Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 659
Filtrar
1.
J Environ Sci (China) ; 147: 370-381, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003055

RESUMEN

Two strains of Fe/Mn oxidizing bacteria tolerant to high concentrations of multiple heavy metal(loid)s and efficient decontamination for them were screened. The surface of the bio-Fe/Mn oxides produced by the oxidation of Fe(II) and Mn(II) by Pseudomonas taiwanensis (marked as P4) and Pseudomonas plecoglossicida (marked as G1) contains rich reactive oxygen functional groups, which play critical roles in the removal efficiency and immobilization of heavy metal(loid)s in co-contamination system. The isolated strains P4 and G1 can grow well in the following environments: pH 5-9, NaCl 0-4%, and temperature 20-30°C. The removal efficiencies of Fe, Pb, As, Zn, Cd, Cu, and Mn are effective after inoculation of the strains P4 and G1 in the simulated water system (the initial concentrations of heavy metal(loid) were 1 mg/L), approximately reaching 96%, 92%, 85%, 67%, 70%, 54% and 15%, respectively. The exchangeable and carbonate bound As, Cd, Pb and Cu are more inclined to convert to the Fe-Mn oxide bound fractions in P4 and G1 treated soil, thereby reducing the phytoavailability and bioaccessible of heavy metal(loid)s. This research provides alternatives method to treat water and soil containing high concentrations of multi-heavy metal(loid)s.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes del Suelo/metabolismo , Oxidación-Reducción , Pseudomonas/metabolismo , Manganeso , Hierro/química , Hierro/metabolismo , Suelo/química , Biodegradación Ambiental , Microbiología del Suelo
2.
Drug Metab Dispos ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261014

RESUMEN

Antifolates are important for chemotherapy in non-small cell lung cancer (NSCLC). They mainly rely on reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT) to enter cells. PCFT is supposed to be the dominant transporter of the two in tumors as it operates optimally at acidic pH and has limited transport activity at physiological pH, whereas RFC operates optimally at neutral pH. In this study, we found RFC showed a slightly pH-dependent uptake of antifolates, with similar affinity values at pH 7.4 and 6.5. PCFT showed a highly pH-dependent uptake of antifolates with an optimum pH of 6.0 for pemetrexed and 5.5 for methotrexate. The Km value of PCFT for pemetrexed at pH 7.4 was more than 10 times higher than that at pH 6.5. Interestingly, we found antifolate accumulations mediated by PCFT at acidic pH were significantly affected by the efflux transporter, breast cancer resistance protein (BCRP). The highest pemetrexed concentration was observed at pH 7.0 - 7.4 after a 60-minute accumulation in PCFT-expressing cells, which was further evidenced by the cytotoxicity of pemetrexed, with the IC50 value of pemetrexed at pH 7.4 being one-third of that at pH 6.5. In addition, the in vivo study indicated increasing PCFT and RFC expression significantly enhanced the antitumor efficacy of pemetrexed despite the high expression of BCRP. These results suggest that both RFC and PCFT are important for antifolates accumulation in NSCLC, although there is an acidic microenvironment and high BCRP expression in tumors. Significance Statement Evaluating the role of RFC and PCFT on antifolates accumulation in NSCLC is necessary for new drug designs. By using RFC- or PCFT-expressing NSCLC cell models, we found that both RFC and PCFT were important for antifolates accumulation in NSCLC, rather than only PCFT playing a dominant role. BCRP significantly affected PCFT-mediated antifolates accumulation at acidic pH, but not RFC-mediated pemetrexed accumulation at physiological pH. High expression of PCFT or RFC enhanced the cytotoxicity and antitumor effect of pemetrexed.

3.
Sensors (Basel) ; 24(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39275570

RESUMEN

Vehicle detection in remote sensing images is a crucial aspect of intelligent transportation systems. It plays an essential role in road planning, congestion control, and road construction in cities. However, detecting vehicles in remote sensing images is challenging due to their small size, high density, and noise. Most current detectors that perform well in conventional scenes fail to achieve better results in this context. Thus, we propose a quad-layer decoupled network to improve the algorithm's performance in detecting vehicles in remote sensing scenes. This is achieved by introducing modules such as a Group Focus downsampling structure, a quad-layer decoupled detector, and the GTAA label assignment method. Experiments demonstrate that the designed algorithm achieves a mean average precision (mAP) of 49.4 and operates at a speed of 3.0 ms on the RTX3090 within a multi-class vehicle detection dataset constructed based on the xView dataset. It outperforms various real-time detectors in terms of detection accuracy and speed.

