Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 445
Filtrar
1.
RSC Adv ; 14(43): 31730-31739, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39376519

RESUMEN

Given the suboptimal emulsification performance and the potential for secondary pollution posed by existing demulsifiers, a facile and highly efficient fluorinated magnetic demulsifier (Fe3N@F) was synthesized via a one-step approach using fluorinated polyether and iron nitride as raw materials.The morphology and structure of the demulsifier were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The results confirm a successful fluoropolyether coating on the surface of iron nitride. The demulsifying and dehydrating properties were assessed through demulsifying and dehydrating experiments, and the influence of demulsifier addition and demulsifying temperature on the demulsification performance was investigated. Additionally, the demulsification mechanism was analyzed by the microscopic demulsification process. The results indicated that under the condition of the optimum demulsification temperature of 45 °C and the optimum demulsifier dosage of 150 mg L-1, the water removal (%) of the magnetic demulsifier containing fluorine (Fe3N@F) was the highest, and could reach 89.4%. Fe3N@F exhibited excellent magnetic response, the demulsifying rate could reach above 70% after recycling and reusing it 6 times. The application of iron nitride in demulsification presents a novel thought for the advancement of magnetic demulsifiers.

2.
Sci Adv ; 10(40): eadq2654, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39365858

RESUMEN

The increasing prevalence of drought events in grasslands and shrublands worldwide potentially has impacts on soil organic carbon (SOC). We leveraged the International Drought Experiment to study how SOC, including particulate organic carbon (POC) and mineral-associated organic carbon (MAOC) concentrations, responds to extreme drought treatments (1-in-100-year) for 1 to 5 years at 19 sites worldwide. In more mesic areas (aridity index > 0.65), SOC and POC concentrations decreased by 7.9% (±3.9) and 15.9% (±6.2) with drought, respectively, but there were no impacts on MAOC concentrations. However, drought had no impact on SOC, POC, or MAOC concentrations in drylands (aridity index < 0.65). The response of SOC to drought varied along an aridity gradient, concomitant with interannual precipitation variability and standing SOC concentration gradients. These findings highlight the differing response magnitudes of POC and MAOC concentrations to drought and the key regulating role of aridity.


Asunto(s)
Carbono , Sequías , Pradera , Suelo , Suelo/química , Carbono/metabolismo , Ecosistema , Clima Desértico
3.
Nano Lett ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39382456

RESUMEN

The developments of modern surveillance technology pose great challenges to combat concealment for warfighters. Traditional camouflage suits cannot accommodate the need for camouflage stealth in complex warfare scenarios. Herein, a bidirectional diffusion-controlled in situ synthesis methodology is reported to achieve electrochromic nanofibrous membranes with mimetic chameleon skin structures (CSENs) by assembling electrochromic covalent organic frameworks on nanofibers. CSENs exhibit reversible color changes in the visible and near-infrared ranges under an applied potential with fast response times (25.8 s/26.2 s). The macro- and mesoporous structures in CSENs favored the transportation of electrolyte ions, achieving excellent color difference and coloration efficiency of 35.58 and 1053.26 cm2/C, respectively. Importantly, CSENs feature unique properties of self-standing, breathability, and flexibility, which are attributed to the micrometer pores constructed by entangled nanofibers. As a proof-of-concept study, the CSEN-based flexible electrochromic suit exhibits a dynamic camouflage function in real environments, showing promising properties as smart textiles for dynamic camouflage stealth.

4.
Sci Rep ; 14(1): 22906, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358436

RESUMEN

The effect of bolt support in mining roadways with fractured or weak surrounding rock is poor, and the roof easily loses stability. Studying the support control technology of bolts on fractured surrounding rock is necessary. Based on the theories of pressure arches and combined arch support, the bolt anchorage and anchorage effect angle are proposed a model is established, and the optimal bolt anchorage is calculated. The influence of related factors on the bolt anchorage and the scope of bolt action are analysed via numerical simulation and experimental methods. The pretightening force of the bolts and the spacing between the rows of bolts are positively correlated and negatively correlated with the bolt anchorage, respectively. The compression zone conforms to the reinforced arch state when the bolt end is anchored. The experimental work shows that the maximum spacing a of the anchor rods and the length L of the anchor rods in the surrounding rock satisfy 4.28a < 2L < 5a. The support of fractured surrounding rock is discussed, and the concept of roof fall prevention and control with an increasing or constant pretightening force, high surface strength and reasonable support density as the core principles is proposed. A field test of the Youzhong Coal Mine shows that the corresponding support effect is good and that this work provides a new method for roof support of fractured surrounding rock.

