Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Colloid Interface Sci ; 677(Pt B): 626-636, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39159517

RESUMEN

Transition-metal phosphates/phosphides showcase significant promise for energy-related applications because of their high theoretical electrochemical characteristics. However, sluggish electro/ion transfer rates and kinetically unfavorable reaction sites hinder their application at high mass loading. Herein, a self-supporting electrode based on transition-metal phosphates was successfully fabricated via a one-step electrodeposition process. The nanosheet structure of transition-metal phosphates, formed by interconnecting nanoparticles, effectively mitigates the impact of stress and achieves a high mass-loading (21 mg cm-2) of the electrode. Additionally, the oxygen vacancy-rich and porous nanostructure of transition-metal phosphates endows the as-prepared electrodes with a significantly increased conductivity and fast ion migration rate for enhancing electrochemical kinetics. Consequently, the as-fabricated transition-metal phosphate electrode displays the highest areal specific capacity of 39.2F cm-2. Furthermore, the asymmetric supercapacitor achieves a maximum energy density of 0.79 mWh cm-2 and a high capacity retention of 93.0 % for 10000 cycles under 60 mA cm-2. This work provides an ideal strategy for fabricating flexible electrodes with high mass loading and synthesizing transition-metal phosphate electrodes rich in oxygen vacancies.

2.
medRxiv ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39108522

RESUMEN

Somatic mosaic variants contribute to focal epilepsy, but genetic analysis has been limited to patients with drug-resistant epilepsy (DRE) who undergo surgical resection, as the variants are mainly brain-limited. Stereoelectroencephalography (sEEG) has become part of the evaluation for many patients with focal DRE, and sEEG electrodes provide a potential source of small amounts of brain-derived DNA. We aimed to identify, validate, and assess the distribution of potentially clinically relevant mosaic variants in DNA extracted from trace brain tissue on individual sEEG electrodes. We enrolled a prospective cohort of eleven pediatric patients with DRE who had sEEG electrodes implanted for invasive monitoring, one of whom was previously reported. We extracted unamplified DNA from the trace brain tissue on each sEEG electrode and also performed whole-genome amplification for each sample. We extracted DNA from resected brain tissue and blood/saliva samples where available. We performed deep panel and exome sequencing on a subset of samples from each case and analysis for potentially clinically relevant candidate germline and mosaic variants. We validated candidate mosaic variants using amplicon sequencing and assessed the variant allele fraction (VAF) in amplified and unamplified electrode-derived DNA and across electrodes. We extracted DNA from >150 individual electrodes from 11 individuals and obtained higher concentrations of whole-genome amplified vs unamplified DNA. Immunohistochemistry confirmed the presence of neurons in the brain tissue on electrodes. Deep sequencing and analysis demonstrated similar depth of coverage between amplified and unamplified samples but significantly more called mosaic variants in amplified samples. In addition to the mosaic PIK3CA variant detected in a previously reported case from our group, we identified and validated four potentially clinically relevant mosaic variants in electrode-derived DNA in three patients who underwent laser ablation and did not have resected brain tissue samples available. The variants were detected in both amplified and unamplified electrode-derived DNA, with higher VAFs observed in DNA from electrodes in closest proximity to the electrical seizure focus in some cases. This study demonstrates that mosaic variants can be identified and validated from DNA extracted from trace brain tissue on individual sEEG electrodes in patients with drug-resistant focal epilepsy and in both amplified and unamplified electrode-derived DNA samples. Our findings support a relationship between the extent of regional genetic abnormality and electrophysiology, and suggest that with further optimization, this minimally invasive diagnostic approach holds promise for advancing precision medicine for patients with DRE as part of the surgical evaluation.

