RESUMEN
Lithium metal batteries (LMBs) with high energy density are perceived as the most promising candidates to enable long-endurance electrified transportation. However, rapid capacity decay and safety hazards have impeded the practical application of LMBs, where the entangled complex degradation pattern remains a major challenge for efficient battery design and engineering. Here, we present an interpretable framework to learn the accelerated aging of LMBs with a comprehensive data space containing 79 cells varying considerably in battery chemistries and cell parameters. Leveraging only data from the first 10 cycles, this framework accurately predicts the knee points where aging starts to accelerate. Leaning on the framework's interpretability, we further elucidate the critical role of the last 10%-depth discharging on LMB aging rate and propose a universal descriptor based solely on early cycle electrochemical data for rapid evaluation of electrolytes. The machine learning insights also motivate the design of a dual-cutoff discharge protocol, which effectively extends the cycle life of LMBs by a factor of up to 2.8.
RESUMEN
Multiple repetitive sequences of authentic genes commonly exist in fungal genomes. AT-biased genotypes of Ophiocordyceps sinensis have been hypothesized as repetitive pseudogenes in the genome of Hirsutella sinensis (GC-biased Genotype #1 of O. sinensis) and are generated through repeat-induced point mutation (RIP), which is charactered by cytosine-to-thymine and guanine-to-adenine transitions, concurrent epigenetic methylation, and dysfunctionality. This multilocus study examined repetitive sequences in the H. sinensis genome and transcriptome using a bioinformatic approach and revealed that 8.2% of the authentic genes had repetitive copies, including various allelic insertions/deletions, transversions, and transitions. The transcripts for the repetitive sequences, regardless of the decreases, increases, or bidirectional changes in the AT content, were identified in the H. sinensis transcriptome, resulting in changes in the secondary protein structure and functional specification. Multiple repetitive internal transcribed spacer (ITS) copies containing multiple insertion/deletion and transversion alleles in the genome of H. sinensis were GC-biased and were theoretically not generated through RIP mutagenesis. The repetitive ITS copies were genetically and phylogenetically distinct from the AT-biased O. sinensis genotypes that possess multiple transition alleles. The sequences of Genotypes #2-17 of O. sinensis, both GC- and AT-biased, were absent from the H. sinensis genome, belong to the interindividual fungi, and differentially occur in different compartments of the natural Cordyceps sinensis insect-fungi complex, which contains >90 fungal species from >37 genera. Metatranscriptomic analyses of natural C. sinensis revealed the transcriptional silencing of 5.8S genes in all C. sinensis-colonizing fungi in natural settings, including H. sinensis and other genotypes of O. sinensis. Thus, AT-biased genotypes of O. sinensis might have evolved through advanced evolutionary mechanisms, not through RIP mutagenesis, in parallel with GC-biased Genotype #1 of H. sinensis from a common genetic ancestor over the long course of evolution.
Asunto(s)
Genoma Fúngico , Secuencias Repetitivas de Ácidos Nucleicos , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Hypocreales/genética , Mutación , Filogenia , Cordyceps/genética , Transcriptoma , Biosíntesis de Proteínas , GenotipoRESUMEN
OBJECTIVE: This study sought to explore the efficiency of para-aortic and pelvic lymphadenectomy in the treatment of locally advanced cervical cancer (LACC) with pelvic lymph node (PLN) metastasis. METHODS: A total of 171 LACC patients with imaging-confirmed pelvic lymph node metastasis were included in this study. These patients were divided into two groups: the surgical staging group, comprising 58 patients who had received para-aortic and pelvic lymphadenectomy (surgical staging) along with concurrent chemoradiation therapy (CCRT), and the imaging staging group, comprising 113 patients who had received only CCRT. The two groups' progression-free survival (PFS), overall survival (OS) and treatment-related complications were compared. RESULTS: The surgical staging group started radiotherapy 10.2 days (range 9-12 days) later than the imaging staging group. The overall incidence of lymphatic cysts was 9.30%. In the surgical staging group, para-aortic lymph node metastasis was identified in 34.48% (20/58) of patients, while pathology-negative PLN was observed in 12.07% (7/58). Over a median follow-up period of 52 months, no significant differences in PFS and OS rates were found between the two groups (p > 0.05). Subgroup analysis of patients with lymph node diameters of ≥ 1.5 cm revealed a five-year PFS rate of 75.0% and an OS rate of 80.0% in the surgical staging group, compared to 41.5% and 50.1% in the imaging staging group, respectively, showing statistically significant differences (p = 0.022, HR:0.34 [0.13, 0.90] and p = 0.038, HR: 0.34 [0.12,0.94], respectively for PFS and OS). Additionally, in patients with two or more metastatic lymph nodes, the five-year PFS and OS rates were 69.2% and 73.1% in the surgical staging group, versus 41.0% and 48.4% in the imaging staging group, with these differences also being statistically significant (p = 0.025, HR: 0.41[0.19,0.93] and p = 0.046, HR: 0.42[0.18,0.98], respectively). CONCLUSION: Performing surgical staging before CCRT is safe and delivers accurate lymph node details crucial for tailoring radiotherapy. This approach merits further investigation, particularly in women with pelvic lymph nodes measuring 1.5 cm or more in diameter or patients with two or more imaging-positive PLNs.