5.
J Oral Rehabil ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39305044

RESUMEN

BACKGROUND: Clinical evidence supports that swallowing function is correlated with cognition, but the neurobiological mechanism associated with cognitive impairment and dysphagia remains unclear. OBJECTIVES: To compare the brain activation patterns of the swallowing and the cognitive tasks and explore neural associations between swallowing and cognitive function via task-related functional magnetic resonance imaging (fMRI). METHODS: A total of 13 healthy older adults (aged > 60 years) were recruited. Participants underwent the clinical dementia rating (CDR) test and the Montreal Cognitive Assessment (MoCA). A block-designed task-related fMRI study was conducted where each participant completed both swallowing and cognitive tasks within a single session. During the swallowing task, participants swallowed 2 mL of thickened water, while the Stroop Colour Word Test (SCWT) served as the cognitive task. First-level analysis of swallowing time-series images utilised the general linear model (GLM) with Statistical Parametric Mapping (SPM), applying a voxel threshold of p < 0.001 for significance. Common activations in brain regions during swallowing and cognitive tasks were extracted at the group level, with significance set at p < 0.05, corrected for multiple comparisons using the false discovery rate (FDR), with a minimum cluster size of 20 voxels. Correlation analysis between behavioural measurements and imaging signals was also conducted. RESULTS: Some regions were commonly activated in both task networks; these regions were the bilateral occipital lobe, cerebellum, lingual gyrus, fusiform, middle frontal gyrus, precentral and postcentral gyrus, right supramarginal and inferior parietal lobe. Most importantly, the average beta value of cognitive and swallowing tasks in these areas are both significantly negative related to the MoCA score. Furthermore, opposite signal changes were seen in the bilateral prefrontal lobes during the swallowing task, while positive activation in the bilateral prefrontal lobes was observed during the SCWT. Postcentral gyrus activation was more extensive than precentral gyrus activation in the swallowing task. CONCLUSION: The common activation of swallowing and cognitive tasks had multiple foci. The activity of cognitive and swallowing task in these areas is significantly negative correlated with the MoCA score. These findings may help to illustrate the association between dysphagia and cognitive impairment due to the common brain regions involved in cognition and swallowing and may provide a reference for further rehabilitation of dysphagia. TRIAL REGISTRATION: Clinical Trial: (Chinese Clinical Trial Registry): ChiCTR1900021795.

6.
Sci Rep ; 14(1): 20356, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223214

RESUMEN

This paper aims to address the issue of environmental pollution resulting from marine oil spills by evaluating the oil adsorption performance of commonly used fence materials. Conventional oil adsorption materials exhibit limited rates and capacities for oil adsorption. Existing methods have proven insufficient in meeting the requirements for efficient and rapid oil-water separation. A new oil-absorbing barrier was developed by utilizing high oil adsorption resin as the primary material and hydroxypropyl methyl cellulose (HPMC) as the binder, leveraging the exceptional oil adsorption and hydrophobic properties of P(BMA-SMA-St)/MIL-101(Fe) resin. The oil-absorbing fence was characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The oil adsorption rates of carbon tetrachloride, toluene, diesel and gasoline by the oil adsorption fence with 25 g/L resin content were 101.26 g/m2, 68.12 g/m2, 35.19 g/m2, and 46.69 g/m2, respectively. After 120 h of UV irradiation, the coating's oil absorption capacity remained nearly unchanged, and it demonstrated outstanding mechanical, chemical, and wear resistance. As a result, the oil adsorption fence possesses the capability to rapidly absorb oil from the water's surface during the process of containing oil pollution, leading to positive social and economic impacts.

7.
Nano Lett ; 24(37): 11512-11519, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39230027

RESUMEN

Metal-oxo clusters show great promise in lithium ion battery applications as anode materials by virtue of their native nature of well-defined nanostructures and multielectron redox activities. However, their intrinsic unsatisfactory electrical conductivity and tendency to aggregation make them difficult to fully utilize. Herein, a well-dispersed Mn12O12(CH3COO)16(H2O)4 (denoted as Mn12) cluster is constructed by rationally adopting carbon dots (CDs) with nanosize and high conductivity as stabilizers. Thanks to the fully exposed redox sites of Mn12 clusters and additional interfacial energy storage mechanism, the optimized Mn12/CDs-1:20 anode delivers a high specific capacity of 1643 mAh g-1 at 0.2 A g-1 (0.25 C) and exhibits outstanding rate and cycling capabilities. This paper provides a green and efficient paradigm to synthesize well-dispersed manganese-oxo clusters for the first time and builds a new platform for cluster-based energy storage.

8.
Q J Exp Psychol (Hove) ; : 17470218241283630, 2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39256961

RESUMEN

Intentional inhibition, the ability to voluntarily inhibit or suspend an action preparation, is closely related to self-control. It is widely believed that subliminal stimuli can also activate action preparation, but whether intentional inhibition is enhanced or disrupted with greater subliminal action preparation remains unclear. In this study, participants voluntarily decided whether or not to perform the action in the scenario with subliminal action preparation, and the strength of the action preparation was manipulated by a precueing procedure. The results, based on behavioural measures and drift-diffusion models, showed that intentional inhibition enhanced with increasing subliminal action preparation, suggesting that as subliminal action preparation increases, people are more inclined to make inhibitory decisions. This study provides evidence for a framework in which strong subliminal action preparation induces enhanced cognitive monitoring.

9.
J Imaging ; 10(9)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39330456

RESUMEN

Face recognition is a widely used computer vision, which plays an increasingly important role in user authentication systems, security systems, and consumer electronics. The models for most current applications are based on high-definition digital cameras. In this paper, we focus on digital images derived from historical motion picture films. Historical motion picture films often have poorer resolution than modern digital imagery, making face detection a more challenging task. To approach this problem, we first propose a trunk-branch concatenated multi-task cascaded convolutional neural network (TB-MTCNN), which efficiently extracts facial features from blurry historical films by combining the trunk with branch networks and employing various sizes of kernels to enrich the multi-scale receptive field. Next, we build a deep neural network-integrated object-tracking algorithm to compensate for failed recognition over one or more video frames. The framework combines simple online and real-time tracking with deep data association (Deep SORT), and TB-MTCNN with the residual neural network (ResNet) model. Finally, a state-of-the-art image restoration method is employed to reduce the effect of noise and blurriness. The experimental results show that our proposed joint face recognition and tracking network can significantly reduce missed recognition in historical motion picture film frames.

10.
Atten Percept Psychophys ; 86(7): 2262-2274, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39300051

RESUMEN

Numerous studies have indicated that both the broaden-and-build model and the motivational dimensional model emphasize the impact of emotion on spatial attention by altering the attentional scope. However, no prior research has investigated the impact of emotional valence and motivational intensity on spatial attention within the same paradigm. Furthermore, object-based attention, characterized by distinct neural mechanisms from space-based attention and also susceptible to attentional scope, represents a major pattern of selective attention. Nevertheless, it is still unclear whether and how emotional valence and motivation play a role in object-based attentional selection. Therefore, the present study aimed to explore these areas. Using a two-rectangle paradigm, Experiment 1 found that motivational intensity modulated space-based effects, whereas emotional valence modulated object-based effects. Experiment 2 used a traditional spatial cueing paradigm to further study the stability of modulating effect of motivation intensity on space-based attention, yielding results consistent with those of Experiment 1. The present study indicated that the broaden-and-build model and motivational dimensional model were not either one or the other, but both played a role in object- and space-based attention. This study provides crucial empirical evidence for theoretical complementation and integration of emotional attention.


Asunto(s)
Atención , Emociones , Motivación , Percepción Espacial , Humanos , Femenino , Masculino , Adulto Joven , Adulto , Señales (Psicología) , Reconocimiento Visual de Modelos
11.
Genes Dis ; 11(6): 101344, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39188753

RESUMEN

Recombinant adenovirus (rAdV) is a commonly used vector system for gene transfer. Efficient initial packaging and subsequent production of rAdV remains time-consuming and labor-intensive, possibly attributable to rAdV infection-associated oxidative stress and reactive oxygen species (ROS) production. Here, we show that exogenous GAPDH expression mitigates adenovirus-induced ROS-associated apoptosis in HEK293 cells, and expedites adenovirus production. By stably overexpressing GAPDH in HEK293 (293G) and 293pTP (293GP) cells, respectively, we demonstrated that rAdV-induced ROS production and cell apoptosis were significantly suppressed in 293G and 293GP cells. Transfection of 293G cells with adenoviral plasmid pAd-G2Luc yielded much higher titers of Ad-G2Luc at day 7 than that in HEK293 cells. Similarly, Ad-G2Luc was amplified more efficiently in 293G than in HEK293 cells. We further showed that transfection of 293GP cells with pAd-G2Luc produced much higher titers of Ad-G2Luc at day 5 than that of 293pTP cells. 293GP cells amplified the Ad-G2Luc much more efficiently than 293pTP cells, indicating that exogenous GAPDH can further augment pTP-enhanced adenovirus production. These results demonstrate that exogenous GAPDH can effectively suppress adenovirus-induced ROS and thus accelerate adenovirus production. Therefore, the engineered 293GP cells represent a superfast rAdV production system for adenovirus-based gene transfer and gene therapy.

12.
J Fungi (Basel) ; 10(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39194866

RESUMEN

Serine is a functional amino acid that effectively regulates the physiological functions of an organism. This study investigates the effects of adding exogenous serine to a culture medium to explore a feasible method for the rejuvenation of V. volvacea degenerated strains. The tissue isolation subcultured strains T6, T12, and T19 of V. volvacea were used as test strains, and the commercially cultivated strain V844 (T0) was used as a control. The results revealed that the addition of serine had no significant effect on non-degenerated strains T0 and T6, but could effectively restore the production characteristics of degenerated strains T12 and T19. Serine increased the biological efficiency of T12 and even helped the severely degenerated T19 to regrow its fruiting body. Moreover, exogenous serine up-regulated the expression of some antioxidant enzyme genes, improved antioxidase activity, reduced the accumulation of reactive oxygen species (ROS), lowered malondialdehyde (MDA) content, and restored mitochondrial membrane potential (MMP) and mitochondrial morphology. Meanwhile, serine treatment increased lignocellulase and mycelial energy levels. These findings form a theoretical basis and technical support for the rejuvenation of V. volvacea degenerated strains and other edible fungi.

13.
Brain ; 147(8): 2817-2825, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39084678

RESUMEN

Genome-wide association studies (GWAS) have become increasingly popular for detecting numerous loci associated with intracranial aneurysm (IA), but how these loci function remains unclear. In this study, we employed an integrative analytical pipeline to efficiently transform genetic associations and identify novel genes for IA. Using multidimensional high-throughput data, we integrated proteome-wide association studies (PWAS), transcriptome-wide association studies (TWAS), Mendelian randomization (MR) and Bayesian co-localization analyses to prioritize genes that can increase IA risk by altering their expression and protein abundances in the brain and blood. Moreover, single-cell RNA sequencing (scRNA-seq) of the circle of Willis was performed to enrich filtered genes in cells, and gene set enrichment analysis (GSEA) was conducted for each gene using bulk RNA-seq data for IA. No significant genes with cis-regulated plasma protein levels were proven to be associated with IA. The protein abundances of five genes in the brain were found to be associated with IA. According to cellular enrichment analysis, these five genes were expressed mainly in the endothelium, fibroblasts and vascular smooth muscle cells. Only three genes, CNNM2, GPRIN3 and UFL1, passed MR and Bayesian co-localization analyses. While UFL1 was not validated in confirmation PWAS as it was not profiled, it was validated in TWAS. GSEA suggested these three genes are associated with the cell cycle. In addition, the protein abundance of CNNM2 was found to be associated with IA rupture (based on PWAS, MR and co-localization analyses). Our findings indicated that CNNM2, GPRIN3 and UFL1 (CNNM2 correlated with IA rupture) are potential IA risk genes that may provide a broad hint for future research on possible mechanisms and therapeutic targets for IA.


Asunto(s)
Estudio de Asociación del Genoma Completo , Aneurisma Intracraneal , Proteoma , Humanos , Aneurisma Intracraneal/genética , Proteoma/genética , Predisposición Genética a la Enfermedad , Análisis de la Aleatorización Mendeliana , Transcriptoma , Teorema de Bayes
14.
Food Sci Nutr ; 12(7): 5111-5120, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39055182

RESUMEN

Moderate non-covalent interaction of protein and polyphenols can improve the emulsifying property of protein itself. The corn protein hydrolysate (CPH) and tannic acid (TA) complex was successfully used to construct nanoemulsion for algal oil delivery. There has been no study on the feasibility of this nanoemulsion delivery system for other food functional components, for example, ß-carotene (ß-CE). CPH/TA complex-based nanoemulsion system for ß-CE delivery was studied, focusing on the effect of ß-CE content on the physicochemical stability of the nanoemulsions. The nanoemulsion delivery systems (dia. 150 nm) with low viscosity and good liquidity were easily fabricated by two-step emulsification. The nanoemulsions with high ß-CE content (>71.5 µg/mL) significantly increased (p < .05) the emulsion droplet size. However, there was no significant (p > .05) effect of ß-CE content on polydispersity index (PDI) and zeta potential of the nanoemulsions. The storage (30 days) experiment results demonstrated that the droplet size of the nanoemulsions with varying ß-CE content increased slightly during storage. However, the PDI values showed a slightly decreasing trend. Zeta potentials of the nanoemulsions showed no noticeable change during storage. Moreover, after storage of 30 days, the retention ratios of ß-CE were found to be up to 90%, which suggests an excellent protective effect for ß-CE by the nanoemulsion systems. The CPH/TA complex stabilized nanoemulsions could aggregate in gastric condition, but the ß-CE content did not have obvious effect on the digestive stability of the nanoemulsions. The CPH/TA complex could be employed as an emulsifier to construct a physicochemical stable nanoemulsion delivery system for lipophilic active components.

15.
Neuroimage ; 297: 120719, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38971485

RESUMEN

It is increasingly clear that unconscious information impairs the performance of the corresponding action when the instruction to act is delayed. However, whether this impairment occurs at the response level or at the perceptual level remains controversial. This study used fMRI and a computational model with a pre-post design to address this elusive issue. The fMRI results showed that when the unconscious information containing strong stimulus-response associations was irrelevant to subsequent stimuli, the precuneus in the parietal lobe, which is thought to be involved in sensorimotor processing, was activated. In contrast, when the unconscious information was relevant to subsequent stimuli, regardless of the strength of the stimulus-response associations, some regions in the occipital and temporal cortices, which are thought to be involved in visual perceptual processing, were activated. In addition, the percent signal change in the regions of interest associated with motor inhibition was modulated by compatibility in the irrelevant but not in the relevant stimuli conditions. Modeling of behavioral data further supported that the irrelevant and relevant stimuli conditions involved fundamentally different mechanisms. Our finding reconciles the debate about the mechanism by which unconscious information impairs action performance and has important implications for understanding of unconscious cognition.


Asunto(s)
Imagen por Resonancia Magnética , Desempeño Psicomotor , Inconsciente en Psicología , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Desempeño Psicomotor/fisiología , Simulación por Computador , Mapeo Encefálico/métodos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Modelos Neurológicos
16.
Nano Lett ; 24(32): 9861-9867, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39078741

RESUMEN

Magnetic nanomaterials record information as fast as picoseconds in computer memories but retain it for millions of years in ancient rocks. This exceedingly broad range of times is covered by hopping over a potential energy barrier through temperature, ultrafast optical excitation, mechanical stress, or microwaves. As switching depends on nanoparticle size, shape, orientation, and material properties, only single-nanoparticle studies can eliminate the ensemble heterogeneity. Here, we push the sensitivity of photothermal magnetic circular dichroism down to individual 20 nm magnetite nanoparticles. Single-particle magnetization curves display superparamagnetic to ferromagnetic behaviors, depending on the size, shape, and orientation. Some nanoparticles undergo thermally activated switching on time scales of milliseconds to minutes. Surprisingly, the switching barrier varies with time, leading to dynamical heterogeneity, a phenomenon familiar in protein dynamics and supercooled liquids. Our observations will help to identify the external parameters influencing magnetization switching and, eventually, to control it, an important step for many applications.

17.
Brain Res ; 1841: 149095, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38917878

RESUMEN

BACKGROUND: Abnormally elevated homocysteine (Hcy) is recognized as a biomarker and risk factor for Alzheimer's disease (AD). However, the underlying mechanisms by which Hcy affects AD are still unclear. OBJECTIVES: This study aimed to elucidate the effects and mechanisms by which Hcy affects AD-like pathological changes in the hippocampus through in vivo and in vitro experiments, and to investigate whether folic acid (FA) and S-adenosylmethionine (SAM) supplementation could improve neurodegenerative injuries. METHODS: In vitro experiments hippocampal neurons of rat were treated with Hcy, FA or SAM for 24 h; while the hyperhomocysteinemia (HHcy) in Wistar rats was established by intraperitoneal injection of Hcy, and FA was added to feed. The expression of ß-amyloid (Aß), phosphorylated tau protein, presenilin 1 (PS1) at the protein level and the activity of protein phosphatase 2A (PP2A) were detected, the immunopositive cells for Aß and phosphorylated tau protein in the rat hippocampus were also evaluated by immunohistochemical staining. RESULTS: FA and SAM significantly repressed Hcy-induced AD-like pathological changes in the hippocampus, including the increased tau protein phosphorylation at Ser214, Ser396 and the expression of Aß42. In addition, Hcy-induced PS1 expression increased at the protein level and PP2A activity decreased, while FA and SAM were able to retard that. CONCLUSIONS: The increase in PS1 expression and decrease in PP2A activity may be the mechanisms underlying the Hcy-induced AD-like pathology. FA and SAM significantly repressed the Hcy-induced neurodegenerative injury by modulating PS1 and PP2A methylation levels.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ácido Fólico , Hipocampo , Homocisteína , Presenilina-1 , Proteína Fosfatasa 2 , Ratas Wistar , S-Adenosilmetionina , Proteínas tau , Animales , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Proteína Fosfatasa 2/metabolismo , S-Adenosilmetionina/farmacología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/inducido químicamente , Homocisteína/farmacología , Homocisteína/toxicidad , Ácido Fólico/farmacología , Ratas , Masculino , Presenilina-1/genética , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Metilación/efectos de los fármacos , Hiperhomocisteinemia/metabolismo , Hiperhomocisteinemia/inducido químicamente , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fosforilación/efectos de los fármacos , Modelos Animales de Enfermedad
18.
Sci Total Environ ; 945: 174047, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38885707

RESUMEN

Research on windbreak and sand fixation (WSF) services aids in soil conservation, and ecological protection. Over the past 50 years, the Aral Sea's shrinkage has intensified wind erosion, leading to significant sand and dust emissions in Central Asia (CA). This study uses the Revised wind erosion equation (RWEQ) model and the hybrid single particle Lagrangian integrated trajectory model (HYSPLIT) model to simulate the spatiotemporal variation pattern of WSF services in the Aral Sea basin (ASB). From the perspective of sand and dust transmission paths, the flow trajectory and benefit areas of WSF services are identified, the spatiotemporal correlation between the WSF service supply areas and benefit areas is established, and the potential impact of WSF services on beneficiary areas is quantitatively assessed. The results show the amount of wind erosion and the amount of WSF in the ASB from 2000 to 2019 showed a fluctuating trend of "first increasing and then decreasing". In terms of spatial distribution, areas with large amounts of WSF are mainly distributed in the lower reaches of the Syr Darya River and the sand dunes in the northwest of the Kizilkum Desert. WSF services mainly flow through the Kizilkum Desert, Karakum Desert, Moyinkum Desert, Kazakh Hills, and the Junggar Basin and Tarim Basin in China. Generally, it flows to the northeast and southwest. In the past 20 years, the largest areas benefiting from the flow of WSF services are mainly distributed in Uzbekistan, Kyrgyzstan, and Tajikistan. The trajectory distribution frequency shows a decreasing trend from the center to the periphery. The grassland areas constituted the largest beneficiary areas in the ASB of CA, with both the beneficiary population and real GDP exhibiting an upward trend. This study holds significant importance for enhancing the management of ecosystem services in sandy regions and for establishing ecological compensation mechanisms.

19.
Front Pharmacol ; 15: 1414675, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846095

RESUMEN

Introduction: Ephedra sinica polysaccharide (ESP) exerts substantial therapeutic effects on rheumatoid arthritis (RA). However, the mechanism through which ESP intervenes in RA remains unclear. A close correlation has been observed between enzymes and derivatives in the gut microbiota and the inflammatory immune response in RA. Methods: A type II collagen-induced arthritis (CIA) mice model was treated with Ephedra sinica polysaccharide. The therapeutic effect of ESP on collagen-induced arthritis mice was evaluated. The anti-inflammatory and cartilage-protective effects of ESP were also evaluated. Additionally, metagenomic sequencing was performed to identify changes in carbohydrate-active enzymes and resistance genes in the gut microbiota of the ESP-treated CIA mice. Liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry were performed to observe the levels of serum metabolites and short-chain fatty acids in the gut. Spearman's correlational analysis revealed a correlation among the gut microbiota, antibiotic-resistance genes, and microbiota-derived metabolites. Results: ESP treatment significantly reduced inflammation levels and cartilage damage in the CIA mice. It also decreased the levels of pro-inflammatory cytokines interleukin (IL)-6, and IL-1-ß and protected the intestinal mucosal epithelial barrier, inhibiting inflammatory cell infiltration and mucosal damage. Here, ESP reduced the TLR4, MyD88, and TRAF6 levels in the synovium, inhibited the p65 expression and pp65 phosphorylation in the NF-κB signaling pathway, and blocked histone deacetylase (HDAC1 and HDAC2) signals. ESP influenced the gut microbiota structure, microbial carbohydrate-active enzymes, and microbial resistance related to resistance genes. ESP increased the serum levels of L-tyrosine, sn-glycero-3-phosphocholine, octadecanoic acid, N-oleoyl taurine, and decreased N-palmitoyl taurine in the CIA mice. Conclusion: ESP exhibited an inhibitory effect on RA. Its action mechanism may be related to the ability of ESP to effectively reduce pro-inflammatory cytokines levels, protect the intestinal barrier, and regulate the interaction between mucosal immune systems and abnormal local microbiota. Accordingly, immune homeostasis was maintained and the inhibition of fibroblast-like synoviocyte (FLS) proliferation through the HDAC/TLR4/NF-κB pathway was mediated, thereby contributing to its anti-inflammatory and immune-modulating effects.

20.
Front Immunol ; 15: 1377409, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846945

RESUMEN

Introduction: Neutrophil extracellular traps (NETs) constitute a crucial element of the immune system, and dysfunction in immune responses is implicated in the susceptibility and progression of Parkinson's disease (PD). Nevertheless, the mechanism connecting PD and NETs remains unclear. This study aims to uncover potential NETs-related immune biomarkers and elucidate their role in PD pathogenesis. Methods: Through differential gene analysis of PD and NETs in GSE7621 datasets, we identified two PD subtypes and explored potential biological pathways. Subsequently, using ClusterWGCNA, we pinpointed pertinent genes and developed clinical diagnostic models. We then optimized the chosen model and evaluated its association with immune infiltration. Validation was conducted using the GSE20163 dataset. Screening the single-cell dataset GSE132758 revealed cell populations associated with the identified gene. Results: Our findings identified XGB as the optimal diagnostic model, with CAP2 identified as a pivotal gene. The risk model effectively predicted overall diagnosis rates, demonstrating a robust correlation between infiltrating immune cells and genes related to the XGB model. Discussion: In conclusions, we identified PD subtypes and diagnostic genes associated with NETs, highlighting CAP2 as a pivotal gene. These findings have significant implications for understanding potential molecular mechanisms and treatments for PD.


Asunto(s)
Trampas Extracelulares , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/inmunología , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Trampas Extracelulares/inmunología , Trampas Extracelulares/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Biomarcadores , Perfilación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA