RESUMEN
Alternative oxidase (AOX) serves as a critical terminal oxidase within the plant respiratory pathway, playing a significant role in cellular responses to various stresses. Foxtail millet (Setaria italica), a crop extensively cultivated across Asia, is renowned for its remarkable tolerance to abiotic stresses and minimal requirement for fertilizer. In this study, we conducted a comprehensive genome-wide identification of AOX genes in foxtail millet genome, discovering a total of five SiAOX genes. Phylogenetic analysis categorized these SiAOX members into two subgroups. Prediction of cis-elements within the promoter regions, coupled with co-expression network analysis, intimated that SiAOX proteins are likely involved in the plant's adaptive response to abiotic stresses. Employing RNA sequencing (RNA-seq) and real-time quantitative PCR (RT-qPCR), we scrutinized the expression patterns of the SiAOX genes across a variety of tissues and under multiple abiotic stress conditions. Specifically, our analysis uncovered that SiAOX1, SiAOX2, SiAOX4, and SiAOX5 display distinct tissue-specific expression profiles. Furthermore, SiAOX2, SiAOX3, SiAOX4, and SiAOX5 exhibit responsive expression patterns under abiotic stress conditions, with significant differences in expression levels observed between the shoot and root tissues of foxtail millet seedlings. Haplotype analysis of SiAOX4 and SiAOX5 revealed that these genes are in linkage disequilibrium, with Hap_2 being the superior haplotype for both, potentially conferring enhanced cold stress tolerance in the cultivar group. These findings suggest that both SiAOX4 and SiAOX5 may be targeted for selection in future breeding programs aimed at improving foxtail millet's resilience to cold stress.
RESUMEN
To investigate the cross-sectional and longitudinal correlation between serum superoxide dismutase (SOD) levels and thyroid function with obesity before and after laparoscopic sleeve gastrectomy (LSG). Patients with morbid obesity (n = 219, 112 males and 107 females) who underwent LSG were selected and they were subdivided into normal levels of SOD (NSOD, n = 112) and high levels of SOD (HSOD, n = 107) according to the median value of SOD levels (183 U/mL). SOD and thyroid hormones were measured and compared at baseline, 3, 6, and 12 months after LSG. The HSOD group had lower body mass index (BMI), total thyroxine (TT4), and thyroid-stimulating hormone (TSH) than the NSOD group (p < 0.001, p = 0.031, p < 0.001, respectively). However, they had higher free triiodothyronine (FT3) and free thyroxine (FT4) (p = 0.019 and p = 0.017, respectively). SOD was significantly negatively associated with TSH and positively associated with FT4. Of all the patients, 22.31% (NSOD: 66.67%; HSOD: 33.33%) had subclinical hypothyroidism (SH), and there were lower SOD levels in the SH group. Preoperative SOD was a protective factor for SH. After LSG, SOD and FT4 levels were increased at 12 months after LSG, however, TSH, FT3, total triiodothyronine (TT3) and TT4 levels decreased compared to the preoperative levels at 3, 6, and 12 months in the SH group. Postoperative changes in FT4 and TT4 levels correlated with changes in SOD levels. SOD, which is correlated with thyroid hormones, protects against SH in patients with obesity. The improvement in thyroid function with SH after LSG may be related to increased SOD levels.
Asunto(s)
Laparoscopía , Obesidad Mórbida , Masculino , Femenino , Humanos , Tiroxina , Triyodotironina , Glándula Tiroides , Estudios Transversales , Hormonas Tiroideas , Tirotropina , Obesidad Mórbida/cirugía , Obesidad Mórbida/complicaciones , Gastrectomía , Superóxido DismutasaRESUMEN
[This corrects the article DOI: 10.3389/fpls.2022.1043832.].
RESUMEN
BACKGROUND AND AIMS: The functions of liver fatty acid binding protein 1 (FABP1) in the regulation of nonalcoholic fatty liver disease (NAFLD) have been previously established. However, how FABP1 expression is dynamically regulated in metabolic disorders is unclear. Previous studies have reported that ubiquitin proteasome-mediated degradation of FABP1 is involved, but the mechanism remains unknown. METHODS: Dysregulated expression of hepatic FABP1 and Derlin-1 was observed in NAFLD patients. We performed mice hepatic tissue coimmunoprecipitation based mass spectrum assays. Interaction between Derlin-1 and FABP1, and its impact on FABP1 ubiquitination status was evaluated by coimmunoprecipitation. The role of Derlin-1 in lipid deposition was tested using adenovirus-mediated overexpression in C57BL/6 mice, as well as by Derlin-1 overexpression or knockdown in HepG2 cells. RESULTS: As a subunit of the endoplasmic reticulum-associated degradation complex, Derlin-1 was negatively associated with NAFLD patients, interacted with and ubiquitinated FABP1. Derlin-1 suppressed FABP1 levels and inhibited lipid deposition through a FABP1-dependent pathway. Additionally, Trim25, an E3 ubiquitin ligase present in the endoplasmic reticulum, was recruited to promote Derlin-1-related polyubiquitylation of FABP1, thereby creating a ubiquitin-associated network for FABP1 regulation. Derlin-1 overexpression ameliorated hepatic steatosis in both C57BL/6 mice and HepG2 cells, and contributed to attenuated weight gain, lower liver weight, and visceral fat mass. CONCLUSIONS: FABP1 was degraded by Derlin-1 through ubiquitin modification. Negative regulation of FABP1 by Derlin-1 overexpression, suppressed lipid metabolism and alleviated lipid deposition in vivo and in vitro. Hence, Derlin-1 activation in hepatocytes may represent a potential therapeutic strategy for NAFLD.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Dieta Alta en Grasa , Degradación Asociada con el Retículo Endoplásmico , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Lípidos , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ubiquitina/metabolismo , Ubiquitinación , HumanosRESUMEN
BACKGROUND: The detailed molecular mechanism between type 2 diabetes mellitus (T2DM) and colorectal cancer (CRC) is still uncertain. Bone morphogenetic protein 4 (BMP4) dysregulation is implicated in T2DM and CRC, respectively. This study aims to investigate whether BMP4 can mediate the interaction of CRC with T2DM. METHODS: We firstly explored the expression of BMP4 in The Cancer Genome Altas (TCGA) databases and CRC patients with or without DM from the Shanghai Tenth People's Hospital. The diabetic model of CRC cell lines in vitro and the mice model in vivo were developed to explore the BMP4 expression during CRC with or without diabetes. Further inhibition of BMP4 to observe its effects on CRC. Also, glucagon-like peptide-1 receptor agonist (GLP-1RA) was used to verify the underlying mechanism of hypoglycemic drugs on CRC via BMP4. RESULTS: BMP4 expression was upregulated in CRC patients, and significantly higher in CRC patients with diabetes (P < 0.05). High glucose-induced insulin resistance (IR)-CRC cells and diabetic mice with metastasis model of CRC had increased BMP4 expression, activated BMP4-Smad1/5/8 pathway, and improved proliferative and metastatic ability mediated by epithelial-mesenchymal transition (EMT). And, treated CRC cells with exogenously BMP inhibitor-Noggin or transfected with lentivirus (sh-BMP4) could block the upregulated metastatic ability of CRC cells induced by IR. Meanwhile, GLP-1R was downregulated by high glucose-induced IR while unregulated by BMP4 inhibitor noggin, and treated GLP-1RA could suppress the proliferation of CRC cells induced by IR through downregulated BMP4. CONCLUSIONS: BMP4 increased by high glucose promoted the EMT of CRC. The mechanism of the BMP4/Smad pathway was related to the susceptible metastasis of high glucose-induced IR-CRC. The commonly used hypoglycemic drug, GLP-1RA, inhibited the growth and promoted the apoptosis of CRC through the downregulation of BMP4. The result of our study suggested that BMP4 might serve as a therapeutic target in CRC patients with diabetes.
Asunto(s)
Neoplasias Colorrectales , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animales , Ratones , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Diabetes Mellitus Experimental/metabolismo , Receptor del Péptido 1 Similar al Glucagón , Glucosa , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéuticoRESUMEN
Haplotype blocks greatly assist association-based mapping of casual candidate genes by significantly reducing genotyping effort. The gene haplotype could be used to evaluate variants of affected traits captured from the gene region. While there is a rising interest in gene haplotypes, much of the corresponding analysis was carried out manually. CandiHap allows rapid and robust haplotype analysis and candidate identification preselection of candidate causal single-nucleotide polymorphisms and InDels from Sanger or next-generation sequencing data. Investigators can use CandiHap to specify a gene or linkage sites based on genome-wide association studies and explore favorable haplotypes of candidate genes for target traits. CandiHap can be run on computers with Windows, Mac, or UNIX platforms in a graphical user interface or command line, and applied to any species, such as plant, animal, and microbial. The CandiHap software, user manual, and example datasets are freely available at BioCode (https://ngdc.cncb.ac.cn/biocode/tools/BT007080) or GitHub (https://github.com/xukaili/CandiHap). Supplementary information: The online version contains supplementary material available at 10.1007/s11032-023-01366-4.
RESUMEN
The MADS-box gene family is widely distributed in higher plants and the members of the angiosperm-specific APETALA1/FRUITFULL (AP1/FUL) subfamily plays important roles in the regulation of plant reproductive development. Recent studies revealed that the AP1/FUL subfamily member Dt2, VEGETATIVE1/PsFRUITFULc (VEG1/PsFULc) and MtFRUITFULc (MtFULc) are essential for the stem growth, branching and inflorescence development in legume species soybean (Glycine max), pea (Pisum sativum) and Medicago truncatula. However, the biological function of their homologue in Arabidopsis thaliana, AGAMOUS-LIKE 79 (AGL79), has not been well elucidated. In this study, we investigated the developmental roles of Arabidopsis AGL79 by CRISPR/Cas9-mutagenesis and molecular and physiological analyses. We found that AGL79 mainly acts as a transcriptional repressor and positively regulates Arabidopsis flowering time. We further revealed that AGL79 interacts with SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1) and represses the expression of TERMINAL FLOWER 1 (TFL1). Our results demonstrated the AGL79-mediated flowering regulation in Arabidopsis and added an additional layer of complexity to the understanding of flowering time regulation in dicot plants.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Plantas Modificadas Genéticamente/genética , Glycine max/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
BACKGROUND: Foxtail millet (Setaria italica) harbors the small diploid genome (~ 450 Mb) and shows the high inbreeding rate and close relationship to several major foods, feed, fuel and bioenergy grasses. Previously, we created a mini foxtail millet, xiaomi, with an Arabidopsis-like life cycle. The de novo assembled genome data with high-quality and an efficient Agrobacterium-mediated genetic transformation system made xiaomi an ideal C4 model system. The mini foxtail millet has been widely shared in the research community and as a result there is a growing need for a user-friendly portal and intuitive interface to perform exploratory analysis of the data. RESULTS: Here, we built a Multi-omics Database for Setaria italica (MDSi, http://sky.sxau.edu.cn/MDSi.htm ), that contains xiaomi genome of 161,844 annotations, 34,436 protein-coding genes and their expression information in 29 different tissues of xiaomi (6) and JG21 (23) samples that can be showed as an Electronic Fluorescent Pictograph (xEFP) in-situ. Moreover, the whole-genome resequencing (WGS) data of 398 germplasms, including 360 foxtail millets and 38 green foxtails and the corresponding metabolic data were available in MDSi. The SNPs and Indels of these germplasms were called in advance and can be searched and compared in an interactive manner. Common tools including BLAST, GBrowse, JBrowse, map viewer, and data downloads were implemented in MDSi. CONCLUSION: The MDSi constructed in this study integrated and visualized data from three levels of genomics, transcriptomics and metabolomics, and also provides information on the variation of hundreds of germplasm resources that can satisfies the mainstream requirements and supports the corresponding research community.
Asunto(s)
Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Multiómica , Genómica , Análisis de Secuencia de ADN , Polimorfismo de Nucleótido SimpleRESUMEN
BACKGROUND: To demonstrate the association of irisin levels with impaired glucose before and after laparoscopic sleeve gastrectomy (LSG) in patients with obesity. METHODS: Thirty-six patients with obesity undergoing LSG were included. We tested the irisin levels before and after LSG and conducted an evaluation of baseline irisin levels with elevated glucose as well as irisin changes with weight loss and its association with glucose control after LSG. RESULTS: Anthropometric measurements, body fat index, and metabolic parameters were significantly improved in 3 months following LSG (all p < 0.05). Baseline irisin levels were significantly higher in obesity with elevated fasting glucose than that with normal glucose (2.98 [2.37, 3.63] vs. 3.72 [3.06, 5.32], p = 0.031). After adjustment for sex, gender, and body mass index (BMI), obesity with higher irisin levels was prone to have impaired fasting glucose (OR = 2.499, 95% CI = 1.047-5.964). According to receiver operating characteristic curve analysis, the diagnostic accuracy and sensitivity of baseline irisin levels on impaired fasting glucose were 75% and 77.8%. Irisin levels decreased from 3.29 (2.67, 4.43) to 2.82 (2.41, 3.25) ng/mL (p = 0.009) after LSG. The decreases of weight, BMI, and FFA were more in irisin changes group (â³irisin ≥ 0.5) than in no irisin changes group (â³irisin < 0.5). And â³irisin was negatively associated with postprandial glucose (PG) at 3 months after LSG (0.5 h-PG, r = - 0.478, p = 0.029; 2 h-PG, r = - 0.406, p = 0.017). CONCLUSIONS: Elevated baseline irisin levels indicated the impaired glucose in obesity. The decrease of irisin with weight loss provided more evidence for the contribution of serum irisin secretion by fat mass in obesity.
Asunto(s)
Laparoscopía , Obesidad Mórbida , Humanos , Obesidad Mórbida/cirugía , Glucosa , Obesidad/cirugía , Índice de Masa Corporal , Gastrectomía , Pérdida de PesoRESUMEN
Background: Liver-type fatty acid-binding protein (FABP1) contributes to metabolic disorders. However, the relationship between FABP1 and hyperuricemia remains unknown. We aimed to evaluate the correlation between serum FABP1 and hyperuricemia in patients with obesity before and after laparoscopic sleeve gastrectomy (LSG). Methods: We enrolled 105 patients (47 men and 58 women) with obesity who underwent LSG. They were divided into two groups: normal levels of uric acid (UA) (NUA, n = 44) and high levels of UA (HUA, n = 61) with matching sexes. FABP1 levels and other biochemical parameters were measured at baseline and 3, 6, and 12 months after LSG. Results: Serum FABP1 levels were significantly higher in the HUA group than in the NUA group (34.76 ± 22.69 ng/mL vs. 25.21 ± 21.68 ng/mL, P=0.024). FABP1 was positively correlated with UA (r=0.390, P=0.002) in the HUA group. The correlation still existed after adjusting for confounding factors. Preoperative FABP1 levels were risk factors for hyperuricemia at baseline. UA and FABP1 levels decreased at 3, 6, and 12 months postoperatively. FABP1 showed a more significant decrease in the HUA group than in the NUA group at 12 months (27.06 ± 10.98 ng/mL vs. 9.54 ± 6.52 ng/mL, P=0.003). Additionally, the change in FABP1 levels positively correlated with changes in UA levels in the HUA group 12 months postoperatively (r=0.512, P=0.011). Conclusions: FABP1 was positively associated with UA and may be a risk factor for hyperuricemia in obesity. FABP1 levels were higher but decreased more after LSG in obese patients with hyperuricemia than in those without hyperuricemia.
Asunto(s)
Hiperuricemia , Laparoscopía , Masculino , Humanos , Femenino , Hiperuricemia/etiología , Ácido Úrico , Gastrectomía/efectos adversos , Proteínas de Unión a Ácidos Grasos , Obesidad , Laparoscopía/efectos adversos , HígadoRESUMEN
Vitamin C (Vit C) and iron metabolism are closely related to metabolic disorders. However, the relation between iron storage protein ferritin and Vit C has not been elucidated. We aimed to investigate the crosstalk between Vit C and ferritin and its implications on non-alcoholic fatty liver disease (NAFLD). Clinical information of 3,614 subjects was obtained from the NHANES Public Data 2017-2018. FibroScan data, which estimates liver steatosis and fibrosis and Vit C, were selected to assess factors influencing NAFLD in this cross-sectional study. Ferritin and Vit C among different categories of liver steatosis and fibrosis were assessed by CAP and E value. Logistic regression and RCS models were used to analyze the correlations. In vitro study in hepG2 were conducted to validate the regulations. Ferritin increased while Vit C decreased with more severe hepatic steatosis and hepatic fibrosis (all P < 0.001). Logistic regression models indicated that increased serum ferritin was a risk factor for NAFLD while increased Vit C was a protective factor for NAFLD and hepatic fibrosis after adjusting the continuous and categorical variables. Vitamin C was negatively associated with ferritin. Further mediation analysis identified that ferritin mediates the impact of Vit C on NAFLD (P < 0.05) and cirrhosis (P < 0.001). The experiments on cellular level suggested Vit C alleviated PA/OA induced steatosis and maintains iron homeostasis through inhibiting PA/OA induced upregulation of iron bound protein ferritin and labile iron pool (LIP) induction in hepG2 cells. In conclusion, Vit C was a protective factor, whereas ferritin was a risk factor for hepatic steatosis and fibrosis. Vitamin C alleviated NAFLD and maintained iron homeostasis via ferritin suppression and LIP induction.
RESUMEN
Purpose: Dipeptidyl peptidase-4 inhibitors (DPP-4I), key regulators of the actions of incretin hormones, exert anti-hyperglycemic effects in type 2 diabetes mellitus (T2DM) patients. A major unanswered question concerns the potential ability of DPP-4I to improve intrahepatic lipid (IHL) content in nonalcoholic fatty liver disease (NAFLD) patients. The aim of this study was to evaluate the effects of sitagliptin on IHL in NAFLD patients. Methods: A prospective, 24-week, single-center, open-label, comparative study enrolled 68 Chinese NAFLD patients with T2DM. Subjects were randomly divided into 4 groups: control group who did not take medicine (14 patients); sitagliptin group who received sitagliptin treatment (100mg per day) (17 patients); metformin group who received metformin (500mg three times per day) (17 patients); and sitagliptin plus metformin group who received sitagliptin (100mg per day) and metformin (500 mg three times per day) (20 patients). IHL, physical examination (waist circumstances, WC; body mass index, BMI), glucose-lipid metabolism (fasting plasma glucose, FPG; hemoglobin A1c, Hb1A1c; triglycerides; cholesterol; alanine aminotransferase, ALT; aspartate aminotransferase, AST) were measured at baseline and at 24 weeks. Results: 1) WC and BMI were decreased significantly in all groups except control group (all P<0.05). 2) There was no statistically significant difference in IHL among the sitagliptin, metformin, and sitagliptin plus metformin groups before and after treatment(all P>0.05). Only the metformin group showed a statistically significant difference in IHL before and after treatment(P<0.05). 3) Sitagliptin treatment led to a significant decrease in FBG and HbA1c when compared with the control group (all P<0.01). Additionally, HhA1c was significant decreased in the sitagliptin group when compared with the metformin group (P< 0.05). 4) HbA1c and FBG were decreased by 0.8% and 0.7 mmol/l respectively and the percentage of patients with HbA1c less than 7% was 65% with sitagliptin treatment. Conclusion: Sitagliptin improves abnormalities in glucose metabolism, but not reduces the IHL in T2DM with NAFLD, indicating that sitagliptin might be a therapeutic option for treatment of NAFLD indirectly while not directly on IHL. Clinical Trial Registration: https://clinicaltrials.gov/, identifier CTR# NCT05480007.
Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Enfermedad del Hígado Graso no Alcohólico , Fosfato de Sitagliptina , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Hemoglobina Glucada/metabolismo , Humanos , Hipoglucemiantes/uso terapéutico , Metformina/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Estudios Prospectivos , Fosfato de Sitagliptina/uso terapéutico , TriglicéridosRESUMEN
Many fusion tags have been developed to improve the expression of recombinant proteins. Besides the translocation of cargo proteins, the signal peptides (SPs) of some secretory proteins, such as the ssTorA and Iasp, have been used as an inclusion body tag (IB-tag) or the recombinant expression enhancer in the cytosol of E. coli. In this study, the approach to utilize the SP of Vip3A (Vasp) from Bacillus thuringiensis (Bt) as a fusion tag was investigated. The results showed that either the Vasp or its predicted N- (VN), H- (VH), and C-regions (VC), as well as their combinations (VNH, VNC, and VHC), were able to significantly enhance the production yield of eGFP. However, the hydrophobic region of the Vasp (VH and/or VC) made more than half of the eGFP molecules aggregated (VeGFP, VHeGFP, VCeGFP, VNHeGFP, VNCeGFP, and VHCeGFP). Interestingly, the addition of the Bt trigger factor (BtTF) led to the neutralization of the negative impact and solubilization of the fusion proteins. Therefore, the coexpression of Vasp or its derivates with the chaperone BtTF could be a novel dual-enhancement system for the production yield and solubility of recombinant proteins. Notably, EcTF was unable to impact the solubility of Vasp or its derivates guided proteins, suggesting its different specificities on the recognition or interaction. Additionally, this study also suggested that the translocation of Vip3 in the host cell would be regulated by the BtTF-involved model.
RESUMEN
Foxtail millet (Setaria italica), which was domesticated from the wild species green foxtail (Setaria viridis), is a rich source of phytonutrients for humans. To evaluate how breeding changed the metabolome of foxtail millet grains, we generated and analyzed the datasets encompassing the genomes, transcriptomes, metabolomes, and anti-inflammatory indices from 398 foxtail millet accessions. We identified hundreds of common variants that influence numerous secondary metabolites. We observed tremendous differences in natural variations of the metabolites and their underlying genetic architectures between distinct sub-groups of foxtail millet. Furthermore, we found that the selection of the gene alleles associated with yellow grains led to altered profiles of metabolites such as carotenoids and endogenous phytohormones. Using CRISPR-mediated genome editing we validated the function of PHYTOENE SYNTHASE 1 (PSY1) gene in affecting millet grain color and quality. Interestingly, our in vitro cell inflammation assays showed that 83 metabolites in millet grains have anti-inflammatory effects. Taken together, our multi-omics study illustrates how the breeding history of foxtail millet has shaped its metabolite profile. The datasets we generated in this study also provide important resources for further understanding how millet grain quality is affected by different metabolites, laying the foundations for future millet genetic research and metabolome-assisted improvement.
Asunto(s)
Setaria (Planta) , Domesticación , Genómica , Humanos , Fenotipo , Fitomejoramiento , Setaria (Planta)/genética , Setaria (Planta)/metabolismoRESUMEN
[This corrects the article DOI: 10.3389/fendo.2022.822423.].
RESUMEN
BACKGROUND: Modification of histone acetylation is a ubiquitous and reversible process in eukaryotes and prokaryotes and plays crucial roles in the regulation of gene expression during plant development and stress responses. Histone acetylation is co-regulated by histone acetyltransferase (HAT) and histone deacetylase (HDAC). HAT plays an essential regulatory role in various growth and development processes by modifying the chromatin structure through interactions with other histone modifications and transcription factors in eukaryotic cells, affecting the transcription of genes. Comprehensive analyses of HAT genes have been performed in Arabidopsis thaliana and Oryza sativa. However, little information is available on the HAT genes in foxtail millet (Setaria italica [L.] P. Beauv). RESULTS: In this study, 24 HAT genes (SiHATs) were identified and divided into four groups with conserved gene structures via motif composition analysis. Phylogenetic analysis of the genes was performed to predict functional similarities between Arabidopsis thaliana, Oryza sativa, and foxtail millet; 19 and 2 orthologous gene pairs were individually identified. Moreover, all identified HAT gene pairs likely underwent purified selection based on their non-synonymous/synonymous nucleotide substitutions. Using published transcriptome data, we found that SiHAT genes were preferentially expressed in some tissues and organs. Stress responses were also examined, and data showed that SiHAT gene transcription was influenced by drought, salt, low nitrogen, and low phosphorus stress, and that the expression of four SiHATs was altered as a result of infection by Sclerospora graminicola. CONCLUSIONS: Results indicated that histone acetylation may play an important role in plant growth and development and stress adaptations. These findings suggest that SiHATs play specific roles in the response to abiotic stress and viral infection. This study lays a foundation for further analysis of the biological functions of SiHATs in foxtail millet.
Asunto(s)
Arabidopsis , Oryza , Setaria (Planta) , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Histona Acetiltransferasas/genética , Histonas/genética , Histonas/metabolismo , Oryza/genética , Oryza/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Setaria (Planta)/fisiología , Estrés Fisiológico/genéticaRESUMEN
Hepatic inflammation is culpable for the evolution of asymptomatic steatosis to nonalcoholic steatohepatitis (NASH). Hepatic inflammation results from abnormal macrophage activation. We found that FoxO1 links overnutrition to hepatic inflammation by regulating macrophage polarization and activation. FoxO1 was upregulated in hepatic macrophages, correlating with hepatic inflammation, steatosis, and fibrosis in mice and patients with NASH. Myeloid cell conditional FoxO1 knockout skewed macrophage polarization from proinflammatory M1 to the antiinflammatory M2 phenotype, accompanied by a reduction in macrophage infiltration in liver. These effects mitigated overnutrition-induced hepatic inflammation and insulin resistance, contributing to improved hepatic metabolism and increased energy expenditure in myeloid cell FoxO1-knockout mice on a high-fat diet. When fed a NASH-inducing diet, myeloid cell FoxO1-knockout mice were protected from developing NASH, culminating in a reduction in hepatic inflammation, steatosis, and fibrosis. Mechanistically, FoxO1 counteracts Stat6 to skew macrophage polarization from M2 toward the M1 signature to perpetuate hepatic inflammation in NASH. FoxO1 appears to be a pivotal mediator of macrophage activation in response to overnutrition and a therapeutic target for ameliorating hepatic inflammation to stem the disease progression from benign steatosis to NASH.