Asunto(s)
Escisión del Ganglio Linfático , Ganglios Linfáticos , Metástasis Linfática , Pelvis , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/cirugía , Neoplasias del Cuello Uterino/terapia , Neoplasias del Cuello Uterino/mortalidad , Escisión del Ganglio Linfático/métodos , Persona de Mediana Edad , Adulto , Estudios de Seguimiento , Tasa de Supervivencia , Ganglios Linfáticos/patología , Ganglios Linfáticos/cirugía , Pelvis/patología , Pelvis/cirugía , Pronóstico , Anciano , Estudios Retrospectivos , Quimioradioterapia/métodos , Estadificación de Neoplasias , Aorta/patología , Aorta/cirugía , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/cirugía , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/mortalidad , Carcinoma de Células Escamosas/secundarioRESUMEN
OBJECTIVE: To investigate the effect of feeder layer cells expressing interleukin (IL)-21 on the amplification of NK cells In Vitro . METHODS: The K562 cell line with IL-21 expression on its membrane was constructed by electroporation, and co-cultured with NK cells after inactivation. The proliferation of NK cells was observed. The killing function of the amplified NK cells In Vitro was evaluated by the lactate dehydrogenase (LDH) and interferon-γ (IFN-γ) release assay. A colorectal cancer xenograft model in NOD/SCID mice was established, and a blank control group, a NK cell group and an amplified NK cell group were set up to detect the tumor killing effect of amplified NK cells in vivo. RESULTS: K562 cells expressing IL-21 on the membrane were successfully constructed by electroporation. After co-culturing with K562 cells expressing IL-21 on the membrane for 17 days, the NK cells increased to 700 times, which showed an enhanced amplification ability compared with control group (P < 0.001). In the tumor cell killing experiment In Vitro , there was no significant difference in the killing activity on tumor cells between NK cells and amplified NK cells, and there was also no significant difference in mice in vivo. CONCLUSION: K562 cells expressing IL-21 on the membrane can significantly increase the amplification ability of NK cells In Vitro , but do not affect the killing function of NK cells In Vitro and in vivo. It can be used for the subsequent large-scale production of NK cells In Vitro .
Asunto(s)
Técnicas de Cocultivo , Células Nutrientes , Interleucinas , Células Asesinas Naturales , Ratones Endogámicos NOD , Ratones SCID , Interleucinas/metabolismo , Animales , Ratones , Humanos , Células K562 , Interferón gamma/metabolismo , Proliferación Celular , Electroporación , Neoplasias ColorrectalesRESUMEN
BACKGROUND: Jianpi-Huatan-Huoxue-Anshen formula [Tzu-Chi cancer-antagonizing & life-protecting II decoction (TCCL)] is a Chinese medical formula that has been clinically shown to reduce the gastrointestinal side effects of chemotherapy in cancer patients and improve their quality of life. However, its effect and mechanism on the intestinal microecology after chemotherapy are not yet clear. AIM: To discover the potential mechanisms of TCCL on gastrointestinal inflammation and microecological imbalance in chemotherapy-treated mice transplanted with hepatocellular carcinoma (HCC). METHODS: Ninety-six mice were inoculated subcutaneously with HCC cells. One week later, the mice received a large dose of 5-fluorouracil by intraperitoneal injection to establish a HCC chemotherapy model. Thirty-six mice were randomly selected before administration, and feces, ileal tissue, and ileal contents were collected from each mouse. The remaining mice were randomized into normal saline, continuous chemotherapy, Yangzheng Xiaoji capsules-treated, and three TCCL-treated groups. After treatment, feces, tumors, liver, spleen, thymus, stomach, jejunum, ileum, and colon tissues, and ileal contents were collected. Morphological changes, serum levels of IL-1ß, IL-6, IL-8, IL-10, IL-22, TNF-α, and TGF-ß, intestinal SIgA, and protein and mRNA expression of ZO-1, NF-κB, Occludin, MUC-2, Claudin-1, and IκB-α in colon tissues were documented. The effect of TCCL on the abundance and diversity of intestinal flora was analyzed using 16S rDNA sequencing. RESULTS: TCCL treatment improved thymus and spleen weight, thymus and spleen indexes, and body weight, decreased tumor volumes and tumor tissue cell density, and alleviated injury to gastric, ileal, and colonic mucosal tissues. Among proteins and genes associated with inflammation, IL-10, TGF-ß, SIgA, ZO-1, MUC-2, and Occludin were upregulated, whereas NF-κB, IL-1ß, IL-6, TNF-α, IL-22, IL-8, and IκB-α were downregulated. Additionally, TCCL increased the proportions of fecal Actinobacteria, AF12, Adlercreutzia, Clostridium, Coriobacteriaceae, and Paraprevotella in the intermediate stage of treatment, decreased the proportions of Mucipirillum, Odoribacter, RF32, YS2, and Rikenellaceae but increased the proportions of p_Deferribacteres and Lactobacillus at the end of treatment. Studies on ileal mucosal microbiota showed similar findings. Moreover, TCCL improved community richness, evenness, and the diversity of fecal and ileal mucosal flora. CONCLUSION: TCCL relieves pathological changes in tumor tissue and chemotherapy-induced gastrointestinal injury, potentially by reducing the release of pro-inflammatory factors to repair the gastrointestinal mucosa, enhancing intestinal barrier function, and maintaining gastrointestinal microecological balance. Hence, TCCL is a very effective adjuvant to chemotherapy.
RESUMEN
The landfill mining process is a main source of anthropogenic bioaerosol release, posing potential risks to the health of occupationally exposed personnel and nearby residents. In this study, microbial aerosolization behavior and potential pathogenicity during the landfill mining process were systematically investigated. The highest concentration of bacterial aerosols was measured in the refuse mining area, with a value of 5968 ± 1608 CFU/m3, while the highest concentration of fungal aerosols was 1196 ± 370 CFU/m3 in the refuse screening area. The bacterial and fungal aerosols were distributed primarily in the particle size ranges of 4.7-7.0 µm and > 7.0 µm, respectively. The pathogenic microbes Arthrobacter, Bacillus, Arthrobotrys and Aspergillus had high bioaerosol aerosolization capacities, with aerosolization indices of 100-329, 31-62, 2-14 and 1-11, respectively, when released from mineralized refuse. There are more than 100 types of pathogenic bacteria in bioaerosols. The microorganisms Lysobacter, Luteimonas and Mycolicibacterium, which carry virulence factor genes (VFGs) (pilG, Rv0440, pilT, etc.), can spread VFGs, aggravate bioaerosol pollution, and threaten the health of workers and nearby residents. This research will help further the understanding of bioaerosol contamination behaviors and potential pathogenicity risks from landfill mining activities.
RESUMEN
Litter decomposition significantly influences the carbon (C) dynamics of terrestrial ecosystems. Solar radiation is not only essential for photosynthetic C fixation and primary productivity, but also can directly or indirectly promote litter decomposition through photodegradation. Recently, photodegradation has been identified as a key factor driving litter decomposition and potentially impacts terrestrial C cycle. To enrich and develop the theory of litter decomposition, we summarized the mechanisms and main driving factors of photodegradation, and compared the responses of photodegradation to environment and climate changes at different scales. Photodegradation primarily includes photomineralization, photoinhibition, and photofaciliation, each affecting litter decomposition differently under various environmental conditions. Photodegradation is closely related to factors such as solar radiation, litter traits, temperature, moisture, microorganisms, and vegetation cover. The interactions among these factors complicate the patterns of photodegradation. Finally, we identified the main issues in litter photodegradation research and prospected future research directions. We emphasized the needs for in-depth exploration of photodegradation pathways and intrinsic mechanisms, quantification of its interactive effects with environmental factors, and optimization of traditional carbon turnover models.