3.
Colloids Surf B Biointerfaces ; 242: 114079, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39029247

RESUMEN

Water-in-water (W/W) Pickering emulsions, exhibit considerable potential in the food and pharmaceutical fields owing to their compartmentalization and high biocompatibility. However, constrained by the non-uniform distribution of shear forces during emulsification or the spatial obstruction in polydimethylsiloxane (PDMS) passive microfluidic platform, the existing methods cannot generate monodisperse W/W Pickering emulsions with high particle coverage rate, thereby limiting their applications. Herein, a novel microfluidic system is designed for the preparation of monodisperse and highly particle-covered W/W Pickering emulsions under mild conditions. pH-responsive Polyethylene glycol (PEG)/phosphate aqueous two-phase system (ATPS) is used for the emulsions' preparation. Notably, a coverage rate of 96 ± 3 % is obtained by adjusting the length of the helical coiled tube, as well as the size and contact angle of genipin cross-linked BSA (BSA-GP) particles. Moreover, these W/W Pickering emulsions, with surfaces almost completely covered, can maintain monodisperse (Ncoal = 1.18 ± 0.03) for one day. Furthermore, the results of ranitidine hydrochloride (RH) release demonstrated that the drug release rate of W/W Pickering emulsions in the simulated gastric fluid (SGF) was 10 times faster than that in the neutral solution. We believe that the highly particle-covered monodisperse W/W Pickering emulsions possess great potential applications in bioencapsulation for foods and drug delivery.

4.
Heliyon ; 10(14): e34572, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39082031

RESUMEN

Background: Jinshuibao capsules has been utilized in treating stable chronic obstructive pulmonary disease (COPD) for a long time. While the evidence-based evidence and network pharmacology to clarify the therapeutic efficacy and pharmacological mechanisms of Jinshuibao capsules have remained elusive. Objectives: Integrating evidence-based medicine and network pharmacology to explain the therapeutic efficacy and pharmacological mechanisms of Jinshuibao capsules for stable COPD. Methods: Cochrane Library, Web of Science, EMBASE, PubMed, China National Knowledge Infrastructure (CNKI), Wanfang Data Knowledge Service Platform, VIP Information Resource Integration Service Platform (CQVIP), and China Biomedicine (SinoMed) databases were searched. Studies were selected according to the inclusion and exclusion criteria. Statistical analysis was performed using the RevMan 5.3 software (Cochrane, London, UK). In network pharmacology, components of Jinshuibao capsules were screened, stable COPD-related genes were then identified and the 'component-target-pathway' network constructed. Results: Meta-analysis revealed that Jinshuibao capsules exerts therapeutic effects on stable COPD by increasing the levels of FEV1% pred, FEV1/FVC ratio, FEV1, FVC, and PaO2 while decreasing the level of PaCO2. In addition, Jinshuibao capsules could effectively increase the levels of CD3+, CD4+/CD8+ ratio, Th17/Treg ratio, and SOD while reduce the levels of IL-8 and TNF-α. Network pharmacology identified 22 active compounds and 419 intersection gene targets. AKT1, SRC, MAPK1, STAT3, and MAPK3 were top 5 key target proteins. Besides, 20 potential pathways of Jinshuibao capsules on stable COPD were identified, like endocrine resistance, AGE-RAGE signaling pathway in diabetic complications, and chemical carcinogenesis-receptor activation. Conclusion: Jinshuibao capsules could positively influence patients with stable COPD, while the efficacy and safety of Jinshuibao capsules in the treatment of COPD could not be reliably confirmed. These findings suggest that Jinshuibao capsules exerts effect on stable COPD through multi-target, multi-component and multi-pathway mechanism. Future studies may explore the active components of Jinshuibao capsules.

5.
Heliyon ; 10(12): e32832, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988555

RESUMEN

Objective: Rheumatoid arthritis (RA) is an autoimmune disease. The role of Th17/Treg balance in RA pathogenesis has been increasingly emphasized. In this study, bibliometric and visualization analyses of the top 100 most cited articles on Th17/Treg balance in the field of RA were conducted. Methods: By searching the Web of Science Core Collection database, the top 100 most cited articles of related studies were included, and the authors, countries, institutions, journals, keywords and other information were extracted for analysis using VOSviewer software. Results: The top 100 most cited papers had a total of 7185 citations, with an average citation frequency of 72 (range 21-730). All of them were published between 2011 and 2022. The most influential paper, with 730 citations, was written by "Komatsu, Noriko" in 2014 and published in NATURE MEDICINE. The author with the highest output was "Cho, Mi-La" (n = 24). China was the country with the highest number of publications (n = 42). Catholic University of Korea was the institution with the highest number of publications (n = 24). ARTHRITIS AND RHEUMATISM (n = 7), ARTHRITIS & RHEUMATOLOGY (n = 7) and INTERNATIONAL IMMUNOPHARMACOLOGY (n = 7) were the journals that published the most literature. "Expression" (cytokines and transcription factors, etc) and "differentiation" (T cells, Treg cells, and Th17 cells) were the themes of the research. "Mechanisms", "gut microbiota", "STAT3", "interleukin-6", "synovial fibroblasts" were the hot spots of research in recent years. Conclusions: For the first time, the top 100 most cited articles were analyzed using bibliometric methods. We aimed to grasp the current development and research trends of RA and Th17/Treg-related studies. It is hoped that this study will provide direction and support for future research.

6.
Biomacromolecules ; 25(7): 4469-4481, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38877974

RESUMEN

A facile method was proposed for preparing controllable multicompartment gel microcarriers using an aqueous two-phase emulsion system. By leveraging the density difference between the upper polyethylene glycol solution and the lower dextran-calcium chloride (CaCl2) solution in the collection solution and the high viscosity of the lower solution, controllable fusion of core-shell droplets made by coextrusion devices was achieved at the water/water (w/w) interface to fabricate microcarriers with separated core compartments. By adjusting the sodium alginate concentration, collected solution composition, and number of fused liquid droplets, the pore size, shape, and number of compartments could be controlled. Caco-2 and HepG2 cells were encapsulated in different compartments to establish gut-liver coculture models, exhibiting higher viability and proliferation compared to monoculture models. Notably, significant differences in cytokine expression and functional proteins were observed between the coculture and monoculture models. This method provides new possibilities for preparing complex and functional three-dimensional coculture materials.


Asunto(s)
Alginatos , Técnicas de Cocultivo , Emulsiones , Humanos , Técnicas de Cocultivo/métodos , Células Hep G2 , Emulsiones/química , Células CACO-2 , Alginatos/química , Geles/química , Polietilenglicoles/química , Cloruro de Calcio/química , Dextranos/química , Proliferación Celular , Supervivencia Celular
7.
ACS Appl Mater Interfaces ; 16(24): 31597-31609, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38850560

RESUMEN

By overcoming interspecies differences and mimicking the in vivo microenvironment, three-dimensional (3D) in vitro corneal models have become a significant novel tool in contemporary ophthalmic disease research. However, existing 3D corneal models struggle to replicate the actual human corneal environment, especially the dome-shaped physiological structure with adjustable curvature. Addressing these challenges, this study introduces a straightforward method for fabricating collagen/chitosan-alginate eyeball-shaped gel microspheres with a Janus structure via a two-phase aqueous system, used subsequently to construct in vitro 3D corneal epithelial tissue models. By adjusting the diameter ratio of collagen/chitosan to alginate droplets, we can create eyeball-shaped gel microspheres with varying curvatures. Human corneal epithelial cells were seeded on the surfaces of these microspheres, leading to the formation of in vitro 3D corneal epithelial tissues characterized by dome-like multilayers and tight junctions. Additionally, the model demonstrated responsiveness to UVB exposure through the secretion of reactive oxygen species (ROS) and proinflammatory factors. Therefore, we believe that in vitro 3D corneal epithelial tissue models with dome-shaped structures hold significant potential for advancing ophthalmic research.


Asunto(s)
Alginatos , Quitosano , Epitelio Corneal , Microesferas , Humanos , Epitelio Corneal/citología , Alginatos/química , Quitosano/química , Colágeno/química , Ingeniería de Tejidos , Células Epiteliales/metabolismo , Células Epiteliales/citología , Geles/química , Especies Reactivas de Oxígeno/metabolismo
8.
Biochem Biophys Res Commun ; 724: 150140, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38852506

RESUMEN

Sepsis is a severe inflammatory disease characterized by cytokine storm, often accompanied by disseminated intravascular coagulation (DIC). PANoptosis is a novel form of cell death triggered by cytokine storms, characterized by a cascade reaction of pyroptosis, apoptosis, and necroptosis. It exists in septic platelets and is closely associated with the onset and progression of DIC. However, there remains an unmet need for drugs targeting PANoptosis. The anti-PANoptosis effect of myricetin was predicted using network pharmacology and confirmed through molecular docking. In vitro platelet activation models demonstrated that myricetin significantly attenuated platelet particle release, integrin activation, adhesion, spreading, clot retraction, and aggregation. Moreover, in a sepsis model, myricetin reduced inflammatory infiltration in lung tissue and platelet activation while improving DIC. Additionally, whole blood sequencing samples from sepsis patients and healthy individuals were analyzed to elucidate the up-regulation of the PANoptosis targets. Our findings demonstrate the inhibitory effect of myricetin on septic platelet PANoptosis, indicating its potential as a novel anti-cellular PANoptosis candidate and therapeutic agent for septic DIC. Furthermore, our study establishes a foundation for utilizing network pharmacology in the discovery of new drugs to treat various diseases.