4.
ACS Appl Mater Interfaces ; 16(37): 49349-49361, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39230248

RESUMEN

With the intensification of global environmental pollution and resource scarcity, hydrogen has garnered significant attention as an ideal alternative to fossil fuels due to its high energy density and nonpolluting nature. Consequently, the urgent development of electrocatalytic water-splitting electrodes for hydrogen production is imperative. In this study, a superwetting selenide catalytic electrode with a peony-flower-shaped micronano array (MoS2/Co0.8Fe0.2Se2/NixSey/nickel foam (NF)) was synthesized on NF via a two-step hydrothermal method. The optimal catalytic activity of cobalt-iron selenide was achieved by adjusting the Co/Fe ratio. The intrinsic catalytic activity of the electrodes was enhanced by incorporating transition metal selenides, which then served as a precursor for the subsequent loading of MoS2 nanoflowers on the surface to fully expose the active sites. Furthermore, the superwetting properties of the electrode accelerated electrolyte penetration and electron/mass transfer, while also facilitating bubble detachment from the electrode surface, thereby preventing "bubble shielding effect". This resulted in superior oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) performance, as well as overall water splitting capabilities. In a 1.0 M KOH solution, the electrode required only 166 and 195 mV overpotential to achieve a current density of 10 mA cm-2 for OER and HER, respectively. When functioning as a bifunctional catalytic electrode, only 1.60 V of voltage was necessary to drive the electrolyzer to reach a current density of 10 mA cm-2. Moreover, laboratory simulations of wind and solar energy-driven water splitting validated the feasibility of establishing a sustainable energy-to-hydrogen production chain. This work provides new insights into the preparation of low-overpotential, high-catalytic-activity superhydrophilic and underwater superaerophobic catalytic electrodes by rationally adjusting elemental ratios and exploring changes in electrode surface wettability.

5.
Sci Rep ; 14(1): 21267, 2024 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261504

RESUMEN

Pomacea canaliculata is one of the most successful invader in worldwide, adversely affecting native ecosystem through direct predation or indirect competition, while the mechanism of indirect effects on native species remain poorly understood. To clarify the effects of P. canaliculata on the native near-niche species, Bellamya purificata, a widespread freshwater gastropod in China, was selected as the research subject. The changes of mortality, histology, antioxidant system as well as the intestinal flora diversity of B. purificata were explored in present study. The results showed that the median lethal dose of P. canaliculata culture solution for B. purificata was 23.76 ind/L and a concentration-dependent damage of both the gonad and hepatopancreas were observed, the gonadal villi were dissolved and the hepatopancreas cells were broken at 20 ind/L. Furthermore, different concentrations of P. canaliculata culture solution leading to the antioxidant damage on the enzyme or non-enzyme systems of B. purificata at various degrees. Additionally, a decrease in the diversity of the intestinal flora was observed, accompanied by an increase in the abundance of pathogenic bacteria such as Pseudomonas and Aeromonas after the exposure of the culture solution of P. canaliculata. Last, after being recovered in freshwater for 24 h, the antioxidant damage of B. purificata and the disturbance of intestinal flora diversity were still not recovered especially in the high concentration group. The indirect competitive mechanism of P. canaliculata culture solution on B. purificata were explored from the aspects of tissue, biochemical level and intestinal flora, which enriched the research of P. canaliculata invasion on native snails in China, and provided new insights for the study of the invasion strategy of P. canaliculata.


Asunto(s)
Antioxidantes , Microbioma Gastrointestinal , Caracoles , Animales , Caracoles/microbiología , Antioxidantes/metabolismo , Hepatopáncreas/microbiología , Hepatopáncreas/metabolismo , Hepatopáncreas/patología , Especies Introducidas , China
6.
Front Pediatr ; 12: 1425874, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39228435

RESUMEN

Introduction: Systemic lupus erythematosus is a multi-faceted autoimmune disorder of complex etiology. Pre-pubertal onset of pediatric systemic lupus erythematosus (pSLE) is uncommon and should raise suspicion for a genetic driver of disease. Autosomal recessive p40 phox deficiency is a rare immunologic disorder characterized by defective but not abolished NADPH oxidase activity with residual production of reactive oxygen species (ROS) by phagocytic cells. Case presentation: We report the case of a now 18-year-old female with pSLE onset at 7 years of age. She presented with recurrent fever and malar rash. Aspects of her immune dysregulation over time have included typical pSLE features including production of autoantibodies, hematologic manifestations, and hypocomplementemia, as well as chronic suppurative skin lesions and recurrent infections. Genetic analysis revealed biallelic pathogenic variants in NCF4 resulting in p40 phox deficiency. Comprehensive NADPH oxidase activity studies confirmed significantly decreased production of reactive oxygen species, confirming the cellular phenotype seen in p40 phox deficient patients. Conclusions: Here, we present a patient with pSLE harboring biallelic variants in NCF4. Our patient represents a unique clinical presentation of severe onset autoimmunity in the setting of a rare inborn error of immunity affecting NADPH oxidase activity. This case underscores the need to consider genetic causes of pSLE in cases of pre-pubertal onset and atypical disease.

7.
iScience ; 27(9): 110572, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39228788

RESUMEN

Sepsis-induced arrhythmia, linked to sudden cardiac death, is associated with gut microbiota, though the exact relationship is unclear. This study aimed to elucidate the relationship between Cronobacter sakazakii (C. sakazakii) and arrhythmia. The relative abundance of C. sakazakii was increased in cecal ligation and puncture (CLP)-induced septic mice. Live C. sakazakii, supernatant, and outer membrane vesicles (OMVs) resulted in premature ventricular beat (PVB), sinus arrhythmia (SA), and increased arrhythmia and mortality in sepsis model through dysregulated ion channel proteins. Moreover, short-chain fatty acids (SCFAs) showed antibacterial effects in vitro. We confirmed sodium acetate (C2) and sodium butyrate (C4) protect from C. sakazakii-induced arrhythmia, and C2 and C4 protected from septic arrhythmia by activating free fatty acid receptor 2 and 3 (FFAR2 and FFAR3) in mice. These findings point to how C. sakazakii's OMVs trigger arrhythmia, and SCFAs may be a treatment for septic arrhythmia.

8.
Front Immunol ; 15: 1450440, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39229271

RESUMEN

Impaired wound healing is one of the main clinical complications of type 2 diabetes (T2D) and a major cause of lower limb amputation. Diabetic wounds exhibit a sustained inflammatory state, and reducing inflammation is crucial to diabetic wounds management. Macrophages are key regulators in wound healing, and their dysfunction would cause exacerbated inflammation and poor healing in diabetic wounds. Gene regulation caused by histone modifications can affect macrophage phenotype and function during diabetic wound healing. Recent studies have revealed that targeting histone-modifying enzymes in a local, macrophage-specific manner can reduce inflammatory responses and improve diabetic wound healing. This article will review the significance of macrophage phenotype and function in wound healing, as well as illustrate how histone modifications affect macrophage polarization in diabetic wounds. Targeting macrophage phenotype with histone-modifying enzymes may provide novel therapeutic strategies for the treatment of diabetic wound healing.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inflamación , Macrófagos , Cicatrización de Heridas , Cicatrización de Heridas/inmunología , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Inflamación/inmunología , Inflamación/metabolismo , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/metabolismo , Código de Histonas , Histonas/metabolismo
9.
Sci Rep ; 14(1): 20816, 2024 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242593

RESUMEN

The impact of premade beef patty (BBP) with red onion skin powder (OSP) at 0, 1, 2, and 3% levels on color, lipid, and protein oxidative stability, and infection degree of microorganisms during cold storage was investigated. The objective was to determine the effect of color by L*, a*, b*, and the content of MetMb. The inhibitory effect of OSP on the oxidation of lipid and protein was studied based on TBARS and the carbonyl content of protein in samples at different storage times. TVB-N content was used to characterize the degree of infection of microorganisms and their effect on meat quality. The results showed that the addition of OSP reduced the pH, L *, a*, and b * values of BBP, and improved the hardness, springiness, gumminess, and cohesiveness of BBP, but had no significant effect on the chewiness of BBP (p > 0.05). After 12 days of storage, the carbonyl group and TBARS content in the BBP supplemented with 3%OSP was significantly lower than that in the control group (p < 0.05). Furthermore, the addition of OSP significantly inhibited the TVB-N increase during beef patty storage. These results indicated that OSP has a good research prospect as a natural antioxidant or preservative.


Asunto(s)
Color , Almacenamiento de Alimentos , Cebollas , Oxidación-Reducción , Cebollas/química , Animales , Bovinos , Almacenamiento de Alimentos/métodos , Polvos , Lípidos/química , Carne Roja/análisis , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis , Frío , Conservación de Alimentos/métodos
10.
Front Immunol ; 15: 1467531, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290692

RESUMEN

Diabetic wounds are a severe complication of diabetes, characterized by persistent, non-healing ulcers due to disrupted wound-healing mechanisms in a hyperglycemic environment. Key factors in the pathogenesis of these chronic wounds include unresolved inflammation and antioxidant defense imbalances. The cystine/glutamate antiporter SLC7A11 (xCT) is crucial for cystine import, glutathione production, and antioxidant protection, positioning it as a vital regulator of diabetic wound healing. Recent studies underscore the role of SLC7A11 in modulating immune responses and oxidative stress in diabetic wounds. Moreover, SLC7A11 influences critical processes such as insulin secretion and the mTOR signaling pathway, both of which are implicated in delayed wound healing. This review explores the mechanisms regulating SLC7A11 and its impact on immune response, antioxidant defenses, insulin secretion, and mTOR pathways in diabetic wounds. Additionally, we highlight the current advancements in targeting SLC7A11 for treating related diseases and conceptualize its potential applications and value in diabetic wound treatment strategies, along with the challenges encountered in this context.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Cicatrización de Heridas , Humanos , Animales , Sistema de Transporte de Aminoácidos y+/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Estrés Oxidativo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/inmunología , Complicaciones de la Diabetes/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-39271610

RESUMEN

A field survey was conducted in the central Tibetan Plateau (Nam Co) in China for high-time resolution measurements of gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particle-bound mercury (PBM). Average concentrations (± 1 SD) of GEM, PBM, and GOM from November 2014 to March 2015 were 1.11 ± 0.20 ng m-3, 50.8 ± 26.5 pg m-3, and 3.6 ± 3.2 pg m-3, respectively. During the monitoring period, both GEM and GOM exhibited relative stability in their monthly variations, whereas PBM concentrations were significantly higher in winter compared to those in later autumn and early spring. In terms of diurnal variations, the maximum concentration of GEM was typically observed after sunrise, while PBM reached its peak before sunrise, and the highest concentration of GOM was recorded in the afternoon. Vertical convection conditions, photochemical production, and gas-particle partitioning were responsible for the diurnal cycle of atmospheric mercury. Based on modeling results, it was determined that the air mass transported from South Asia significantly impacted atmospheric mercury levels at Nam Co Station. The regions of western and central Nepal, central and eastern Pakistan, and northern India were identified as potential sources of atmospheric mercury at Nam Co.

12.
Mater Horiz ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221913

RESUMEN

Conductive organohydrogels are promising for strain sensing, while their weak mechanical properties, poor crack propagation resistance and unstable sensing signals during long-term use have seriously limited their applications as high-performance strain sensors. Here, we propose a facile method, i.e., solvent exchange assisted hot-pressing, to prepare strong yet tough, transparent and anti-fatigue ionically conductive organohydrogels (ICOHs). The densified polymeric network and improved crystallinity endow ICOHs with excellent mechanical properties. The tensile strength, toughness, fracture energy and fatigue threshold of ICOHs can reach 36.12 ± 4.15 MPa, 54.57 ± 2.89 MJ m-3, 43.44 ± 8.54 kJ m-2 and 1212.86 ± 57.20 J m-2, respectively, with a satisfactory fracture strain of 266 ± 33%. In addition, ICOH strain sensors with freezing and drying resistance exhibit excellent cycling stability (10 000 cycles). More importantly, the fatigue resistance allows the notched strain sensor to work normally with no crack propagation and output stable and reliable sensing signals. Overall, the unique flaw-insensitive strain sensing makes ICOHs promising in the field of wearable and durable electronics.