Asunto(s)
Ecosistema , Luz Solar , Ciclo del Carbono , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/química , Carbono/metabolismo , Carbono/química , Fotólisis , Árboles/crecimiento & desarrollo , Árboles/metabolismoRESUMEN
The diversity observed in canine breed phenotypes, together with their risk for heritabily disorders of relevance to dogs and humans, makes the species an ideal subject for studies aimed at understanding the genetic basis of complex traits and human biomedical models. Dog10K is an ongoing international collaboration that aims to uncover the genetic basis of phenotypic diversity, disease, behavior, and domestication history of dogs. To best present and make the extensive data accessible and user friendly, we have established the Dog10K (http://dog10k.kiz.ac.cn/) database, a comprehensive-omics resource summarizing multiple types of data. This database integrates single nucleotide variants (SNVs) from 1987 canine genomes, de-novo mutations (DNMs) from 43 dog breeds with >40× sequence, RNA-seq data of 105057 single nuclei from hippocampus, 74067 single cells from leukocytes and 30 blood samples from published canid studies. We provide clear visualization, statistics, browse, searching, and downloading functions for all data. We have integrated three analysis tools, Selscan, LiftOver and AgeConversion, to aid researchers in custom exploration of the comprehensive-omics data. The Dog10K database will serve as a foundational platform for analyzing, presenting and utilizing canine multi-omics data.
RESUMEN
OBJECTIVE: To explore the genetic etiology of a fetus with Coffin-Siris syndrome (CSS). METHODS: A fetus with abnormal ultrasound findings detected at Luoyang Maternal and Child Health Care Hospital in July 2023 was selected as the study subject. Clinical data were analyzed retrospectively. Whole exome sequencing was carried out on fetal tissue and parental peripheral blood samples, and candidate variant was verified by Sanger sequencing and pathogenicity analysis. This study was approved by the Luoyang Maternal and Child Health Care Hospital (Ethics No. LYFY-YCCZ-2023011). RESULTS: Color Doppler ultrasound at 16+ gestational weeks revealed bilateral ventriculomegaly and cerebellar hypoplasia in the fetus. Trio-WES found that the fetus has harbored a heterozygous c.553C>T (p.Gln185Ter) variant of the ARID1A gene, which was verified by Sanger sequencing to have a de novo origin. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the c.553C>T (p.Gln185Ter) variant of the ARID1A gene was classified as pathogenic (PVS1+PS2_Supporting+PM2_Supporting). CONCLUSION: The fetus was diagnosed with CSS type 2, and the heterozygous c.553C>T (p.Gln185Ter) variant of the ARID1A gene probably underlay its brain malformations.
Asunto(s)
Anomalías Múltiples , Proteínas de Unión al ADN , Cara , Deformidades Congénitas de la Mano , Discapacidad Intelectual , Micrognatismo , Cuello , Factores de Transcripción , Humanos , Micrognatismo/genética , Factores de Transcripción/genética , Cara/anomalías , Deformidades Congénitas de la Mano/genética , Femenino , Cuello/anomalías , Embarazo , Proteínas de Unión al ADN/genética , Discapacidad Intelectual/genética , Anomalías Múltiples/genética , Deformidades Congénitas de las Extremidades Superiores/genética , Feto/anomalías , Adulto , Secuenciación del Exoma , Mutación , Pruebas Genéticas , Ultrasonografía Prenatal , Diagnóstico PrenatalRESUMEN
Adipose tissue macrophages (ATMs) play important roles in maintaining adipose tissue homeostasis and orchestrating metabolic inflammation. Given the extensive functional heterogeneity and phenotypic plasticity of ATMs, identification of the authentically pathogenic ATM subpopulation under obese setting is thus necessitated. Herein, we performed single-nucleus RNA sequencing (snRNA-seq) and unraveled a unique maladaptive ATM subpopulation defined as ATF4hiPDIA3hiACSL4hiCCL2hi inflammatory and metabolically activated macrophages (iMAMs), in which PDIA3 is required for the maintenance of their migratory and pro-inflammatory properties. Mechanistically, ATF4 serves as a metabolic stress sensor to transcribe PDIA3, which then imposes a redox control on RhoA activity and strengthens the pro-inflammatory and migratory properties of iMAMs through RhoA-YAP signaling. Administration of Pdia3 small interfering RNA (siRNA)-loaded liposomes effectively repressed adipose inflammation and high-fat diet (HFD)-induced obesity. Together, our data support that strategies aimed at targeting iMAMs by suppressing PDIA3 expression or activity could be a viable approach against obesity and metabolic disorders in clinical settings.
Asunto(s)
Tejido Adiposo , Macrófagos , Obesidad , Proteína Disulfuro Isomerasas , Animales , Masculino , Ratones , Tejido Adiposo/metabolismo , Dieta Alta en Grasa/efectos adversos , Inflamación/metabolismo , Inflamación/patología , Macrófagos/metabolismo , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Ratones Endogámicos C57BL , Obesidad/metabolismo , Obesidad/patología , Proteína Disulfuro Isomerasas/metabolismoRESUMEN
In this study, we have explored the role of the KATNB1 gene, a microtubule-severing protein, in the seminiferous epithelium of the rat testis. Our data have shown that KATNB1 expressed in rat brain, testes, and Sertoli cells. KATNB1 was found to co-localize with α-tubulin showing a unique stage-specific distribution across the seminiferous epithelium. Knockdown of KATNB1 by RNAi led to significant disruption of the tight junction (TJ) permeability barrier function in primary Sertoli cells cultured in vitro with an established functional TJ-barrier, as well as perturbations in the microtubule and actin cytoskeleton organization. The disruption in these cytoskeletal structures, in turn, led to improper distribution of TJ and basal ES proteins essential for maintaining the Sertoli TJ function. More importantly, overexpression of KATNB1 in the testis in vivo was found to block cadmium-induced blood-testis barrier (BTB) disruption and testis injury. KATNB1 exerted its promoting effects on BTB and spermatogenesis through corrective spatiotemporal expression of actin- and microtubule-based regulatory proteins by maintaining the proper organization of cytoskeletons in the testis, illustrating its plausible therapeutic implication. In summary, Katanin regulatory subunit B1 (KATNB1) plays a crucial role in BTB and spermatogenesis through its effects on the actin- and microtubule-based cytoskeletons in Sertoli cells and testis, providing important insights into male reproductive biology.
Asunto(s)
Barrera Hematotesticular , Katanina , Células de Sertoli , Animales , Masculino , Células de Sertoli/metabolismo , Ratas , Katanina/metabolismo , Katanina/genética , Barrera Hematotesticular/metabolismo , Citoesqueleto/metabolismo , Ratas Sprague-Dawley , Uniones Estrechas/metabolismo , Espermatogénesis/fisiología , Células Cultivadas , Epitelio Seminífero/metabolismo , Testículo/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismoRESUMEN
OBJECTIVE: To carry out genetic testing on a child diagnosed with Very-long-chain acyl-CoA dehydrogenase deficiency (VLADD) in order to provide a basis for genetic counseling and prenatal diagnosis for his family. METHODS: Whole exome sequencing was performed for the proband. Candidate variant sites in the ACADVL gene were verified by Sanger sequencing, and their pathogenicity was predicted based on the guidelines from the American College of Medical Genetics and Genomics (ACMG). Prenatal diagnosis was performed on the fetus upon subsequent pregnancy. This study was approved by the Luoyang Maternal and Child Health Care Hospital (Ethics No. ). RESULTS: The proband was found to harbor compound heterozygous variants of the ACADVL gene, namely c.1532G>A and 1827+2_1827+12del, which were inherited from his mother and father, and classified as likely pathogenic and pathogenic, respectively. By combining the clinical manifestations of the proband and the results of blood tandem mass spectrometry and genetic testing, the child was ultimately diagnosed as cardiomyopathy type VLADD. Prenatal diagnosis showed that the fetus has carried the same compound heterozygous variants, and the couple had opted to terminate the pregnancy. CONCLUSION: The c.1532G>A/1827+2_1827+12del compound heterozygous variants of the ACADVL gene probably underlay the pathogenesis of VLADD in this pedigree. The discovery of the 1827+2_1827+12del variant has enriched the mutational spectrum of the ACADVL gene.
Asunto(s)
Acil-CoA Deshidrogenasa de Cadena Larga , Errores Innatos del Metabolismo Lipídico , Adulto , Femenino , Humanos , Masculino , Embarazo , Acil-CoA Deshidrogenasa de Cadena Larga/deficiencia , Acil-CoA Deshidrogenasa de Cadena Larga/genética , Pueblos del Este de Asia , Secuenciación del Exoma , Pruebas Genéticas/métodos , Heterocigoto , Errores Innatos del Metabolismo Lipídico/genética , Mutación , Linaje , Diagnóstico PrenatalRESUMEN
Based on the use of the coupling coordination model to calculate the coupling coordination degree of carbon emission and pollutant control, the national, regional, and provincial spatiotemporal characteristics of the synergistic effect of pollution control and carbon emissions reduction in China were further analyzed, facilitating the crucial to identification of key areas. The fixed effects regression models and provincial panel data from 2006 to 2020 were used to explore factors contributing to better synergizing the reduction of pollution and carbon emissions in China. On this basis, the adjustment variable of R&D investment intensity was introduced, and the regulation effect model was constructed to further explore the influence mechanism of the synergistic effect of pollution reduction and carbon reduction. The results showed thatï¼ synergy exists between carbon emission reduction and the air pollution control system, the evolution of the synergistic effect of pollution reduction and carbon reduction in China presented an inverted "U"-shaped trend from 2006 to 2020, and there was spatial aggregation and a spatial spillover effect in pollution reduction and carbon reduction. The synergistic governance of carbon emission and pollutant control was still at a relatively low level. The carbon emission and air pollutant emission systems were still in an unstable and uncoordinated state. The results showed thatï¼ The degree of coordination of eastern China, central China, and western China decreased in turn. At the national level, energy consumption structure, per capita GDP, and the proportion of green investment were the main factors affecting the synergistic effect of pollution reduction and carbon. The heterogeneity of the influencing factors existed in the central, eastern, and western regions on industrial structure, energy consumption structure, energy utilization efficiency, per capita GDP, urbanization rate, the proportion of green investment, and transportation structure. The intensity of R&D played a significant moderating effect in the whole country, eastern, and central regions. However, no significant moderating effect was identified in the western region. In the eastern region, the urbanization rate, the proportion of green investment, and the transportation structure could not have a significant effect on the synergistic effect of pollution reduction and carbon reduction alone, and it must be coordinated with the intensity of R&D.
RESUMEN
Methylated arsenicals, including highly toxic species, such as methylarsenite [MAs(III)], are pervasive in the environment. Certain microorganisms possess the ability to detoxify MAs(III) by ArsI-catalyzed demethylation. Here, we characterize a bifunctional enzyme encoded by the arsI gene from Acidovorax sp. ST3, which can detoxify MAs(III) through both the demethylation and oxidation pathways. Deletion of the 22 C-terminal amino acids of ArsI increased its demethylation activity while reducing the oxidation activity. Further deletion of 44 C-terminal residues enhanced the MAs(III) demethylation activity. ArsI has four vicinal cysteine pairs, with the first pair being necessary for MAs(III) demethylation, while at least one of the other three pairs contributes to MAs(III) oxidation. Molecular modeling and site-directed mutagenesis indicated that one of the C-terminal vicinal cysteine pairs is involved in modulating the switch between oxidase and demethylase activity. These findings underscore the critical role of the C-terminal region in modulating the enzymatic activities of ArsI, particularly in MAs(III) demethylation. This research reveals the structure-function relationship of the ArsI enzyme and advances our understanding of the MAs(III) metabolism in bacteria.
Asunto(s)
Dioxigenasas , Oxidación-Reducción , Dioxigenasas/metabolismo , Dioxigenasas/genética , Desmetilación , Comamonadaceae/enzimología , Comamonadaceae/metabolismoRESUMEN
Homotypic cell-in-cell structures (hoCICs) are associated with tumor proliferation, invasion, and metastasis and is considered a promising prognostic marker in various cancers. However, the role of hoCICs in non-small cell lung cancer (NSCLC) remains unclear. Tumor tissue sections were obtained from 411 NSCLC patients. We analyzed the relationship between clinicopathological variables and the number of hoCICs. LASSO and multivariate Cox regression analysis were employed to identify prognostic factors for NSCLC. The impact of hoCICs on overall survival (OS) and disease-free survival (DFS) was assessed using the Kaplan-Meier curves and log-rank test. Prognostic models for OS and DFS were developed and validated using the C-index, time-dependent area under the curve (AUC), net reclassification improvement (NRI), integrated discrimination improvement (IDI), calibration curves and decision curve analysis (DCA). Among the cohort, 56% of patients had hoCICs while 44% did not. Notably, hoCICs were primarily found at the tumor invasion front. Male gender, smoking, squamous cell carcinoma, low differentiation, tumor size ≥ 3 cm, advanced TNM stage, lymph node metastasis, pleural invasion, vascular invasion, necrosis, P53 mutation, and high expression of Ki-67 were identified as relative risk factors for hoCICs. Furthermore, hoCICs was found to be a significant prognostic factor for both OS and DFS, with higher frequencies of hoCICs correlating with poorer outcomes. We constructed nomograms for predicting 1-, 3-, and 5-year OS and DFS based on hoCICs, and the calibration curves showed good agreement between the predicted and actual outcomes. The results of the C-index, time-dependent AUC, NRI, IDI, and DCA analyses demonstrated that incorporating hoCICs into the prognostic model significantly enhanced its predictive power and clinical applicability. HoCICs indicated independent perdictive value for OS and DFS in patients with NSCLC. Furthermore, the frequent localization of hoCICs at the tumor invasion front suggested a strong association between hoCICs and tumor invasion as well as metastasis.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Invasividad Neoplásica , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Masculino , Femenino , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/mortalidad , Persona de Mediana Edad , Pronóstico , Anciano , Estimación de Kaplan-Meier , Adulto , Supervivencia sin Enfermedad , Estadificación de Neoplasias , Biomarcadores de Tumor/metabolismoRESUMEN
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
RESUMEN
The growth in municipal solid waste incineration (MSWI) has resulted in a substantial rise in the production of fly ash in China. It is anticipated that during the "14th Five-Year Plan", the accumulated amount of fly ash stocked and disposed of at landfills will surpass 100 million tons. With the development of the economy and the implementation of garbage classification relevant policies, the pollution characteristics of heavy metal change in spatiotemporal distribution. Solidification/stabilization (S/S) pre-treatment coupled with landfill disposal is the mainstream method for fly ash. This study provides a systematic overview and comparison of the current application status and research on the mechanism of S/S technology, and the long-term stability of solidified/stabilized fly ash is a crucial factor in controlling the risks of landfills. Subsequently, it examines the influencing factors and mechanisms associated with heavy metals leaching under different environmental scenarios (meteorological factors, leachate and acid rain erosion, and carbonation, etc.), and concludes that single stabilization technology is difficult to meet long-term landfill requirements. Finally, the limits of heavy metal leaching toxicity evaluation methods and landfilled fly ash supervision were discussed, and relevant suggestions for future development were proposed. This study can provide theoretical instruction and technical support for the risk control of potential environmental risks of heavy metals in solidified/stabilized fly ash from landfills in China.
RESUMEN
INTRODUCTION: Preeclampsia is a pregnancy-specific disorder characterized by de novo development of hypertension and proteinuria over 20 weeks gestation that has been associated with the dysfunction of trophoblasts. Current evidence suggests that syncytin-1 plays an important role in the non-fusogenic biological activity of trophoblasts, except for specific fusogenic function. However, the underlying mechanism remains unclear. METHODS: The expression and location of syncytin-1 in normal and the late-onset preeclampsia placentas were detected by quantitative real-time PCR, western blotting and immunofluorescence. Morphological and apoptosis analysis were processed in placentas. The ex vivo extravillous explant culture model was used to explore the effect of syncytin-1 on EVT outgrowths. Real-time quantitative PCR and immunoblotting were used to calculate syncytin-1 levels in the trophoblast cells before and after syncytin-1 knockdown or overexpression. CCK-8 assay was used to detect the cell viability. TUNEL staining and immunoblotting were processed in trophoblast cells. Transwell assays and wound healing assays were utilize to assess the invasion and migration of trophoblastic cells. Conditional knockout of syncytin-a mouse model was conducted to present the change of placentas in vivo. The ex vivo extravillous explant culture model was used to explore the effect of syncytin-1 on EVT outgrowths. Western blotting was used to identify the key proteins of PI3K/Akt pathways and invasion-related proteins in trophoblast cells. RESULTS AND DISCUSSION: Here, reduced syncytin-1 was identified in the late-onset preeclampsia placentas. Reduced syncytin-1 may attenuates the EMT process by promoting apoptosis, inhibiting proliferation and invasion by suppressed PI3K/Akt pathway in trophoblast cells. Our findings provide novel insights into the non-fusogenic biological function of reduced syncytin-1 that may be involves in the pathogenesis of preeclampsia.
Asunto(s)
Apoptosis , Productos del Gen env , Preeclampsia , Proteínas Gestacionales , Trofoblastos , Femenino , Preeclampsia/metabolismo , Preeclampsia/patología , Preeclampsia/genética , Embarazo , Trofoblastos/metabolismo , Trofoblastos/patología , Apoptosis/fisiología , Proteínas Gestacionales/metabolismo , Proteínas Gestacionales/genética , Humanos , Animales , Productos del Gen env/metabolismo , Productos del Gen env/genética , Ratones , Placenta/metabolismo , Placenta/patología , Adulto , Ratones Noqueados , Movimiento Celular/fisiología , Transducción de Señal/fisiologíaRESUMEN
Background: Swift and accurate detection of Vibrio parahaemolyticus, which is a prominent causative pathogen associated with seafood contamination, is required to effectively combat foodborne disease and wound infections. The toxR gene is relatively conserved within V. parahaemolyticus and is primarily involved in the expression and regulation of virulence genes with a notable degree of specificity. The aim of this study was to develop a rapid, simple, and constant temperature detection method for V. parahaemolyticus in clinical and nonspecialized laboratory settings. Methods: In this study, specific primers and CRISPR RNA were used to target the toxR gene to construct a reaction system that combines recombinase polymerase amplification (RPA) with CRISPRâCas13a. The whole-genome DNA of the sample was extracted by self-prepared sodium dodecyl sulphate (SDS) nucleic acid rapid extraction reagent, and visual interpretation of the detection results was performed by lateral flow dipsticks (LFDs). Results: The specificity of the RPA-CRISPR/Cas13a-LFD method was validated using V. parahaemolyticus strain ATCC-17802 and six other non-parahaemolytic Vibrio species. The results demonstrated a specificity of 100%. Additionally, the genomic DNA of V. parahaemolyticus was serially diluted and analysed, with a minimum detectable limit of 1 copy/µL for this method, which was greater than that of the TaqMan-qPCR method (102 copies/µL). The established methods were successfully applied to detect wild-type V. parahaemolyticus, yielding results consistent with those of TaqMan-qPCR and MALDI-TOF MS mass spectrometry identification. Finally, the established RPA-CRISPR/Cas13a-LFD method was applied to whole blood specimens from mice infected with V. parahaemolyticus, and the detection rate of V. parahaemolyticus by this method was consistent with that of the conventional PCR method. Conclusions: In this study, we describe an RPA-CRISPR/Cas13a detection method that specifically targets the toxR gene and offers advantages such as simplicity, rapidity, high specificity, and visual interpretation. This method serves as a valuable tool for the prompt detection of V. parahaemolyticus in nonspecialized laboratory settings.
RESUMEN
Objective: Metagenomic next-generation sequencing (mNGS) was used to analyze the etiological distribution of refractory pneumonia in children. We compared its efficacy in pathogen diagnosis against traditional methods to provide a basis for clinical adjustment and treatment. Methods: A total of 60 children with refractory pneumonia treated at the Department of Respiratory Medicine, Children's Hospital Affiliated with the Capital Institute of Paediatrics, from September 2019 to December 2021 were enrolled in this study. Clinical data (including sex, age, laboratory tests, complications, and discharge diagnosis) and lower respiratory tract specimens were collected, including bronchoalveolar lavage fluid (BALF), deep sputum, pleural effusion, lung abscess puncture fluid, traditional respiratory pathogens (culture, acid-fast staining, polymerase chain reaction, serological testing, etc.), and mNGS detection methods were used to determine the distribution of pathogens in children with refractory pneumonia and to compare the positive rate and diagnostic efficiency of mNGS and traditional pathogen detection for different types of pathogens. Results: Among the 60 children with refractory pneumonia, 43 specimens were positive by mNGS, and 67 strains of pathogens were detected, including 20.90% (14 strains) of which were Mycoplasma pneumoniae, 11.94% (8 strains) were Streptococcus pneumoniae, 7.46% (5 strains) were cytomegalovirus, and 5.97% (4 strains) were Candida albicans. Thirty-nine strains of Mycoplasma pneumoniae (41.03%, 16 strains), Streptococcus pneumoniae (10.26%, 4 strains), Candida albicans (7.69%, 3 strains), and Aspergillus (5.13%, 2 strains) were detected using traditional methods. The positive rate of mNGS detection was 90.48%, and the positive rate of the traditional method was 61.90% (p = 0.050), especially for G+ bacteria. The positive rate of mNGS was greater than that of traditional methods (p < 0.05), but they had no significant difference in detecting G- bacteria, viruses, fungi, or Mycoplasma/Chlamydia. Among the 60 patients, 21 had mixed infections, 25 had single infections, and the other 14 had unknown pathogens. Mycoplasma pneumoniae was most common in both mixed infections and single infections. The sensitivity, specificity, positive predictive value, and negative predictive value of mNGS were 95.45, 37.50, 80.77, and 75.00%, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value of the traditional methods were 72.72, 62.50, 84.21, and 45.45%, respectively. The clinical compliance of mNGS was 80.00%, and that of the traditional method was 70.00%. The sensitivity and negative predictive value of mNGS were high, and the difference in the sensitivity for detecting G+ bacteria was statistically significant (p < 0.05). However, the differences in G- bacteria, fungi, and Mycoplasma/Chlamydia were not statistically significant (p > 0.05). Due to the small sample size, statistical analysis could not be conducted on viral infections. Conclusion: mNGS has higher overall efficacy than traditional methods for the etiological diagnosis of refractory pneumonia in children. The application of mNGS can significantly improve the detection rate of pathogens in children with refractory pneumonia. The sensitivity and negative predictive value of mNGS for detecting G+ bacteria are greater than those of other methods, and it can exclude the original suspected pathogenic bacteria. Unnecessary antibiotic use was reduced, but there was no statistically significant difference in G- bacteria, fungi, or Mycoplasma/Chlamydia.