Asunto(s)
Plaquetas , Coagulación Intravascular Diseminada , Flavonoides , Sepsis , Flavonoides/farmacología , Flavonoides/uso terapéutico , Sepsis/tratamiento farmacológico , Sepsis/sangre , Humanos , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Coagulación Intravascular Diseminada/tratamiento farmacológico , Coagulación Intravascular Diseminada/etiología , Coagulación Intravascular Diseminada/patología , Coagulación Intravascular Diseminada/sangre , Animales , Masculino , Simulación del Acoplamiento Molecular , Activación Plaquetaria/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones , Piroptosis/efectos de los fármacos
9.
Molecules ; 29(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38792135

RESUMEN

The hydrolysis and biotransformation of lignocellulose, i.e., biorefinery, can provide human beings with biofuels, bio-based chemicals, and materials, and is an important technology to solve the fossil energy crisis and promote global sustainable development. Biorefinery involves steps such as pretreatment, saccharification, and fermentation, and researchers have developed a variety of biorefinery strategies to optimize the process and reduce process costs in recent years. Lignocellulosic hydrolysates are platforms that connect the saccharification process and downstream fermentation. The hydrolysate composition is closely related to biomass raw materials, the pretreatment process, and the choice of biorefining strategies, and provides not only nutrients but also possible inhibitors for downstream fermentation. In this review, we summarized the effects of each stage of lignocellulosic biorefinery on nutrients and possible inhibitors, analyzed the huge differences in nutrient retention and inhibitor generation among various biorefinery strategies, and emphasized that all steps in lignocellulose biorefinery need to be considered comprehensively to achieve maximum nutrient retention and optimal control of inhibitors at low cost, to provide a reference for the development of biomass energy and chemicals.


Asunto(s)
Biomasa , Lignina , Lignina/química , Hidrólisis , Fermentación , Biocombustibles , Nutrientes/metabolismo
10.
Biomed Pharmacother ; 175: 116793, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38776674

RESUMEN

High-altitude myocardial injury (HAMI) represents a critical form of altitude illness for which effective drug therapies are generally lacking. Notoginsenoside R1, a prominent constituent derived from Panax notoginseng, has demonstrated various cardioprotective properties in models of myocardial ischemia/reperfusion injury, sepsis-induced cardiomyopathy, cardiac fibrosis, and myocardial injury. The potential utility of notoginsenoside R1 in the management of HAMI warrants prompt investigation. Following the successful construction of a HAMI model, a series of experimental analyses were conducted to assess the effects of notoginsenoside R1 at dosages of 50 mg/Kg and 100 mg/Kg. The results indicated that notoginsenoside R1 exhibited protective effects against hypoxic injury by reducing levels of CK, CK-MB, LDH, and BNP, leading to improved cardiac function and decreased incidence of arrhythmias. Furthermore, notoginsenoside R1 was found to enhance Nrf2 nuclear translocation, subsequently regulating the SLC7A11/GPX4/HO-1 pathway and iron metabolism to mitigate ferroptosis, thereby mitigating cardiac inflammation and oxidative stress induced by high-altitude conditions. In addition, the application of ML385 has confirmed the involvement of Nrf2 nuclear translocation in the therapeutic approach to HAMI. Collectively, the advantageous impacts of notoginsenoside R1 on HAMI have been linked to the suppression of ferroptosis via Nrf2 nuclear translocation signaling.


Asunto(s)
Ferroptosis , Ginsenósidos , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Transducción de Señal , Factor 2 Relacionado con NF-E2/metabolismo , Ginsenósidos/farmacología , Animales , Ferroptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Masculino , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Mal de Altura/tratamiento farmacológico , Mal de Altura/metabolismo , Ratas , Altitud , Modelos Animales de Enfermedad
11.
Cancer Res ; 84(15): 2417-2431, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38718297

RESUMEN

Hepatocellular carcinoma (HCC) is an aggressive disease that occurs predominantly in men. Estrogen elicits protective effects against HCC development. Elucidation of the estrogen-regulated biological processes that suppress HCC could lead to improved prevention and treatment strategies. Here, we performed transcriptomic analyses on mouse and human liver cancer and identified lecithin cholesterol acyltransferase (LCAT) as the most highly estrogen-upregulated gene and a biomarker of favorable prognosis. LCAT upregulation inhibited HCC in vitro and in vivo and mediated estrogen-induced suppression of HCC in an ESR1-dependent manner. LCAT facilitated high-density lipoprotein cholesterol production and uptake via the LDLR and SCARB1 pathways. Consistently, high HDL-C levels corresponded to a favorable prognosis in HCC patients. The enhanced HDL-C absorption induced by LCAT impaired SREBP2 maturation, which ultimately suppressed cholesterol biosynthesis and dampened HCC cell proliferation. HDL-C alone inhibited HCC growth comparably to the cholesterol-lowering drug lovastatin, and SREBF2 overexpression abolished the inhibitory activity of LCAT. Clinical observations and cross-analyses of multiple databases confirmed the correlation of elevated LCAT and HDL-C levels to reduced cholesterol synthesis and improved HCC patient prognosis. Furthermore, LCAT deficiency mimicked whereas LCAT overexpression abrogated the tumor growth-promoting effects of ovariectomy in HCC-bearing female mice. Most importantly, HDL-C and LCAT delayed the development of subcutaneous tumors in nude mice, and HDL-C synergized with lenvatinib to eradicate orthotopic liver tumors. Collectively, this study reveals that estrogen upregulates LCAT to maintain cholesterol homeostasis and to dampen hepatocarcinogenesis. LCAT and HDL-C represent potential prognostic and therapeutic biomarkers for targeting cholesterol homeostasis as a strategy for treating HCC. Significance: Estrogen mediates the sex differences in hepatocellular carcinoma development by reducing cholesterol biosynthesis through activation of an LCAT/HDL-C axis, providing strategies for improving liver cancer prevention, prognosis, and treatment.


Asunto(s)
Carcinoma Hepatocelular , Colesterol , Estrógenos , Homeostasis , Neoplasias Hepáticas , Fosfatidilcolina-Esterol O-Aciltransferasa , Animales , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferasa/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Ratones , Estrógenos/metabolismo , Colesterol/metabolismo , Femenino , Masculino , Proliferación Celular/efectos de los fármacos , Pronóstico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Línea Celular Tumoral , HDL-Colesterol/metabolismo , HDL-Colesterol/sangre , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/genética
12.
Biomed Mater ; 19(3)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38574669

RESUMEN

Recently,in vitromodels of intestinal mucosa have become important tools for drug screening and studying the physiology and pathology of the intestine. These models enable the examination of cellular behavior in diseased states or in reaction to alterations in the microenvironment, potentially serving as alternatives to animal models. One of the major challenges in constructing physiologically relevantin vitromodels of intestinal mucosa is the creation of three-dimensional microstructures that accurately mimic the integration of intestinal epithelium and vascularized stroma. Here, core-shell alginate (Alg) microspheres were generated to create the compartmentalized extracellular matrix microenvironment needed to simulate the epithelial and vascularized stromal compartments of the intestinal mucosa. We demonstrated that NIH-3T3 and human umbilical vein endothelial cells embedded in the core of the microspheres can proliferate and develop a vascular network, while human colorectal adenocarcinoma cells (Caco-2) can form an epithelial monolayer in the shell. Compared to Caco-2 monolayer encapsulated within the shell, the presence of the vascularized stroma enhances their proliferation and functionality. As such, our core-shell Alg microspheres provide a valuable method for generatingin vitromodels of vascularized intestinal mucosa with epithelial and vascularized stroma arranged in a spatially relevant manner and demonstrating near-physiological functionality.


Asunto(s)
Alginatos , Proliferación Celular , Células Endoteliales de la Vena Umbilical Humana , Mucosa Intestinal , Microesferas , Ingeniería de Tejidos , Alginatos/química , Humanos , Mucosa Intestinal/metabolismo , Animales , Ratones , Células CACO-2 , Ingeniería de Tejidos/métodos , Células 3T3 NIH , Matriz Extracelular/metabolismo , Andamios del Tejido/química , Ácidos Hexurónicos/química
13.
Bioorg Chem ; 147: 107399, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38678778

RESUMEN

Two pairs of enantiomers (1a-2b), namely (±)-alterpyrone F and (±)-alterpyrone G, along with a rare benzothiazole meroterpenoid granulathiazole A (3, GA), and two undescribed compounds called respectively granulahydeoate (4) and granulaone (5), were obtained from the co-cultivation of Alternaria brassicicola and Penicillium sp. HUBU0120. Exhaustive analyses of NMR, single crystal XRD, Mo2(OAc)4-induced circular dichroism data, and a modified Mosher's method distinguished the absolute configurations of isolates. Bioactive evaluations exhibited that GA possessed promising anti-PD activity in both in vitro and in vivo PD models viz. 6-OHDA-induced SH-SY5Y cells and 6-OHDA-induced zebrafish, respectively. Moreover, our research demonstrated that ferroptosis activated by 6-OHDA was mitigated in PD models after treated with GA. Extensive molecular mechanism studies in PD-modelled cells manifested that GA attenuated the decreased expressions of SLC7A11, GPX4, and FSP-1, and the increased level of ACSL4 via activating Nrf2/HO-1 pathway as well as ameliorated the accumulation of α-synuclein.


Asunto(s)
Ferroptosis , Hemo-Oxigenasa 1 , Factor 2 Relacionado con NF-E2 , Oxidopamina , Ferroptosis/efectos de los fármacos , Oxidopamina/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Humanos , Animales , Estructura Molecular , Hemo-Oxigenasa 1/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Pez Cebra , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química
14.
J Org Chem ; 89(10): 6915-6928, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38687827

RESUMEN

Owing to stereoelectronic effects, lactones often deviate in reactivity from their open-chain ester analogues as demonstrated by the CH acidity (in DMSO) of 3-isochromanone (pKa = 18.8) and 2-coumaranone (pKa = 13.5), which is higher than that of ethyl phenylacetate (pKa = 22.6). We have now characterized the reactivity of the lactone enolates derived from 3-isochromanone and 2-coumaranone by following the kinetics of their Michael reactions with p-quinone methides and arylidenemalonates (reference electrophiles) in DMSO at 20 °C. Evaluation of the experimentally determined second-order rate constants k2 by the Mayr-Patz equation, lg k2 = sN(N + E), furnished the nucleophilicity parameters N (and sN) of the lactone enolates. By localizing their position on the Mayr nucleophilicity scale, the scope of their electrophilic reaction partners becomes predictable, and we demonstrate a novel catalytic methodology for a series of carbon-carbon bond-forming reactions of lactone enolates with chalcones under phase transfer conditions in toluene.

15.
Bioorg Chem ; 146: 107286, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537336

RESUMEN

Pulmonary fibrosis (PF) poses a significant challenge with limited treatment options and a high mortality rate of approximately 45 %. Qingkailing Granule (QKL), derived from the Angong Niuhuang Pill, shows promise in addressing pulmonary conditions. Using a comprehensive approach, combining network pharmacology analysis with experimental validation, this study explores the therapeutic effects and mechanisms of QKL against PF for the first time. In vivo, QKL reduced collagen deposition and suppressed proinflammatory cytokines in a bleomycin-induced PF mouse model. In vitro studies demonstrated QKL's efficacy in protecting cells from bleomycin-induced injury and reducing collagen accumulation and cell migration in TGF-ß1-induced pulmonary fibrosis cell models. Network pharmacology analysis revealed potential mechanisms, confirmed by western blotting, involving the modulation of PI3K/AKT and SRC/STAT3 signaling pathways. Molecular docking simulations highlighted interactions between QKL's active compounds and key proteins, showing inhibitory effects on epithelial damage and fibrosis. Collectively, these findings underscore the therapeutic potential of QKL in alleviating pulmonary inflammation and fibrosis through the downregulation of PI3K/AKT and SRC/STAT3 signaling pathways, with a pivotal role attributed to its active compounds.


Asunto(s)
Medicamentos Herbarios Chinos , Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Simulación del Acoplamiento Molecular , Transducción de Señal , Colágeno/metabolismo , Colágeno/farmacología , Colágeno/uso terapéutico , Fibrosis , Bleomicina/efectos adversos
16.
Pest Manag Sci ; 80(2): 786-796, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37781870

RESUMEN

BACKGROUND: The pinewood nematode (Bursaphelenchus xylophilus) causes severe damage to pine trees. The nematophagous fungus, Esteya vermicola, exhibits considerable promise in the biological control of Bursaphelenchus xylophilus due to its infectivity. Notably, the lunate conidia produced by E. vermicola can infect Bursaphelenchus xylophilus. In the study, we aim to investigate the genes involved in the formation of the lunate conidia of E. vermicola CBS115803. RESULTS: Esteya vermicola CBS115803 yielded 95% lunate conidia on the complete medium (CM) and 86% bacilloid conidia on the minimal medium (MM). Transcriptomic analysis of conidia from both media revealed a significant enrichment of differentially expressed genes in the pathway related to 'cellular amino acid biosynthesis and metabolism'. Functional assessment showed that the knockout of two arginine biosynthesis genes (EV232 and EV289) resulted in defects in conidia germination, mycelial growth, lunate conidia formation, and virulence of E. vermicola CBS115803 in Bursaphelenchus xylophilus. Remarkably, the addition of arginine to the MM improved mycelial growth, conidiation and lunate conidia formation in the mutants and notably increased conidia yield and the lunate conidia ratio in the wild-type E. vermicola CBS115803. CONCLUSION: This investigation confirms the essential role of two arginine biosynthesis genes in lunate conidia formation in E. vermicola CBS115803. The findings also suggest that the supplementation of arginine to the culture medium can enhance the lunate conidia yield. These insights contribute significantly to the application of E. vermicola CBS115803 in managing Bursaphelenchus xylophilus infections. © 2023 Society of Chemical Industry.


Asunto(s)
Ophiostomatales , Pinus , Tylenchida , Animales , Esporas Fúngicas , Arginina/metabolismo , Virulencia , Ophiostomatales/metabolismo , Pinus/microbiología
17.
Chemosphere ; 349: 140767, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37992903

RESUMEN

Given its wide distribution in the environment and latent toxic effects, 1,3,6,8-tetrabromo-9H-carbazole (1368-BCZ) is an emerging concern that has gained increasing attention globally. 1368-BCZ exposure is reported to have potential cardiovascular toxicity. Although atherosclerosis is a cardiovascular disease and remains a primary cause of mortality worldwide, no evidence has been found regarding the impact of 1368-BCZ on atherosclerosis. Therefore, we aimed to explore the deleterious effects of 1368-BCZ on atherosclerosis and the underlying mechanisms. Serum samples from 1368-BCZ-treated atherosclerotic model mice were subjected to metabolomic profiling to investigate the adverse influence of the pollutant. Subsequently, the molecular mechanism associated with the metabolic pathway of atherosclerotic mice that was identified following 1368-BCZ exposure was validated in vitro. Serum metabolomics analysis revealed that 1368-BCZ significantly altered the tricarboxylic acid cycle, causing a disturbance in energy metabolism. In vitro, we further validated general markers of energy metabolism based on metabolome data: 1368-BCZ dampened adenosine triphosphate (ATP) synthesis and increased reactive oxygen species (ROS) production. Furthermore, blocking the aryl hydrocarbon receptor (AhR) reversed the high production of ROS induced by 1368-BCZ. It is concluded that 1368-BCZ decreased the ATP synthesis by disturbing the energy metabolism, thereby stimulating the AhR-mediated ROS production and presumably causing aggravated atherosclerosis. This is the first comprehensive study on the cardiovascular toxicity and mechanism of 1368-BCZ based on rodent models of atherosclerosis and integrated with in vitro models.


Asunto(s)
Aterosclerosis , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Animales , Ratones , Especies Reactivas de Oxígeno , Metabolómica , Aterosclerosis/inducido químicamente , Aterosclerosis/metabolismo , Adenosina Trifosfato
18.
Bioorg Chem ; 142: 106955, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37924754

RESUMEN

Three new ergosterol derivatives brassisterol A-C (1-3) and two new epimeric bicycle-lactones brassictones A and B (4 and 5), were isolated from the co-cultivation of Alternaria brassicicola and Penicillium granulatum. The absolute configurations of these isolates were confirmed by extensive NMR spectra, TD-DFT ECD calculation, and the single crystal XRD data analysis. Amongst the metabolites, compound 1 exhibited potential anti-Parkinson's disease activity in both MPTP-induced zebrafish and MPP+-induced SH-SY5Y cells. Molecular mechanism studies in vitro showed that 1 attenuated the increase of α-synuclein, NLRP3, ASC, caspase-1, IL-1ß, IL-18, and GSDMD expression in the MPP+ induced PD model. Molecular docking in silico simulations exhibited that 1 was well accommodated to one of the binding pockets of NLRP3 8ETR in an appropriate conformation via forming typical hydrogen bonds as well as possessing a high negative binding affinity (-8.97 kcal/mol). Thus, our work suggested that 1 protected dopaminergic cell from neuroinflammation via targeting NLRP3/caspase-1/GSDMD signaling pathway.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Neuroblastoma , Animales , Humanos , Caspasa 1/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedades Neuroinflamatorias , Simulación del Acoplamiento Molecular , Pez Cebra/metabolismo , Hongos/metabolismo , Proteínas de Unión a Fosfato , Proteínas Citotóxicas Formadoras de Poros
19.
Neurol Genet ; 10(1): e200117, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38149038

RESUMEN

Objectives: Brain-limited pathogenic somatic variants are associated with focal pediatric epilepsy, but reliance on resected brain tissue samples has limited our ability to correlate epileptiform activity with abnormal molecular pathology. We aimed to identify the pathogenic variant and map variant allele fractions (VAFs) across an abnormal region of epileptogenic brain in a patient who underwent stereoelectroencephalography (sEEG) and subsequent motor-sparing left frontal disconnection. Methods: We extracted genomic DNA from peripheral blood, brain tissue resected from peri-sEEG electrode regions, and microbulk brain tissue adherent to sEEG electrodes. Samples were mapped based on an anatomic relationship with the presumed seizure onset zone (SOZ). We performed deep panel sequencing of amplified and unamplified DNA to identify pathogenic variants with subsequent orthogonal validation. Results: We detect a pathogenic somatic PIK3CA variant, c.1624G>A (p.E542K), in the brain tissue samples, with VAF inversely correlated with distance from the SOZ. In addition, we identify this variant in amplified electrode-derived samples, albeit with lower VAFs. Discussion: We demonstrate regional mosaicism across epileptogenic tissue, suggesting a correlation between variant burden and SOZ. We also validate a pathogenic variant from individual amplified sEEG electrode-derived brain specimens, although further optimization of techniques is required.

20.
J Fungi (Basel) ; 9(10)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37888293

RESUMEN

Verticillium dahliae, a virulent soil-borne fungus, elicits Verticillium wilt in numerous dicotyledonous plants through intricate pathogenic mechanisms. Ubiquitination, an evolutionarily conserved post-translational modification, marks and labels proteins for degradation, thereby maintaining cellular homeostasis. Within the ubiquitination cascade, ubiquitin ligase E3 demonstrates a unique capability for target protein recognition, a function often implicated in phytopathogenic virulence. Our research indicates that two ubiquitin ligase E3s, VdBre1 and VdHrd1, are intrinsically associated with virulence. Our findings demonstrate that the deletion of these two genes significantly impairs the ability of V. dahliae to colonize the vascular bundles of plants and to form typical penetration pegs. Furthermore, transcriptomic analysis suggests that VdBre1 governs the lipid metabolism pathway, while VdHrd1 participates in endoplasmic-reticulum-related processes. Western blot analyses reveal a significant decrease in histone ubiquitination and histone H3K4 trimethylation levels in the ΔVdBre1 mutant. This research illuminates the function of ubiquitin ligase E3 in V. dahliae and offers fresh theoretical perspectives. Our research identifies two novel virulence-related genes and partially explicates their roles in virulence-associated structures and gene regulatory pathways. These findings augment our understanding of the molecular mechanisms inherent to V. dahliae.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA