RESUMEN
Alzheimer's disease (AD) is a progressive and degenerative disorder accompanied by emotional disturbance, especially anxiety and depression. More and more evidence shows that the imbalance of mitochondrial Ca2+ (mCa2+) homeostasis has a close connection with the pathogenesis of anxiety and depression. The Mitochondrial Calcium Uniporter (MCU), a key channel of mCa2+ uptake, induces the imbalance of mCa2+ homeostasis and may be a therapeutic target for anxiety and depression of AD. In the present study, we revealed for the first time that MCU knockdown in hippocampal neurons alleviated anxious and depressive behaviors of APP/PS1/tau mice through elevated plus-maze (EPM), elevated zero maze (EZM), sucrose preference test (SPT) and tail suspension test (TST). Western blot analysis results demonstrated that MCU knockdown in hippocampal neurons increased levels of glutamate decarboxylase 67 (GAD67), vesicular GABA transporter (vGAT) and GABAA receptor α1 (GABRA1) and activated the PKA-CREB-BDNF signaling pathway. This study indicates that MCU inhibition has the potential to be developed as a novel therapy for anxiety and depression in AD.
Asunto(s)
Enfermedad de Alzheimer , Ansiedad , Canales de Calcio , Depresión , Modelos Animales de Enfermedad , Hipocampo , Ratones Transgénicos , Neuronas , Animales , Enfermedad de Alzheimer/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Depresión/metabolismo , Canales de Calcio/metabolismo , Canales de Calcio/genética , Ansiedad/metabolismo , Ratones , Masculino , Mitocondrias/metabolismo , Glutamato Descarboxilasa/metabolismo , Técnicas de Silenciamiento del Gen/métodos , Conducta Animal/fisiologíaRESUMEN
The One Health (OH) approach is used to control/prevent zoonotic events. However, there is a lack of tools for systematically assessing OH practices. Here, we applied the Global OH Index (GOHI) to evaluate the global OH performance for zoonoses (GOHI-Zoonoses). The fuzzy analytic hierarchy process algorithm and fuzzy comparison matrix were used to calculate the weights and scores of five key indicators, 16 subindicators, and 31 datasets for 160 countries and territories worldwide. The distribution of GOHI-Zoonoses scores varies significantly across countries and regions, reflecting the strengths and weaknesses in controlling or responding to zoonotic threats. Correlation analyses revealed that the GOHI-Zoonoses score was associated with economic, sociodemographic, environmental, climatic, and zoological factors. Additionally, the Human Development Index had a positive effect on the score. This study provides an evidence-based reference and guidance for global, regional, and country-level efforts to optimize the health of people, animals, and the environment.
RESUMEN
BACKGROUND: Despite the increasing focus on strengthening One Health capacity building on global level, challenges remain in devising and implementing real-world interventions particularly in the Asia-Pacific region. Recognizing these gaps, the One Health Action Commission (OHAC) was established as an academic community for One Health action with an emphasis on research agenda setting to identify actions for highest impact. MAIN TEXT: This viewpoint describes the agenda of, and motivation for, the recently formed OHAC. Recognizing the urgent need for evidence to support the formulation of necessary action plans, OHAC advocates the adoption of both bottom-up and top-down approaches to identify the current gaps in combating zoonoses, antimicrobial resistance, addressing food safety, and to enhance capacity building for context-sensitive One Health implementation. CONCLUSIONS: By promoting broader engagement and connection of multidisciplinary stakeholders, OHAC envisions a collaborative global platform for the generation of innovative One Health knowledge, distilled practical experience and actionable policy advice, guided by strong ethical principles of One Health.
Asunto(s)
Salud Única , Animales , Asia , Creación de Capacidad , Políticas , Zoonosis/prevención & controlRESUMEN
The orexin system is closely related to the pathogenesis of Alzheimer's disease (AD). Orexin-A aggravates cognitive dysfunction and increases amyloid ß (Aß) deposition in AD model mice, but studies of different dual orexin receptor (OXR) antagonists in AD have shown inconsistent results. Our previous study revealed that OX1R blockade aggravates cognitive deficits and pathological progression in 3xTg-AD mice, but the effects of OX2R and its potential mechanism in AD have not been reported. In the present study, OX2R was blocked by oral administration of the selective OX2R antagonist MK-1064, and the effects of OX2R blockade on cognitive dysfunction and neuropsychiatric symptoms in 3xTg-AD mice were evaluated via behavioral tests. Then, immunohistochemistry, western blotting, and ELISA were used to detect Aß deposition, tau phosphorylation, and neuroinflammation, and electrophysiological and wheel-running activity recording were recorded to observe hippocampal synaptic plasticity and circadian rhythm. The results showed that OX2R blockade ameliorated cognitive dysfunction, improved LTP depression, increased the expression of PSD-95, alleviated anxiety- and depression-like behaviors and circadian rhythm disturbances in 3xTg-AD mice, and reduced Aß pathology, tau phosphorylation, and neuroinflammation in the brains of 3xTg-AD mice. These results indicated that chronic OX2R blockade exerts neuroprotective effects in 3xTg-AD mice by reducing AD pathology at least partly through improving circadian rhythm disturbance and the sleep-wake cycle and that OX2R might be a potential target for the prevention and treatment of AD; however, the potential mechanism by which OX2R exerts neuroprotective effects on AD needs to be further investigated.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones Transgénicos , Antagonistas de los Receptores de Orexina , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipocampo/metabolismo , Antagonistas de los Receptores de Orexina/farmacología , Receptores de Orexina/metabolismoRESUMEN
Epilepsy-associated cognitive disorder (ECD), a prevalent comorbidity in epilepsy patients, has so far uncharacterized etiological origins. Our prior work revealed that lysyl oxidase (Lox) acted as a novel contributor of ferroptosis, a recently discovered cell death mode in the regulation of brain function. However, the role of Lox-mediated ferroptosis in ECD remains unknown. ECD mouse model was established 2 months later following a single injection of kainic acid (KA) for. After chronic treatment with KA, mice were treated with different doses (30â¯mg/kg, 100â¯mg/kg and 300â¯mg/kg) of Lox inhibitor BAPN. Additionally, hippocampal-specific Lox knockout mice was also constructed and employed to validate the role of Lox in ECD. Cognitive functions were assessed using novel object recognition test (NOR) and Morris water maze test (MWM). Protein expression of phosphorylated cAMP-response element binding (CREB), a well-known molecular marker for evaluation of cognitive performance, was also detected by Western blot. The protein distribution of Lox was analyzed by immunofluorescence. In KA-induced ECD mouse model, ferroptosis process was activated according to upregulation of 4-HNE protein and a previously discovered ferroptosis in our group, namely, Lox was remarkably increased. Pharmacological inhibition of Lox by BAPN at the dose of 100â¯mg/kg significantly increased the discrimination index following NOR test and decreased escape latency as well as augmented passing times within 60â¯s following MWM test in ECD mouse model. Additionally, deficiency of Lox in hippocampus also led to pronounced improvement of deficits in ECD model. These findings indicate that the ferroptosis regulatory factor, Lox, is activated in ECD. Ablation of Lox by either pharmacological intervention or genetic manipulation ameliorates the impairment in ECD mouse model, which suggest that Lox serves as a promising therapeutic target for treating ECD in clinic.
Asunto(s)
Disfunción Cognitiva , Epilepsia , Humanos , Ratones , Animales , Proteína-Lisina 6-Oxidasa/genética , Proteína-Lisina 6-Oxidasa/metabolismo , Aminopropionitrilo/farmacología , Regulación de la Expresión Génica , Modelos Animales de Enfermedad , Disfunción Cognitiva/tratamiento farmacológicoRESUMEN
Alzheimer's disease (AD) lacks effective clinical treatments. As the disease progresses, the cerebral glucose hypometabolism that appears in the preclinical phase of AD gradually worsens, leading to increasingly severe brain energy disorders. This review analyzes the brain energy deficit in AD and its etiology, brain energy rescue strategies based on ketone intervention, the effects and mechanisms of IF, the differences in efficacy between IF and ketogenic diet and the duality of IF. The evidence suggests that brain energy deficits lead to the development and progression of AD pathology. IF, which improves brain energy impairments by promoting ketone metabolism, thus has good therapeutic potential for AD.
Asunto(s)
Enfermedad de Alzheimer , Dieta Cetogénica , Humanos , Enfermedad de Alzheimer/metabolismo , Cuerpos Cetónicos/metabolismo , Ayuno Intermitente , Encéfalo/metabolismo , Cetonas/metabolismoRESUMEN
Introduction: Clonorchis sinensis infection results in various complications in the liver and biliary systems and is a neglected tropical disease in Eastern Asia. In this study, we report that C. sinensis calcium-binding protein Cs16 activates host immune cells and induces immunopathology in liver. Methods: Immunohistochemistry was used to detect the localization of Cs16 in C. sinensis adult worms. ELISA was used to detect the serum levels of anti-Cs16 IgG antibody in infected humans and mice. Bile duct injection model was used to figure out the role of Cs16 in vivo. RT-qPCR and ELISA were used to detect the cytokine production from Cs16-treated BMMs in vitro. Seahorse assay was used to detect the metabolic pathway of Cs16-treated BMMs in vitro. Result: Cs16 localizes in the tegument and gut of C. sinensis. Humans and mice with C. sinensis infection exhibited increased levels of anti-Cs16-specific antibody. Using the bile duct injection technique, we found that Cs16 induced obvious inflammation and hepatic necrosis in vivo. Cs16 treatment caused the upregulation of inflammatory cytokines in innate immune cells. Moreover, Cs16-treated monocytes relied more on the glycolytic metabolic pathway. Discussion: Our findings suggest that Cs16 is a potential pathogenic factor derived from C. sinensis adult worm. By reprogramming the metabolic pathway of innate immune cells, Cs16 triggers pro-inflammatory responses in the liver, and therefore, Cs16 is a potential target for the prevention and treatment of clonorchiasis.
Asunto(s)
Clonorquiasis , Clonorchis sinensis , Ratones , Humanos , Animales , Clonorchis sinensis/fisiología , Monocitos/metabolismo , Médula Ósea/metabolismo , Médula Ósea/patología , Hígado/patología , Clonorquiasis/patología , Redes y Vías MetabólicasRESUMEN
Disorders of brain glucose metabolism is known to affect brain activity in neurodegenerative diseases including Alzheimer's disease (AD). Furthermore, recent evidence has shown an association between AD and type 2 diabetes. Numerous reports have found that glucagon-like peptide-1 (GLP-1) receptor agonists improve the cognitive behavior and pathological features in AD patients and animals, which may be related to the improvement of glucose metabolism in the brain. However, the mechanism by which GLP-1 agonists improve the brain glucose metabolism in AD patients remains unclear. In this study, we found that SIRT1 is closely related to expression of GLP-1R in hippocampus of 3xTg mice. Therefore, we used semaglutide, a novel GLP-1R agonist currently undergoing two phase 3 clinical trials in AD patients, to observe the effect of SIRT1 after semaglutide treatment in 3XTg mice and HT22 cells, and to explore the mechanism of SIRT1 in the glucose metabolism disorders of AD. The mice were injected with semaglutide on alternate days for 30 days, followed by behavioral experiments including open field test, new object recognition test, and Y-maze. The content of glucose in the brain was also measured by using 18FDG-PET-CT scans. We measured the expression of Aß and tau in the hippocampus, observed the expression of GLUT4 which is downstream of SIRT1, and tested the Glucose oxidase assay (GOD-POD) and Hexokinase (HK) in HT22 cells. Here, we found in the 3xTg mouse model of AD and in cultured HT22 mouse neurons that SIRT1 signaling is involved in the impairment of glucose metabolism in AD. Semaglutide can increased the expression levels of SIRT1 and GLUT4 in the hippocampus of 3xTg mice, accompanied by an improvement in learning and memory, decreased in Aß plaques and neurofibrillary tangles. In addition, we further demonstrated that semaglutide improved glucose metabolism in the brain of 3xTg mice in vitro, semaglutide promoted glycolysis and improved glycolytic disorders, and increased the membrane translocation of GLUT4 in cultured HT22 cells. These effects were blocked by the SIRT1 inhibitor (EX527). These findings indicate that semaglutide can regulate the expression of GLUT4 to mediate glucose transport through SIRT1, thereby improving glucose metabolism dysfunction in AD mice and cells. The present study suggests that SIRT1/GLUT4 signaling pathway may be an important mechanism for GLP-1R to promote glucose metabolism in the brain, providing a reliable strategy for effective therapy of AD.
RESUMEN
BACKGROUND: One Health approach is crucial to tackling complex global public health threats at the interface of humans, animals, and the environment. As outlined in the One Health Joint Plan of Action, the international One Health community includes stakeholders from different sectors. Supported by the Bill & Melinda Gates Foundation, an academic community for One Health action has been proposed with the aim of promoting the understanding and real-world implementation of One Health approach and contribution towards the Sustainable Development Goals for a healthy planet. MAIN TEXT: The proposed academic community would contribute to generating high-quality scientific evidence, distilling local experiences as well as fostering an interconnected One Health culture and mindset, among various stakeholders on different levels and in all sectors. The major scope of the community covers One Health governance, zoonotic diseases, food security, antimicrobial resistance, and climate change along with the research agenda to be developed. The academic community will be supported by two committees, including a strategic consultancy committee and a scientific steering committee, composed of influential scientists selected from the One Health information database. A workplan containing activities under six objectives is proposed to provide research support, strengthen local capacity, and enhance global participation. CONCLUSIONS: The proposed academic community for One Health action is a crucial step towards enhancing communication, coordination, collaboration, and capacity building for the implementation of One Health. By bringing eminent global experts together, the academic community possesses the potential to generate scientific evidence and provide advice to local governments and international organizations, enabling the pursuit of common goals, collaborative policies, and solutions to misaligned interests.
Asunto(s)
Salud Global , Salud Única , Animales , Humanos , Zoonosis/prevención & control , Salud Pública , Creación de CapacidadRESUMEN
Vascular remodeling and angiogenesis are two key processes in the maintenance of vascular homeostasis and involved in a wide array of vascular pathologies. Following these processes, extracellular matrix (ECM) provides the mechanical foundation for vascular walls. Lysyl oxidase (LOX), the key matrix-modifying enzyme, has been demonstrated to significantly affect structural abnormality and dysfunction in the blood vessels. The role of LOX in vascular remodeling and angiogenesis has always been the subject in the current medical research. Therefore, we presently make a summarization of the biosynthesis of LOX and the mechanisms involved in vascular remodeling and angiogenesis, as well as the role of LOX in diseases associated with vascular abnormalities and the therapeutic potential via targeting LOX. In particular, we give a proposal that LOX likely reshapes matrisome-associated genes expressions in the regulation of vascular remodeling and angiogenesis, which serves as a mechanistic insight into the critical role of LOX in these two aspects. Additionally, LOX has also dual effects on the vascular dysfunction, namely, inhibition of LOX for improving hypertension, restenosis and malignant tumor while activation of LOX for curing arterial aneurysm and dissection. LOX-targeted therapy may provide a promising therapeutic strategy for the treatment of various vascular pathologies associated with vascular remodeling and angiogenesis.
RESUMEN
Alzheimer's disease (AD) is a progressive neurodegenerative disease that worsens with age. Long non-coding RNAs (lncRNAs) dysregulation and its associated competing endogenous RNA (ceRNA) network have a potential connection with the occurrence and development of AD. A total of 358 differentially expressed genes (DEGs) were screened via RNA sequencing, including 302 differentially expressed mRNAs (DEmRNAs) and 56 differential expressed lncRNAs (DElncRNAs). Anti-sense lncRNA is the main type of DElncRNA, which plays a major role in the cis and trans regulation. The constructed ceRNA network consisted of 4 lncRNAs (NEAT1, LINC00365, FBXL19-AS1, RAI1-AS1719) and 4 microRNAs (miRNAs) (HSA-Mir-27a-3p, HSA-Mir-20b-5p, HSA-Mir-17-5p, HSA-Mir-125b-5p), and 2 mRNAs (MKNK2, F3). Functional enrichment analysis revealed that DEmRNAs are involved in related biological functions of AD. The co-expressed DEmRNAs (DNAH11, HGFAC, TJP3, TAC1, SPTSSB, SOWAHB, RGS4, ADCYAP1) of humans and mice were screened and verified by real-time quantitative polymerase chain reaction (qRT-PCR). In this study, we analyzed the expression profile of human AD-related lncRNA genes, constructed a ceRNA network, and performed functional enrichment analysis of DEmRNAs between human and mice. The obtained gene regulatory networks and target genes can be used to further analyze AD-related pathological mechanisms to optimize AD diagnosis and treatment.
Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Enfermedades Neurodegenerativas , ARN Largo no Codificante , Humanos , Animales , Ratones , ARN Largo no Codificante/genética , MicroARNs/genética , ARN Mensajero/genética , Redes Reguladoras de Genes , Proteínas de la Zonula Occludens/genéticaRESUMEN
Dementia is the main clinical feature of Alzheimer's disease (AD). Orexin has recently been linked to AD pathogenesis, and exogenous orexin-A (OXA) aggravates spatial memory impairment in APP/PS1 mice. However, the effects of OXA on other types of cognitive deficits, especially in 3xTg-AD mice exhibiting both plaque and tangle pathologies, have not been reported. Furthermore, the potential electrophysiological mechanism by which OXA affects cognitive deficits and the molecular mechanism by which OXA increases amyloid ß (Aß) levels are unknown. In the present study, the effects of OXA on cognitive functions, synaptic plasticity, Aß levels, tau hyperphosphorylation, BACE1 and NEP expression, and circadian locomotor rhythm were evaluated. The results showed that OXA aggravated memory impairments and circadian rhythm disturbance, exacerbated hippocampal LTP depression, and increased Aß and tau pathologies in 3xTg-AD mice by affecting BACE1 and NEP expression. These results indicated that OXA aggravates cognitive deficits and hippocampal synaptic plasticity impairment in 3xTg-AD mice by increasing Aß production and decreasing Aß clearance through disruption of the circadian rhythm and sleep-wake cycle.
Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Orexinas , Ratones Transgénicos , Ácido Aspártico Endopeptidasas/metabolismo , Plasticidad Neuronal , Trastornos de la Memoria/metabolismo , Cognición , Modelos Animales de Enfermedad , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas tau , Ratones Endogámicos C57BLRESUMEN
BACKGROUND: In randomized studies, the strategy of pulmonary vein antral isolation (PVI) plus linear ablation has failed to increase success rates for persistent atrial fibrillation (PeAF) ablation when compared with PVI alone. Peri-mitral reentry related atrial tachycardia due to incomplete linear block is an important cause of clinical failures of a first ablation procedure. Ethanol infusion (EI) into the vein of Marshall (EI-VOM) has been demonstrated to facilitate a durable mitral isthmus linear lesion. OBJECTIVE: This trial is designed to compare arrhythmia-free survival between PVI and an ablation strategy termed upgraded '2C3L' for the ablation of PeAF. STUDY DESIGN: The PROMPT-AF study (clinicaltrials.gov 04497376) is a prospective, multicenter, open-label, randomized trial using a 1:1 parallel-control approach. Patients (n = 498) undergoing their first catheter ablation of PeAF will be randomized to either the upgraded '2C3L' arm or PVI arm in a 1:1 fashion. The upgraded '2C3L' technique is a fixed ablation approach consisting of EI-VOM, bilateral circumferential PVI, and 3 linear ablation lesion sets across the mitral isthmus, left atrial roof, and cavotricuspid isthmus. The follow-up duration is 12 months. The primary end point is freedom from atrial arrhythmias of >30 seconds, without antiarrhythmic drugs, in 12 months after the index ablation procedure (excluding a blanking period of 3 months). CONCLUSIONS: The PROMPT-AF study will evaluate the efficacy of the fixed '2C3L' approach in conjunction with EI-VOM, compared with PVI alone, in patients with PeAF undergoing de novo ablation.
Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Venas Pulmonares , Humanos , Fibrilación Atrial/cirugía , Venas Pulmonares/cirugía , Estudios Prospectivos , Atrios Cardíacos/cirugía , Etanol , Ablación por Catéter/métodos , Resultado del Tratamiento , RecurrenciaRESUMEN
Potatoes play an important role in ensuring food security. During the COVID-19 epidemic, consumption of processed potato products decreased, and consumption of fresh potatoes increased. China is the world's largest potato producer with more than 4.81 million hectares of area under potato production and 90.32 million metric tonnes of potatoes produced in 2018. This accounts for 27.36% of the world's planting area and 24.53% of the world's potato production. The proportion of potatoes processed in China was about 12% in 2017, mostly dominated by starch production. However, the recent policy of the Chinese government to popularise potato as a staple food has created new markets for processed potato products other than starch. A very few reports have analysed these future trends of the rapidly growing Chinese potato processing industry and its impact within and outside China. This paper provides an overview of the latest developments with a focus on processed potato products such as potato chips, French fries and dehydrated potatoes, and also, due to the unique Chinese diet culture, it highlights the need for more scientific research dedicated towards the development of novel potato-based healthy foods.
RESUMEN
Cognitive dysfunction is the main clinical manifestation of Alzheimer's disease (AD). Previous research found that elevated orexin level in the cerebrospinal fluid was closely related to the course of AD, and orexin-A treatment could increase amyloid ß protein (Aß) deposition and aggravate spatial memory impairment in APP/PS1 mice. Furthermore, recent research found that dual orexin receptor (OXR) antagonist might affect Aß level and cognitive dysfunction in AD, but the effects of OX1R or OX2R alone is unreported until now. Considering that OX1R is highly expressed in the hippocampus and plays important roles in learning and memory, the effects of OX1R in AD cognitive dysfunction and its possible mechanism should be investigated. In the present study, selective OX1R antagonist SB-334867 was used to block OX1R. Then, different behavioral tests were performed to observe the effects of OX1R blockade on cognitive function of 3xTg-AD mice exhibited both Aß and tau pathology, in vivo electrophysiological recording and western blot were used to investigate the potential mechanism. The results showed that chronic OX1R blockade aggravated the impairments of short-term working memory, long-term spatial memory and synaptic plasticity in 9-month-old female 3xTg-AD mice, increased levels of soluble Aß oligomers and p-tau, and decreased PSD-95 expression in the hippocampus of 3xTg-AD mice. These results indicate that the detrimental effects of SB-334867 on cognitive behaviors in 3xTg-AD mice are closely related to the decrease of PSD-95 and depression of in vivo long-term potentiation (LTP) caused by increased Aß oligomers and p-tau.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Animales , Femenino , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Orexinas/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Hipocampo/metabolismo , Antagonistas de los Receptores de Orexina/farmacología , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/metabolismoRESUMEN
Agomelatine is a selective agonist of melatonin receptor 1A/melatonin receptor 1B (MT1/MT2) and antagonist of 5-hydroxytryptamine 2C receptors. It is used clinically to treat major depressive episodes in adults. The pro-chronobiological activity of agomelatine reconstructs sleep-wake rhythms and normalizes circadian disturbances via its agonistic effect of melatonin receptor 1A/melatonin receptor 1B, which work simultaneously to counteract depression and anxiety disorder. Moreover, by antagonizing neocortical postsynaptic 5-hydroxytryptamine 2C receptors, agomelatine enhances the release of dopamine and noradrenaline in the prefrontal cortex, increases the activity of dopamine and noradrenaline, and thereby reduces depression and anxiety disorder. The combination of these two effects means that agomelatine exhibits a unique pharmacological role in the treatment of depression, anxiety, and disturbance of the circadian rhythm. Emotion and sleep are closely related to memory and cognitive function. Memory disorder is defined as any forms of memory abnormality, which is typically evident in a broad range of neurodegenerative diseases, including Alzheimer's disease. Memory impairment and cognitive impairment are common symptoms of neurodegenerative and psychiatric diseases. Therefore, whether agomelatine can improve memory and cognitive behaviors if used for alleviating depression and circadian-rhythm sleep disorders has become a research "hotspot". This review presents the latest findings on the effects of agomelatine in the treatment of psychologic and circadian-rhythm sleep disorders in clinical trials and animal experiments. Our review evaluates recent studies on treatment of memory impairment and cognitive impairment in neurodegenerative and psychiatric diseases.
RESUMEN
Natural products (NPs) and their structural analogs represent a major source of novel drug development for disease prevention and treatment. The development of new drugs from NPs includes two crucial aspects. One is the discovery of NPs from medicinal plants/microorganisms, and the other is the evaluation of the NPs in vivo at various physiological and pathological states. The heterogeneous spatial distribution of NPs in medicinal plants/microorganisms or in vivo can provide valuable information for drug development. However, few molecular imaging technologies can detect thousands of compounds simultaneously on a label-free basis. Over the last two decades, mass spectrometry imaging (MSI) methods have progressively improved and diversified, thereby allowing for the development of various applications of NPs in plants/microorganisms and in vivo NP research. Because MSI allows for the spatial mapping of the production and distribution of numerous molecules in situ without labeling, it provides a visualization tool for NP research. Therefore, we have focused this mini-review on summarizing the applications of MSI technology in discovering NPs from medicinal plants and evaluating NPs in preclinical studies from the perspective of new drug research and development (R&D). Additionally, we briefly reviewed the factors that should be carefully considered to obtain the desired MSI results. Finally, the future development of MSI in new drug R&D is proposed.
Asunto(s)
Productos Biológicos , Espectrometría de Masas/métodos , Plantas , Investigación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodosRESUMEN
Background: Previous investigations have illustrated that lysyl oxidase family enzymes (LOXs) are contributing factors for tumor progression and remodeling immunomicroenvironment. However, it is scarce regarding comprehensive analysis of LOXs in the predictions of prognosis, chemotherapy and immunotherapy in glioma, the highly invasive brain tumor. Our present work aimed to explore the prognostic value, chemotherapeutic drug sensitivity and immunotherapy according to distinct LOXs expressions in glioma through bioinformatics analysis and experimental verification. Methods: We collected gene expression data and clinical characteristics from the public databases including Chinese Glioma Genome Atlas (CGGA)-325, CGGA-693, the Cancer Genome Atlas (TCGA), IMvigor210 and Van Allen 2015 cohorts. The correlations between the clinicopathological factors and differential LOXs expressions were analyzed. The ROC curve and Kaplan-Meier analysis were conducted to evaluate the prediction ability of prognosis. Chemotherapeutic drug sensitivity via distinct LOXs expression levels was predicted using the pRRophetic package. Immune score, immune cell infiltration and immune checkpoint expression levels were also analyzed through diverse algorithms in R software. Finally, mRNA and protein expressions of LOXs were validated in glioma cells (T98G and A172) by real-time quantitative PCR and Western blot, respectively. Results: Our results demonstrated that high levels of LOXs expressions were positively associated with glioma grades, older age and MGMT unmethylated status while elevations of LOXs were negatively correlated with IDH mutation or 1p/19q co-deletion. Furthermore, the glioma patients with low levels of LOXs also exhibited better prognosis. Also, differential LOXs expressions were associated with at least 12 chemotherapeutic drug sensitivity. Besides, it was also found that glioma patients with high LOXs expressions showed higher enrichment scores for immune cell infiltration and increased levels of immune checkpoints, suggesting the critical role of distinct LOXs expression levels for glioma immunotherapy. The predictive roles of LOXs expression in tumor immunotherapy were also validated in two immunotherapy cohorts including IMvigor 210 and Van Allen 2015. Experimental results revealed that expressions of LOX, LOXL1, LOXL2, and LOXL3 were higher in glioma cell lines at mRNA and protein levels. Conclusion: Our findings altogether indicate that LOXs have potent predictive value for prognosis, chemotherapy and immunotherapy in glioma patients.
RESUMEN
Infection with helminths can modulate the host immune response, which ultimately shape morbidity and mortality of the associated diseases. We studied key cytokines for essential immune response in sera from 229 southeastern China individuals infected with Clonorchis sinensis and 60 individuals without C. sinensis infection, and measured serum specific IgG and IgE against worms in these people. Individuals infected with C. sinensis had significantly higher antigen-specific IgG and IgE levels, which were positively correlated with egg counts in feces. However, less enhancement of IgE antibody was observed in females when compared to males with similar infection levels. C. sinensis infection caused diminished Th1 cytokines (IL-1ß, IL-2, IL-12p70, IFN-γ and TNF-α), Th2 cytokine (IL-4), as well as Th17 cytokine (IL-17A) in sera, which showed decreasing trend by infection intensity. Notably, these phenotypes were more significant in females than those in males. Although C. sinensis infection is associated with the development of hepatobiliary diseases, there was no significant correlation between the dampened cytokine profiles and the hepatobiliary morbidities. Our study indicates C. sinensis infection is strongly related to the immune suppression in human. Sex differences shape the immune milieus of clonorchiasis. This study provides a better understanding of how worms affect immune responses and cause a long-term immune alternation in humans with C. sinensis infection.