13.
ACS Nano ; 18(37): 25647-25656, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39216081

RESUMEN

The comprehensive evaluation of tumor vasculature that is crucial for the development, expansion, and spread of cancer still remains a great challenge, especially the three-dimensional (3D) evaluation of vasculatures. In this study, we proposed a magnetic resonance (MR) angiography strategy with interlocking stratagem of zwitterionic Gd-chelate contrast agents (PAA-Gd) for continuous monitoring of tumor angiogenesis progression in 3D. Owing to the zwitterionic structure and nanoscale molecular diameter, the longitudinal molar relaxivity (r1) of PAA-Gd was 2.5 times higher than that of individual Gd-chelates on a 7.0 T MRI scanner, resulting in the higher-resolution visualization of tumor vasculatures. More importantly, PAA-Gd has the appropriate blood half-life (69.2 min), emphasizing the extended imaging window compared to the individual Gd-chelates. On this basis, by using PAA-Gd as the contrast agent, the high-resolution, 3D depiction of the spatiotemporal distribution of microvasculature in solid tumors formed by different cell lines over various inoculation times has been obtained. This method offers an effective approach for early tumor diagnosis, development assessment, and prognosis evaluation.


Asunto(s)
Medios de Contraste , Gadolinio , Angiografía por Resonancia Magnética , Neovascularización Patológica , Medios de Contraste/química , Angiografía por Resonancia Magnética/métodos , Animales , Gadolinio/química , Ratones , Humanos , Neovascularización Patológica/diagnóstico por imagen , Neovascularización Patológica/patología , Neoplasias/diagnóstico por imagen , Neoplasias/irrigación sanguínea , Neoplasias/patología , Línea Celular Tumoral
14.
Int J Biol Macromol ; 278(Pt 3): 134785, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39153668

RESUMEN

Probiotics regulate intestinal flora balance and enhance the intestinal barrier, which is useful in preventing and treating colitis. However, they have strict storage requirements. In addition, they degrade in a strongly acidic environment, resulting in a significant decrease in their activity when used as microbial agents. Lactobacillus rhamnosus GG (LGG) was loaded into acid-resistant and colon-targeting double-layer microgels. The inner layer consists of guar gum (GG) and low methoxyl pectin (LMP), which can achieve retention and degradation in the colon. To achieve colon localization, the outer layer was composed of chitosan (CS) and sodium alginate (SA). The formulation demonstrated favorable bio-responses across various pH conditions in vitro and sustained release of LGG in the colon lesions. Bare LGG survival decreased by 52.2 % in simulated gastric juice (pH 1.2) for 2 h, whereas that of encapsulated LGG decreased by 18.5 %. In the DSS-induced inflammatory model, LGG-loaded microgel significantly alleviated UC symptoms in mice and reduced inflammatory factor levels in the colon. Encapsulation of LGG improved its stability in acidic conditions, thus increasing its content at the colon lesions and reducing pathogenic bacteria. These findings provide an experimental basis and a technical reference for developing and applying probiotic microgel preparations.


Asunto(s)
Alginatos , Quitosano , Colitis Ulcerosa , Lacticaseibacillus rhamnosus , Microgeles , Alginatos/química , Quitosano/química , Animales , Microgeles/química , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/terapia , Administración Oral , Probióticos/administración & dosificación , Colon/patología , Colon/microbiología , Colon/metabolismo , Colon/efectos de los fármacos , Galactanos/química , Gomas de Plantas/química , Concentración de Iones de Hidrógeno , Masculino , Modelos Animales de Enfermedad , Sulfato de Dextran , Pectinas/química , Mananos
15.
ACS Appl Mater Interfaces ; 16(36): 48139-48146, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39197856

RESUMEN

Traditional diagnostic methods, such as blood tests, are invasive and time-consuming, while sweat biomarkers offer a rapid physiological assessment. Surface-enhanced Raman spectroscopy (SERS) has garnered significant attention in sweat analysis because of its high sensitivity, label-free nature, and nondestructive properties. However, challenges related to substrate reproducibility and interference from the biological matrix persist with SERS. This study developed a novel ratio-based 3D hydrogel SERS chip, providing a noninvasive solution for real-time monitoring of pH and glucose levels in sweat. Encapsulating the probe molecule (4-MBN) in nanoscale gaps to form gold nanoflower-like nanotags with internal standards and integrating them into an agarose hydrogel to create a 3D flexible SERS substrate significantly enhances the reproducibility and stability of sweat analysis. Gap-Au nanopetals modified with probe molecules are uniformly dispersed throughout the porous hydrogel structure, facilitating the effective detection of the pH and glucose in sweat. The 3D hydrogel SERS chip demonstrates a strong linear relationship in pH and glucose detection, with a pH response range of 5.5-8.0 and a glucose detection range of 0.01-5 mM, with R2 values of 0.9973 and 0.9923, respectively. In actual sweat samples, the maximum error in pH detection accuracy is only 1.13%, with a lower glucose detection limit of 0.25 mM. This study suggests that the ratio-based 3D hydrogel SERS chip provides convenient, reliable, and rapid detection capabilities with substantial application potential for analyzing body fluid pH and glucose.


Asunto(s)
Glucosa , Oro , Hidrogeles , Espectrometría Raman , Sudor , Espectrometría Raman/métodos , Concentración de Iones de Hidrógeno , Sudor/química , Humanos , Glucosa/análisis , Glucosa/química , Hidrogeles/química , Oro/química , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química
16.
Int J Biol Macromol ; 277(Pt 4): 134472, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39102924

RESUMEN

Chronic inflammation and infection often lead to delayed healing in skin wounds of patients with diabetes, presenting a significant challenge in clinical wound repair. In an effort to tackle this issue, we explored the utilization of the natural compounds Rhein and chitosan in the creation of a crosslinked in situ gel. Developed as Rhein-chitosan in situ hydrogel (CS-Rh gel), this formulation has the ability to gel at body temperature, making it suitable for irregular wounds of varying shapes. Our experimental investigations have demonstrated its excellent biocompatibility, controlled release of Rhein, biodegradability, anti-inflammatory properties, antibacterial effect, as well as its ability to enhance keratinocyte proliferation and migration. Furthermore, in vivo studies have confirmed that CS-Rh gel can effectively mitigate tissue inflammation, promote collagen deposition, and significantly accelerate wound healing in diabetic mice within a short timeframe of two weeks. Consequently, this innovative approach holds promise as a viable therapeutic strategy for supporting the healing of diabetic wounds in a clinical setting.


Asunto(s)
Antraquinonas , Quitosano , Diabetes Mellitus Experimental , Hidrogeles , Cicatrización de Heridas , Quitosano/química , Quitosano/farmacología , Animales , Cicatrización de Heridas/efectos de los fármacos , Ratones , Diabetes Mellitus Experimental/tratamiento farmacológico , Hidrogeles/química , Hidrogeles/farmacología , Antraquinonas/farmacología , Antraquinonas/química , Humanos , Proliferación Celular/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Masculino , Antiinflamatorios/farmacología , Antiinflamatorios/química , Movimiento Celular/efectos de los fármacos , Queratinocitos/efectos de los fármacos
17.
Mikrochim Acta ; 191(9): 532, 2024 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134779

RESUMEN

Lipid droplets (LDs) dysfunction is closely associated with a multitude of diseases, including nonalcoholic fatty liver disease (NAFLD). Therefore, it is imperative to develop fluorescent probes that specifically target LDs for the early detection and diagnosis of NAFLD. In this study, a series of lipophilic fluorophores CZ1-CZ4 that feature a D-π-A configuration were designed and synthesized based on the carbazole and tricocyanofuran derivatives. The photophysical data revealed that all four probes exhibited large Stokes shifts (~ 120 nm) in high-polarity solvents (e.g., DMSO) and demonstrated enhanced fluorescence in solvents ranging from low-polarity (e.g., 1,4-Dioxane) to high-polarity. Notably, by utilizing probe CZ1, we could specifically visualize LDs and captured high-quality images, even eliminating the need for a time-consuming wash procedure. Moreover, CZ1 enabled monitoring of LDs dynamic changes in-real time within live cells, and importantly, it could be used to effectively distinguish normal and NAFLD tissues at both the organ and in vivo level. This exceptional property of probe CZ1 provides a practical tool for the diagnosis and intervention of NAFLD.


Asunto(s)
Colorantes Fluorescentes , Gotas Lipídicas , Enfermedad del Hígado Graso no Alcohólico , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Gotas Lipídicas/química , Humanos , Animales , Imagen Óptica/métodos , Ratones , Células Hep G2
18.
Nat Commun ; 15(1): 6706, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112545

RESUMEN

A typical El Niño event often results in suppressed tropical cyclone (TC) genesis frequency (TCGF) over the North Atlantic (NA) and a distinct northwest-southeast dipole pattern in TCGF anomaly over the western North Pacific (WNP). The 2023 saw a strong El Niño event but surprisingly active NA and suppressed WNP TC activities. Here, we present that these unprecedented deviations were driven by the record-warm NA, a record-breaking negative phase of the Pacific Meridional Mode (PMM), and background global warming. Results from high-resolution global model experiments demonstrate that extraordinary Atlantic warming dominated the increased NA TCGF and contributed equally with the PMM to the suppressed WNP TCGF, overshadowing El Niño's impact. Global warming also contributed to the observed TCGF anomalies. Our findings demonstrate that the typical influence of strong El Niño events on regional TC activity could be markedly altered by other climate modes, highlighting the complexity of TC genesis in a warming world.

19.
Front Endocrinol (Lausanne) ; 15: 1430543, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39129915

RESUMEN

Diabetic wounds are more complex than normal chronic wounds because of factors such as hypoxia, reduced local angiogenesis, and prolonged inflammation phase. Fibrous proteins, including collagen, fibrin, laminin, fibronectin, elastin etc., possess excellent inherent properties that make them highly advantageous in the area of wound healing. Accumulating evidence suggests that they contribute to the healing process of diabetic wounds by facilitating the repair and remodel of extracellular matrix, stimulating the development of vascular and granulation tissue, and so on. However, there is currently a lack of a comprehensive review of the application of these proteins in diabetes wounds. An overview of fibrous protein characteristics and the alterations linked to diabetic wounds is given in this article's initial section. Next is a summary of the advanced applications of fibrous proteins in the last five years, including acellular dermal matrix, hydrogel, foam, scaffold, and electrospun nanofibrous membrane. These dressings have the ability to actively promote healing in addition to just covering wounds compared to traditional wound dressings like gauze or bandage. Research on fibrous proteins and their role in diabetic wound healing may result in novel therapeutic modalities that lower the incidence of diabetic wounds and thereby enhance the health of diabetic patients.


Asunto(s)
Diabetes Mellitus , Cicatrización de Heridas , Cicatrización de Heridas/fisiología , Humanos , Diabetes Mellitus/metabolismo , Animales , Colágeno/metabolismo , Fibronectinas/metabolismo , Fibrina/metabolismo , Elastina/metabolismo , Laminina/metabolismo , Complicaciones de la Diabetes/metabolismo , Complicaciones de la Diabetes/terapia
20.
Phytother Res ; 38(8): 4151-4167, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39136618

RESUMEN

Despite active clinical trials on the use of Oleandrin alone or in combination with other drugs for the treatment of solid tumors, the potential synergistic effect of Oleandrin with radiotherapy remains unknown. This study reveals a new mechanism by which Oleandrin targets ATM and ATR kinase-mediated radiosensitization in lung cancer. Various assays, including clonogenic, Comet, immunofluorescence staining, apoptosis and Cell cycle assays, were conducted to evaluate the impact of oleandrin on radiation-induced double-strand break repair and cell cycle distribution. Western blot analysis was utilized to investigate alterations in signal transduction pathways related to double-strand break repair. The efficacy and toxicity of the combined therapy were assessed in a preclinical xenotransplantation model. Functionally, Oleandrin weakens the DNA damage repair ability and enhances the radiation sensitivity of lung cells. Mechanistically, Oleandrin inhibits ATM and ATR kinase activities, blocking the transmission of ATM-CHK2 and ATR-CHK1 cell cycle checkpoint signaling axes. This accelerates the passage of tumor cells through the G2 phase after radiotherapy, substantially facilitating the rapid entry of large numbers of inadequately repaired cells into mitosis and ultimately triggering mitotic catastrophe. The combined treatment of Oleandrin and radiotherapy demonstrated superior inhibition of tumor proliferation compared to either treatment alone. Our findings highlight Oleandrin as a novel and effective inhibitor of ATM and ATR kinase, offering new possibilities for the development of clinical radiosensitizing adjuvants.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Cardenólidos , Daño del ADN , Neoplasias Pulmonares , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/radioterapia , Animales , Cardenólidos/farmacología , Daño del ADN/efectos de los fármacos , Línea Celular Tumoral , Ratones , Tolerancia a Radiación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Fármacos Sensibilizantes a Radiaciones/farmacología , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto , Reparación del ADN/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células A549
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA