex, which is formed and activated upon insect or pathogen invasion. However, the precise interplay between JAL30 and other components remains elusive. In this study, we found JAL30 as a nucleocytoplasmic protein, but no obvious phenotype was observed in jal30-1 single mutant. Through immunoprecipitation (IP) enrichment combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), dozens of new JAL30 interacting proteins were found in addition to several reported ones. Gene Ontology (GO) analysis revealed that these interacting proteins were highly related to the wounding and bacterial stimuli, suggesting their potential involvement in the jasmonate (JA) response. Importantly, the expression of JAL30 was induced by MeJA treatment, further highlighting its relevance in plant defense mechanisms. A novel JAL30 interacting protein, ESM1, was identified and its interaction with JAL30 was confirmed by Co-immunoprecipitation. Moreover, ESM1 was found as an O-GlcNAcylated protein, suggesting that JAL30 may possess glycosylated protein binding ability, particularly in O-GlcNAcylated protein and peptide recognition. Overall, our study provides valuable insights into the interacting protein network and biological function of JAL30, demonstrates the interaction between JAL30 and ESM1, and uncovers the potential significance of JAL30 in plant defense system, potentially through its association with PYK10 complex or JA response. SIGNIFICANCE: The biological functions of lectin proteins, including defense responses, immunity responses, signal transduction, have been well studied. Lectin proteins were also utilized to enrich glycosylated proteins for their specific carbohydrates binding capability. Jacalin-related lectins (JALs) were found to involve in plant defense mechanism. However, it is not yet clear whether JALs could use for enrichment of glycosylated proteins. In this study, we used label-free quantification method to identify interacting proteins of JAL30. A novel interacting protein, ESM1, as an O-GlcNAcylated protein was found. ESM1 has been reported to take part in defense against insect herbivory. Therefore, our findings provided experimental evidence to confirm that JALs have potential to be developed as the bio-tools to enrich glycosylated proteins. Finally, our data not only illustrated the vital biological role of JALs in plants, but also verified unique function of JAL30 in recognizing O-GlcNAcylated proteins.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Mapas de Interacción de Proteínas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatografía Liquida , Regulación de la Expresión Génica de las Plantas , Glicoproteínas/metabolismo , Proteómica , Espectrometría de Masas en Tándem
18.
ACS Appl Mater Interfaces ; 16(7): 9002-9011, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38344979

RESUMEN

Metal-organic frameworks (MOFs) have recently gained extensive attention as potential materials for direct radiation detection due to their strong radiation absorption, long-range order, and chemical tunability. However, it remains challenging to develop a practical MOF-based X-ray direct detector that possesses high X-ray detection efficiency, radiation stability, and environmental friendliness. The integration of donor-acceptor (D-A) pairs into crystalline MOFs is a powerful strategy for the precise fabrication of multifunctional materials with unique optoelectronic properties. Herein, a new lead-free MOF, Cu2I2(TPPA) (CuI-TPPA, TPPA = tris[4-(pyridine-4-yl)phenyl]amine), with a 6-fold interpenetrated structure is designed and synthesized based on the electron donor-acceptor strategy. CuI-TPPA has a large mobility-lifetime (µτ) product of 5.8 × 10-4 cm2 V-1 and a high detection sensitivity of 73.1 µC Gyair-1 cm-2, surpassing that of commercial α-Se detectors. Moreover, the detector remains fairly stable with only a 2% reduction in photocurrent under continuous bias irradiation conditions with a total dose of over 42.83 Gyair. The CuI-TPPA/poly(vinylidene fluoride) flexible composite X-ray detector films are successfully manufactured with different thicknesses. Through multifaceted assessments, the optimal thickness is found with a high detection sensitivity of up to 143.6 µC Gyair-1 cm-2. As proof-of-concept, 11 × 9 pixelated X-ray detectors are fabricated on the same composite film to realize X-ray direct imaging. This work opens up potential applications of MOFs in environmentally friendly and wearable devices for direct X-ray detection and imaging.

19.
Gastrointest Endosc ; 100(1): 109-115, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38215857

RESUMEN

BACKGROUND AND AIMS: Manipulation of colorectal polyps by biopsy, incomplete resection, or tattoo placement under the lesion has been shown to cause submucosal fibrosis and associated inferior outcomes. The effect of delays between index manipulation and definitive resection on the incidence of fibrosis is unknown. METHODS: Patients undergoing EMR of previously manipulated colorectal polyps ≥10 mm from 2016 to 2021 at a tertiary referral center were included. Time from index manipulation to definitive resection and the presence of fibrosis were noted. The effects of fibrosis on EMR outcomes were assessed. RESULTS: Among 221 previously manipulated lesions (180 biopsy, 23 incomplete/failed resection, 1 tattoo under lesion, 17 multiple types of manipulation), 51 (23%) demonstrated fibrosis. Fibrotic lesions were found to have been resected significantly later than nonfibrotic lesions (76 vs 61 days; P = .014). In a multivariate analysis controlling for other predictors of fibrosis, each 2-week delay was associated with a 14% increase in the odds of fibrosis. Fibrotic lesions had inferior outcomes with a lower en-bloc resection rate (8% vs 24%; P = .014) and longer procedure time (71 vs 52 minutes; P < .001). Adverse event and recurrence rates were similar between groups. CONCLUSIONS: Delays in definitive resection of previously manipulated polyps are associated with an increased incidence of fibrosis with time and associated inferior outcomes. Manipulation should be discouraged, and if it occurs, prompt referral and scheduling for definitive resection should be prioritized.


Asunto(s)
Pólipos del Colon , Resección Endoscópica de la Mucosa , Fibrosis , Humanos , Masculino , Femenino , Persona de Mediana Edad , Pólipos del Colon/cirugía , Pólipos del Colon/patología , Resección Endoscópica de la Mucosa/métodos , Anciano , Factores de Riesgo , Tiempo de Tratamiento , Colonoscopía/métodos , Estudios Retrospectivos , Tempo Operativo , Mucosa Intestinal/cirugía , Mucosa Intestinal/patología , Neoplasias Colorrectales/cirugía , Neoplasias Colorrectales/patología , Resultado del Tratamiento , Factores de Tiempo
20.
Fitoterapia ; 172: 105744, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37952762

RESUMEN

PURPOSE: Frankincense has been shown in studies to have healing benefits for people with ulcerative colitis (UC). However, its underlying mechanisms have not been fully investigated. The objective of this study was to explore the potential molecular mechanisms of Frankincense essential oil (FREO) in improving dextran sodium sulfate (DSS)-induced UC from multiple perspectives. METHODS: The FREO components were analyzed by GC-MS, and the interactions between the key active components and the mechanism of FREO were determined based on RNA-seq, "quantity-effect" weighting coefficient network pharmacology, WGCNA and pharmacodynamic experiments. The protection of FREO against DSS-induced UC mice was assessed by behavioral and pathological changes through mice. The expression of pro-inflammatory cytokines was measured using enzyme-linked immunosorbent assay. The expression of MAPK and NF-κB-related proteins by the Western Blotting and immunohistochemistry method. RESULTS: Treatment with FREO significantly improved the symptoms of weight loss, diarrhea, stool blood, and colon shortening in UC mice. Reduced intestinal mucosal damage and the degree of inflammatory cell infiltration in the colon. Decreased TNF-α and IL-6 levels in mice's serum and inhibited phosphorylation of ERK, p65 in MAPK and NF-κB signaling. CONCLUSION: FREO may decrease the inflammatory response to reduce the symptoms of UC by modulating the MAPK/ NF-κB pathway. This may be due to the synergistic interaction of the effective ingredient Hepten-2-yl tiglate, 6-methyl-5-, Isoneocembrene A and P-Cymene. This study provides a promising drug candidate and a new concept for the treatment of UC.


Asunto(s)
Colitis Ulcerosa , Colitis , Olíbano , Aceites Volátiles , Sulfatos , Humanos , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , FN-kappa B/metabolismo , Dextranos/metabolismo , Dextranos/farmacología , Dextranos/uso terapéutico , Olíbano/metabolismo , Olíbano/farmacología , Olíbano/uso terapéutico , Aceites Volátiles/farmacología , RNA-Seq , Modelos Animales de Enfermedad , Estructura Molecular , Sulfato de Dextran/efectos adversos , Sulfato de Dextran/metabolismo , Colon/metabolismo , Colon/patología , Ratones Endogámicos C57BL , Colitis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA