RESUMEN
Traditional reinforcement learning (RL) methods for optimal control of nonlinear processes often face challenges, such as high computational demands, long training times, and difficulties in ensuring the safety of closed-loop systems during training. To address these issues, this work proposes a safe transfer RL (TRL) framework. The TRL algorithm leverages knowledge from pretrained source tasks to accelerate learning in a new, related target task, significantly reducing both learning time and computational resources required for optimizing control policies. To ensure safety during knowledge transfer and training, data collection and optimization of the control policy are performed within a control invariant set (CIS) throughout the learning process. Furthermore, we theoretically analyze the errors between the approximate and optimal control policies by accounting for the differences between source and target tasks. Finally, the proposed TRL method is applied to the case studies of chemical processes to demonstrate its effectiveness in solving the optimal control problem with improved computational efficiency and guaranteed safety.
RESUMEN
This paper addresses robust fault detection observer design for a class of discrete-time Takagi-Sugeno fuzzy systems with finite-frequency specifications. A novel design method is presented based on finite-frequency H-/H∞ indices and peak-to-peak analysis. The finite-frequency H- and H∞ indices are utilized to characterize fault sensitivity and disturbance robustness, respectively. Peak-to-peak analysis is used to derive a dynamic threshold. To further reduce the conservatism caused by predefined parameters, an iterative algorithm is developed. Both theoretical proof and simulation results show that the performance of the proposed method is not worse than the existing works.
RESUMEN
Introduction: Acupoint Catgut Embedding (ACE) is an extended and developed form of traditional acupuncture that serves as a composite stimulation therapy for various diseases. However, its local stimulation effects on acupoints remain unclear. Acupuncture can activate mechanically sensitive calcium ion channels, TRPV2 and TRPV4, located on various cell membranes, promoting Ca2+ influx in acupoint tissues to exert effects. Whether ACE can form mechanical physical stimulation to regulate these channels and the related linkage effect requires validation. Methods: This study investigates the influence of TRPV2 and TRPV4 ion channels on the local stimulation effects of ACE by embedding PGLA suture at the Zusanli (ST36) acupoint in rats and using TRPV2 and TRPV4 inhibitors. Flow cytometry, immunofluorescence, Western blot, and Real-time quantitative PCR were employed to detect intracellular Ca2+ fluorescence intensity, the expression of macrophage (Mac) CD68 and mast cell (MC) tryptase, as well as the protein and mRNA expression of TRPV2 and TRPV4 in acupoint tissues after PGLA embedding. Results: The results indicate that ACE using PGLA suture significantly increases the mRNA and protein expression of TRPV2 and TRPV4, Ca2+ fluorescence intensity, and the expression of Mac CD68 and MC tryptase in acupoint tissues, with these effects diminishing over time. The increasing trends are reduced after using inhibitors, particularly when both inhibitors are used simultaneously. Furthermore, correlation analysis shows that embedding PGLA suture at the ST36 acupoint regulates Mac and MC functions through Ca2+ signaling involving not only TRPV2 and TRPV4 but multiple pathways. Discussion: These results suggest that embedding PGLA suture at the ST36 acupoint generates mechanical physical stimulation and regulates TRPV2 and TRPV4 ion channels, which couple with Ca2+ signaling to form a linkage effect that gradually weakens over time. This provides new reference data for further studies on the stimulation effects and clinical promotion of ACE.
RESUMEN
Glycoproteins, representing a significant proportion of posttranslational products, play pivotal roles in various biological processes, such as signal transduction and immune response. Abnormal glycosylation may lead to structural and functional changes of glycoprotein, which is closely related to the occurrence and development of various diseases. Consequently, exploring protein glycosylation can shed light on the mechanisms behind disease manifestation and pave the way for innovative diagnostic and therapeutic strategies. Nonetheless, the study of clinical glycoproteomics is fraught with challenges due to the low abundance and intricate structures of glycosylation. Recent advancements in mass spectrometry-based clinical glycoproteomics have improved our ability to identify abnormal glycoproteins in clinical samples. In this review, we aim to provide a comprehensive overview of the foundational principles and recent advancements in clinical glycoproteomic methodologies and applications. Furthermore, we discussed the typical characteristics, underlying functions, and mechanisms of glycoproteins in various diseases, such as brain diseases, cardiovascular diseases, cancers, kidney diseases, and metabolic diseases. Additionally, we highlighted potential avenues for future development in clinical glycoproteomics. These insights provided in this review will enhance the comprehension of clinical glycoproteomic methods and diseases and promote the elucidation of pathogenesis and the discovery of novel diagnostic biomarkers and therapeutic targets.
RESUMEN
BACKGROUND: Calcium oxalate-induced acute kidney injury is a severe condition in which the kidneys suffer rapid damage due to the deposition of oxalate crystals. Known factors contributing to cell death induced by calcium oxalate include receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) protein dependent necroptosis, as well as necrosis involving peptidylprolyl isomerase F (PPIF) mediated mitochondrial permeability transition. However, the detailed molecular mechanisms linking mitochondrial dysfunction to RIPK3 activation are not fully understood. METHODS: Mice with gene knock-out of Zbp1, Ripk3, or Mlkl and mice with mutations in the Z-nucleic acid sensing domain of ZBP1 or deletion of Zα1 were used in an oxalate-induced AKI model. Proximal renal tubule cells were isolated and cultured for further investigation. Human oxalate nephropathy biopsy samples were analyzed. RESULTS: Specific gene deletions of Zbp1, Ripk3, or Mlkl in proximal renal tubules significantly reduced the severity of oxalate-induced AKI by preventing necroptosis and subsequent inflammation. Notably, mice with mutations in the Z-nucleic acid sensing domain of ZBP1 or deletion of Zα1 were protected from AKI. In cultured proximal tubular cells, calcium oxalate damaged mitochondria, accompanied by an increase in Bax and a decrease in BCL2 and TAFM, leading to the release of mitochondrial Z-DNA. ZBP1 sensed this mitochondrial Z-DNA and then recruited RIPK3 via the RIP homotypic interaction motifs (RHIM), which in turn activated MLKL through RIPK3 phosphorylation, leading to necroptosis and contributing to AKI. CONCLUSIONS: ZBP1 plays a critical role in sensing mitochondrial Z-DNA and initiating RIPK3/MLKL-mediated necroptosis, contributing to the development of oxalate-induced AKI.
RESUMEN
BACKGROUND AND HYPOTHESIS: Oxalate nephropathy is characterized by calcium oxalate crystals deposition, which triggers necrosis of renal tubular epithelial cells, initiates an inflammatory cascade characterized by neutrophil and macrophage activation within the renal microenvironment. Despite the close association of immune cells with acute oxalate nephropathy, the underlying mechanisms still remain unclear. Nerve injury-induced protein 1 (NINJ1) plays an essential role in the induction of plasma membrane rupture (PMR), leading to damage-associated molecular patterns (DAMPs) release and triggering inflammation. We hypothesize that NINJ1-mediated high mobility group box 1 (HMGB1) release from macrophage PMR and neutrophil extracellular traps (NETs) formation synergistically contribute to the progression of acute oxalate nephropathy. METHODS: Using a murine model of acute oxalate nephropathy, myeloid cell-specific deletion of Ninj1 mice (Ninj1fl/flvavcre) and their wild-type littermate control mice (Ninj1wt/wtvavcre) were administered intraperitoneal injection of 100 mg/kg sodium oxalate followed by drinking water with 3% sodium oxalate. Evaluation was conducted on tubular injury and inflammatory cell infiltration. In vitro studies involved isolation and culture of renal proximal tubular epithelial cells (RTECs), bone marrow-derived macrophages, and neutrophils to investigate NETs formation and HMGB1 release. RESULTS: Targeted deletion of Ninj1 in myeloid cells significantly mitigated oxalate-induced acute kidney injury by suppressing both HMGB1 release and NETs formation in vivo. In vitro investigations demonstrated that HMGB1 release from macrophage PMR and NETs formation in neutrophils mediated by NINJ1 oligomerization, which consequently coordinated to enhance renal tubular epithelial cell death. CONCLUSION: Our findings elucidate the pivotal role of NINJ1-dependent macrophage PMR and NETs formation in the progression of acute oxalate nephropathy, providing novel insights for its prevention and therapeutic targets.
RESUMEN
Polyacrylamide (PAM) is a high molecular weight polymer with extensive applications. However, inefficient natural degradation of PAM results in its environmental accumulation. Here, using multi-omics analysis, we constructed the PAM biodegradation pathway in Klebsiella sp. PCX, an efficient PAM-degrading bacterium. Subsequently, two unclassified amidohydrolases (PCX00451 and PCX04581) were identified as key factors for rapid PAM biodegradation, both of which possessed much higher hydrolysis efficiency for PAM than for small molecule amide compounds. Besides, crystal structures of PCX00451 and PCX04581 were solved. Both two amidohydrolases were consisted with a twisted triosephosphateisomerase (TIM)-barrel and a smaller ß-sandwich domain. And their binding pockets were in the conserved metal center of TIM-barrel domain. Moreover, Asp267 of PCX00451 and Asp282 of PCX04581 were examined as active sites for acid/base catalysis. Our research characterized the molecular mechanisms of two efficient amidohydrolases, providing theoretical basis and valuable tools for PAM bioremediation.
RESUMEN
PM2.5 bound mercury (PBM2.5) in the atmosphere is a major component of total mercury, which is a pollutant of global concern and a potent neurotoxicant when converted to methylmercury. Despite its importance, comprehensive macroanalyses of PBM2.5 on large scales are still lacking. To explore the driving factors, spatiotemporal pollution distribution, and associated health risks, we compiled a comprehensive dataset consisting of PBM2.5 concentrations and spatiotemporal information across China from 2000 to 2023 that was collected from the published scientific literature with valid data. By incorporating corresponding multidimensional predicting variables, the best-fitted random forest model was applied to predict PBM2.5 concentrations with a high spatial resolution of 0.25° × 0.25°, and the health risk assessment model was used for subsequent health risk assessment. Our results indicated that population density and PM2.5 emissions from power generation were the main contributors to PBM2.5 concentrations. In 2020, the pollution was primarily concentrated in northern, central, and eastern China, with the highest annual average concentration of 815.91 pg/m3 in Shanghai. Beijing experienced the most significant seasonal increase, with PBM2.5 concentrations rising by 146.92 % from summer to winter. Nationally, the annual average PBM2.5 pollution decreased extensively and markedly from 2015 to 2020. The non-carcinogenic risk of PBM2.5 alone was negligible in 2020, with HQ values generally <0.02 in winter. This study may provide an important assessment of the effectiveness of China's measures against mercury pollution and offer valuable insights for future prevention and control of PBM2.5 pollution.
RESUMEN
Objective: The use of belimumab in treating lupus nephritis (LN) patients in China is still in its early stages. This retrospective comparative study aims to delineate the disease activity, associated therapies, clinical outcomes, and adverse events among LN patients treated with belimumab, reflecting real-world experience in southeastern China. Methods: From May 2020 to December 2023, 54 LN patients treated with belimumab and 42 LN patients treated with conventional therapy were enrolled. All patients had a follow-up period of more than 3 months. The general information, presenting clinical and laboratory data, and outcomes were collected and compared. Results: At 3 months of belimumab treatment, compared to baseline, there was a decrease in proteinuria from 74.1% to 64.8% (p < 0.001), a reduction in hematuria from 59.3% to 37.0% (p = 0.008), and an increase in partial or complete renal response from 53.7% to 75.9% (p < 0.001). The median SLEDAI score decreased from 10 to 5 (p < 0.001), and the proportion of patients achieving low lupus disease activity state (LLDAS) increased from 11.11% to 16.67% (p < 0.001) by the 3-month evaluation. Notably, there were significant reductions in oral corticosteroid dosages, with a median decrease from 30 to 17.5 mg/day (p < 0.001) by 3 months, and the proportion of patients requiring >5 mg/day of steroids decreased from 88.89% at baseline to 79.07% at six months (p < 0.001). Compared to the conventional therapy group, the belimumab group experienced a significant reduction in median steroid dosage and increased the proportion of patients achieving remission or LLDAS. The incidence of treatment-emergent adverse events (TEAEs) was significantly lower in the belimumab group (29.6% vs 52.4%, p = 0.024). Conclusion: These findings support the potential of belimumab to improve renal and serological parameters, reduce disease activity, lessen corticosteroid dependence, and decrease the risk of TEAEs, demonstrating its safety and efficacy as an adjunct therapy in LN management.
Asunto(s)
Anticuerpos Monoclonales Humanizados , Inmunosupresores , Nefritis Lúpica , Proteinuria , Humanos , Nefritis Lúpica/tratamiento farmacológico , Femenino , Estudios Retrospectivos , Masculino , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/efectos adversos , China , Adulto , Inmunosupresores/uso terapéutico , Inmunosupresores/efectos adversos , Resultado del Tratamiento , Proteinuria/tratamiento farmacológico , Persona de Mediana Edad , Hematuria/tratamiento farmacológicoRESUMEN
The rumen ciliates are a diverse group of protozoa residing in the rumen of ruminant animals. They are primarily found in the orders Entodiniomorphida and Vestibuliferida, playing crucial roles in the digestion and breakdown of feed within the host's rumen, closely intertwined with the host's nutrient absorption. In vitro monocultures of representatives of rumen ciliates are important to better study them. So far, Entodinium caudatum and Epidinium caudatum, representatives of the order Entodiniomorphida, have been successfully cultivated as a monoculture in vitro. However, for the order Vestibuliferida, no representative species has been established a stable monoculture in vitro up to date, which hampers to study their physiology and metabolism. Therefore, we have developed a simple method for the in vitro cultivation of Dasytricha ruminantium, a representative rumen ciliate in the order Vestibuliferida. Utilizing an optimized culture medium with easily obtainable components, and the cultivation process is simple. This will facilitate further research in metabolism and other studies requiring large pure live materials.1.Filtration and separation for enriching D. ruminantium.2.A culture medium (DRM) suitable for the growth of D. ruminantium, with easily obtainable components.3.Simple cultivation process, facilitating the obtainment of a large number of monocultured D. ruminantium.
RESUMEN
Antiferroelectric materials have shown great potential in electronic devices benefiting from the reversible phase transition between ferroelectric and antiferroelectric phases. Understanding the dipole arrangements and clear phase transition pathways is crucial for design of antiferroelectric materials-based energy storage and conversion devices. However, the specific phase transition details remain largely unclear and even controversial to date. Here, we have grown a series of PbZrO3 on SrTiO3 substrates and elucidated the fine atom structures and phase transition pathways using atomic-resolution transmission electron microscopy. Specifically, a roadmap for ferroelectric to antiferroelectric phase transitions, here with increasing film thickness, is determined as ferroelectric rhombohedral (R3c)-ferroelectric monoclinic (Pc)-ferrielectric orthorhombic (Ima2)-antiferroelectric orthorhombic (Pbam), where Pc and Ima2 phases act as structural bridges. Moreover, the phase transition pathway is strongly related to the synergistic effect of oxygen octahedral tilting and cation displacement. These findings provide an insightful understanding for the theories and related properties of antiferroelectrics.
RESUMEN
Endocytosis and lysosomal trafficking of cell surface receptors can be triggered by endogenous ligands. Therapeutic approaches such as lysosome-targeting chimaeras1,2 (LYTACs) and cytokine receptor-targeting chimeras3 (KineTACs) have used this to target specific proteins for degradation by fusing modified native ligands to target binding proteins. Although powerful, these approaches can be limited by competition with native ligands and requirements for chemical modification that limit genetic encodability and can complicate manufacturing, and, more generally, there may be no native ligands that stimulate endocytosis through a given receptor. Here we describe computational design approaches for endocytosis-triggering binding proteins (EndoTags) that overcome these challenges. We present EndoTags for insulin-like growth factor 2 receptor (IGF2R) and asialoglycoprotein receptor (ASGPR), sortilin and transferrin receptors, and show that fusing these tags to soluble or transmembrane target protein binders leads to lysosomal trafficking and target degradation. As these receptors have different tissue distributions, the different EndoTags could enable targeting of degradation to different tissues. EndoTag fusion to a PD-L1 antibody considerably increases efficacy in a mouse tumour model compared to antibody alone. The modularity and genetic encodability of EndoTags enables AND gate control for higher-specificity targeted degradation, and the localized secretion of degraders from engineered cells. By promoting endocytosis, EndoTag fusion increases signalling through an engineered ligand-receptor system by nearly 100-fold. EndoTags have considerable therapeutic potential as targeted degradation inducers, signalling activators for endocytosis-dependent pathways, and cellular uptake inducers for targeted antibody-drug and antibody-RNA conjugates.
RESUMEN
Purpose: Kawasaki disease (KD) is an acute systemic vasculitis that is associated with dysregulated immune responses. Monocytes play a central role in innate immunity. Our previous single-cell RNA sequencing of peripheral blood mononuclear cells (PBMC) revealed a new subset of monocytes in children with KD called L-Selectin+ classical monocytes (SELL+ CM). Therefore, we aimed to investigate the correlation between KD and SELL+ CM. Patients and Methods: Peripheral blood samples were collected from 81 KD patients, 18 febrile patients and 36 healthy children before treatment. Among them, ten KD patients were followed up, and samples were obtained before and after intravenous immunoglobulin (IVIG) treatment. Analysis of SELL+ CM was performed using flow cytometry. Additionally, ROC curve analysis was conducted to assess the diagnostic value of SELL+ CM for KD. Results: Classical monocytes (CM) expressed the highest levels of L-selectin in children with KD. The ratio of SELL+ CM in CM was significantly higher in KD patients than in febrile and healthy children. Following IVIG treatment, the ratio of SELL+ CM in CM showed a downward trend. The receiver operating characteristic (ROC) curve analysis (the area under the curve, AUC = 0.71) indicated the potential diagnostic value of SELL+ CM in KD. The correlation analysis suggested that SELL+ CM may serve as a new clinical index for patients with KD. Conclusion: In KD, the ratio of SELL+ CM in CM significantly increases during the acute phase, which may become a potential biomarker and help facilitate KD diagnosis based on clinical features.
RESUMEN
Spliceosome dysfunction and aberrant RNA splicing underline unresolved inflammation and immunopathogenesis. Here, we revealed the misregulation of mRNA splicing via the spliceosome in the pathogenesis of rheumatoid arthritis (RA). Among them, decreased expression of RNA binding motif protein 25 (RBM25) was identified as a major pathogenic factor in RA patients and experimental arthritis mice through increased proinflammatory mediator production and increased hyperinflammation in macrophages. Multiomics analyses of macrophages from RBM25-deficient mice revealed that the transcriptional enhancement of proinflammatory genes (including Il1b, Il6, and Cxcl10) was coupled with histone 3 lysine 9 acetylation (H3K9ac) and H3K27ac modifications as well as hypoxia inducible factor-1α (HIF-1α) activity. Furthermore, RBM25 directly bound to and mediated the 14th exon skipping of ATP citrate lyase (Acly) pre-mRNA, resulting in two distinct Acly isoforms, Acly Long (Acly L) and Acly Short (Acly S). In proinflammatory macrophages, Acly L was subjected to protein lactylation on lysine 918/995, whereas Acly S did not, which influenced its affinity for metabolic substrates and subsequent metabolic activity. RBM25 deficiency overwhelmingly increased the expression of the Acly S isoform, enhancing glycolysis and acetyl-CoA production for epigenetic remodeling, macrophage overactivation and tissue inflammatory injury. Finally, macrophage-specific deletion of RBM25 led to inflammaging, including spontaneous arthritis in various joints of mice and inflammation in multiple organs, which could be relieved by pharmacological inhibition of Acly. Overall, targeting the RBM25-Acly splicing axis represents a potential strategy for modulating macrophage responses in autoimmune arthritis and aging-associated inflammation.
Asunto(s)
Artritis Reumatoide , Inflamación , Macrófagos , Empalme del ARN , Proteínas de Unión al ARN , Animales , Inflamación/patología , Inflamación/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Ratones , Empalme del ARN/genética , Artritis Reumatoide/patología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Humanos , ATP Citrato (pro-S)-Liasa/metabolismo , ATP Citrato (pro-S)-Liasa/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Empalmosomas/metabolismo , Artritis Experimental/patología , Artritis Experimental/inmunología , Artritis Experimental/genética , Artritis Experimental/metabolismoRESUMEN
Atherosclerosis is the pathological cause of atherosclerotic cardiovascular disease (ASCVD), which rapidly progresses during the cellular senescence. Sodium-glucose cotransporter 2 inhibitors (SGLT2is) reduce major cardiovascular events in patients with ASCVD and have potential antisenescence effects. Here, we investigate the effects of the SGLT2 inhibitor dapagliflozin on cellular senescence in atherosclerotic mice. Compared with ApoE-/- control mice treated with normal saline, those in the ApoE-/- dapagliflozin group, receiving intragastric dapagliflozin (0.1 mg kg-1 d-1) for 14 weeks, exhibited the reduction in the total aortic plaque area (48.8%±6.6% vs. 74.6%±8.0%, P<0.05), the decrease in the lipid core area ((0.019±0.0037) mm2vs. (0.032±0.0062) mm2, P<0.05) and in the percentage of senescent cells within the plaques (16.4%±3.7% vs. 30.7%±2.0%, P<0.01), while the increase in the thickness of the fibrous cap ((21.6±2.1) µm vs. (14.6±1.5) µm, P<0.01). Transcriptome sequencing of the aortic arch in the mice revealed the involvement of the PPARα and the fatty acid metabolic signaling pathways in dapagliflozin's mechanism of ameliorating cellular aging and plaque progression. In vitro, dapagliflozin inhibited the expression of PPARα and its downstream signal FABP4, by which the accumulation of senescent cells in human aortic smooth muscle cells (HASMCs) was reduced under high-fat conditions. This effect was accompanied by a reduction in the intracellular lipid content and alleviation of oxidative stress. However, these beneficial effects of dapagliflozin could be reversed by the PPARα overexpression. Bioinformatics analysis and molecular docking simulations revealed that dapagliflozin might exert its effects by directly interacting with the RXRA protein, thereby influencing the expression of the PPARα signaling pathway. In conclusion, the cellular senescence of aortic smooth muscle cells is potentially altered by dapagliflozin through the suppression of the RXRA-PPARα-FABP4 signaling pathway, resulting in a deceleration of atherosclerotic progression.
RESUMEN
Lattice metamaterials have demonstrated remarkable mechanical properties at low densities. As these architected materials advance toward real-world applications, their tolerance for damage and defects becomes a limiting factor. However, a thorough understanding of the fracture resistance and fracture mechanisms in lattice metamaterials, particularly for the emerging shell-based lattices, has remained elusive. Here, using a combination of in situ fracture experiments and finite element simulations, we show that shell-based lattice metamaterials with Schwarz P minimal surface topology exhibit superior fracture resistance compared to conventional octet truss lattices, with average improvements in initiation toughness up to 150%. This superiority is attributed to the unique shell-based architecture that enables more efficient load transfer and higher energy dissipation through material damage, structural plasticity, and material plasticity. Our study reveals a topology-induced intrinsic toughening mechanism in shell-based lattices and highlights these architectures as a superior design route for creating lightweight and high-performance mechanical metamaterials.
RESUMEN
BACKGROUND: Renal osteodystrophy (ROD) is a skeletal pathology associated with chronic kidney disease-mineral and bone disorder (CKD-MBD) that is characterized by aberrant bone mineralization and remodeling. ROD increases the risk of fracture and mortality in CKD patients. The underlying mechanisms of ROD remain elusive, partially due to the absence of an appropriate animal model. To address this gap, we established a stable mouse model of ROD using an optimized adenine-enriched diet and conducted exploratory analyses through ribonucleic acid sequencing (RNA-seq). METHODS: Male 8-week-old C57BL/6J mice were randomly allocated into three groups: control group (n = 5), adenine and high-phosphate (HP) diet group (n = 20), and the optimized adenine-containing diet group (n = 20) for 12 weeks. We assessed the skeletal characteristics of model mice through blood biochemistry, microcomputed tomography (micro-CT), and bone histomorphometry. RNA-seq was utilized to profile gene expression changes of ROD. We elucidated the functions of differentially expressed genes (DEGs) using gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and gene set enrichment analysis (GSEA). DEGs were validated via quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: By the fifth week, adenine followed by an HP diet induced rapid weight loss and high mortality rates in the mouse group, precluding further model development. Mice with optimized adenine diet-induced ROD displayed significant abnormalities in serum creatinine and blood urea nitrogen levels, accompanied by pronounced hyperparathyroidism and hyperphosphatemia. The femur bone mineral density (BMD) of the model mice was lower than that of control mice, with substantial bone loss and cortical porosity. ROD mice exhibited substantial bone turnover with an increase in osteoblast and osteoclast markers. Transcriptomic profiling revealed 1907 genes with upregulated expression and 723 genes with downregulated expression in the femurs of ROD mice relative to those of control mice. Pathway analyses indicated significant enrichment of upregulated genes in the sphingolipid metabolism pathway. The significant upregulation of alkaline ceramidase 1 (Acer1), alkaline ceramidase 2 (Acer2), prosaposin-like 1 (Psapl1), adenosine A1 receptor (Adora1), and sphingosine-1-phosphate receptor 5 (S1pr5) were successfully validated in mouse femurs by qRT-PCR. CONCLUSIONS: Optimized adenine diet mouse model may be a valuable proxy for studying ROD. RNA-seq analysis revealed that the sphingolipid metabolism pathway is likely a key player in ROD pathogenesis, thereby providing new avenues for therapeutic intervention.
RESUMEN
AIM: To evaluate the impact of non-alcoholic fatty liver disease (NAFLD) presence and fibrosis risk on adverse outcomes in patients with type 2 diabetes and chronic kidney disease. METHODS: Data were sourced from two longitudinal cohorts: 1172 patients from the National Health and Nutrition Examination Survey (NHANES) and 326 patients from the kidney biopsy cohort at the West China Hospital of Sichuan University. Cox regression estimated hazard ratios (HRs) for NAFLD and liver fibrosis concerning adverse clinical outcomes. Subsequently, a two-sample Mendelian randomization study using genome-wide association study statistics explored NAFLD's potential causal link to cardio-cerebrovascular events. RESULTS: In the NHANES cohort, NAFLD stood as an independent risk factor for various outcomes: overall mortality [HR 1.53 (95% confidence interval, CI 1.21-1.95)], mortality because of cardio-cerebrovascular diseases [HR 1.63 (95% CI 1.12-2.37)], heart disease [HR 1.58 (95% CI 1.00-2.49)], and cerebrovascular disease [HR 3.95 (95% CI 1.48-10.55)]. Notably, advanced liver fibrosis, identified by a fibrosis-4 (FIB-4) score >2.67, exhibited associations with overall mortality, cardio-cerebrovascular disease mortality and heart disease mortality. Within the kidney biopsy cohort, NAFLD correlated with future end-stage kidney disease [ESKD; HR 2.17 (95% CI 1.41-3.34)], while elevated FIB-4 or NAFLD Fibrosis Scores predicted future ESKD, following full adjustment. Liver fibrosis was positively correlated with renal interstitial fibrosis and tubular atrophy in biopsies. Further Mendelian randomization analysis supported a causal relationship between NAFLD and cardio-cerebrovascular events. CONCLUSIONS: In patients with type 2 diabetes and chronic kidney disease, the NAFLD presence and elevated FIB-4 scores link to heightened mortality risk and ESKD susceptibility. Moreover, NAFLD shows a causal relationship with cardio-cerebrovascular events.
Asunto(s)
Diabetes Mellitus Tipo 2 , Cirrosis Hepática , Enfermedad del Hígado Graso no Alcohólico , Insuficiencia Renal Crónica , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/mortalidad , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Estudios Longitudinales , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/mortalidad , Cirrosis Hepática/mortalidad , Cirrosis Hepática/complicaciones , Cirrosis Hepática/patología , China/epidemiología , Nefropatías Diabéticas/mortalidad , Nefropatías Diabéticas/complicaciones , Factores de Riesgo , Análisis de la Aleatorización Mendeliana , Encuestas Nutricionales , Adulto , Anciano , Estudios de Cohortes , Estudio de Asociación del Genoma CompletoRESUMEN
Periodontitis is an inflammatory disease characterized by the destruction of periodontal tissues, and the promotion of bone tissue regeneration is the key to curing periodontitis. Psoralen is the main component of Psoralea corylifolia Linn, and has multiple biological effects, including anti-osteoporosis and osteogenesis. We constructed a novel hydrogel loaded with psoralen (PSO) and stromal cell-derived factor-1 (SDF-1) for direct endogenous cell homing. This study aimed to evaluate the synergistic effects of PSO/SDF-1 on periodontal bone regeneration in patients with periodontitis. The results of CCK8, alkaline phosphatase (ALP) activity assay, and Alizarin Red staining showed that PSO/SDF-1 combination treatment promoted cell proliferation, chemotaxis ability, and ALP activity of PDLSCs. qRT-PCR and western blotting showed that the expression levels of alkaline phosphatase (ALP), dwarf-associated transcription factor 2 (RUNX2), and osteocalcin (OCN) gene were upregulated. Rat periodontal models were established to observe the effect of local application of the composite hydrogel on bone regeneration. These results proved that the PSO/SDF-1 combination treatment significantly promoted new bone formation. The immunohistochemical (IHC) results confirmed the elevated expression of ALP, RUNX2, and OCN osteogenic genes. PSO/SDF-1 composite hydrogel can synergistically regulate the biological function and promote periodontal bone formation. Thus, this study provides a novel strategy for periodontal bone regeneration.
RESUMEN
BACKGROUND: Exploring the molecular mechanisms of primordial germ cell (PGC) migration and the involvement of gonadal somatic cells in gonad development is valuable for comprehending the origins and potential treatments of reproductive-related diseases. METHODS: Diaphanous related formin 1 (Diaph1, also known as mDia1) was screened by analyzing publicly available datasets (ATAC-seq, DNase-seq, and RNA-seq). Subsequently, the CRISPR-Cas9 technology was used to construct Diaph1 knockout mice to investigate the role of Diaph1 in gonad development. RESULTS: Based on data from public databases, a differentially expressed gene Diaph1, was identified in the migration of mouse PGC. Additionally, the number of PGCs was significantly reduced in Diaph1 knockout mice compared to wild type mice, and the expression levels of genes related to proliferation (Dicer1, Mcm9), adhesion (E-cadherin, Cdh1), and migration (Cxcr4, Hmgcr, Dazl) were significantly decreased. Diaph1 knockout also inhibited Leydig cell proliferation and induced apoptosis in the testis, as well as granulosa cell apoptosis in the ovary. Moreover, the sperm count in the epididymal region and the count of ovarian follicles were significantly reduced in Diaph1 knockout mice, resulting in decreased fertility, concomitant with lowered levels of serum testosterone and estradiol. Further research found that in Diaph1 knockout mice, the key enzymes involved in testosterone synthesis (CYP11A1, 3ß-HSD) were decreased in Leydig cells, and the estradiol-associated factor (FSH receptor, AMH) in granulosa cells were also downregulated. CONCLUSIONS: Overall, our findings indicate that the knockout of Diaph1 can disrupt the expression of factors that regulate sex hormone production, leading to impaired secretion of sex hormones, ultimately resulting in damage to reproductive function. These results provide a new perspective on the molecular mechanisms underlying PGC migration and gonadal development, and offer valuable insights for further research on the causes, diagnosis, and treatment of related diseases.