RESUMEN
Here, we describe a novel pan-RAS inhibitor, ADT-007, that potently inhibited the growth of RAS mutant cancer cells irrespective of the RAS mutation or isozyme. RAS WT cancer cells with GTP-activated RAS from upstream mutations were equally sensitive. Conversely, RAS WT cancer cells harboring downstream BRAF mutations and normal cells were essentially insensitive to ADT-007. Sensitivity of cancer cells to ADT-007 required activated RAS and dependence on RAS for proliferation, while insensitivity was attributed to metabolic deactivation by UDP-glucuronosyltransferases expressed in RAS WT and normal cells but repressed in RAS mutant cancer cells. ADT-007 binds nucleotide-free RAS to block GTP activation of effector interactions and MAPK/AKT signaling, resulting in mitotic arrest and apoptosis. ADT-007 displayed unique advantages over mutant-specific KRAS and pan-KRAS inhibitors, as well as other pan-RAS inhibitors that could impact in vivo antitumor efficacy by escaping compensatory mechanisms leading to resistance. Local administration of ADT-007 showed robust antitumor activity in syngeneic immune-competent and xenogeneic immune-deficient mouse models of colorectal and pancreatic cancer. The antitumor activity of ADT-007 was associated with the suppression of MAPK signaling and activation of innate and adaptive immunity in the tumor immune microenvironment. Oral administration of ADT-007 prodrug also inhibited tumor growth, supporting further development of this novel class of pan-RAS inhibitors for RAS-driven cancers. SIGNIFICANCE: ADT-007 has unique pharmacological properties with distinct advantages over other RAS inhibitors by circumventing resistance and activating antitumor immunity. ADT-007 prodrugs and analogs with oral bioavailability warrant further development for RAS-driven cancers.
RESUMEN
A leading theory for ovarian carcinogenesis proposes that inflammation associated with incessant ovulation is a driver of oncogenesis. Consistent with this theory, nonsteroidal anti-inflammatory drugs (NSAIDs) exert promising chemopreventive activity for ovarian cancer. Unfortunately, toxicity is associated with long-term use of NSAIDs due to their cyclooxygenase (COX) inhibitory activity. Previous studies suggest the antineoplastic activity of NSAIDs is COX independent, and rather may be exerted through phosphodiesterase (PDE) inhibition. PDEs represent a unique chemopreventive target for ovarian cancer given that ovulation is regulated by cyclic nucleotide signaling. Here we evaluate PDE10A as a novel therapeutic target for ovarian cancer. Analysis of The Cancer Genome Atlas (TCGA) ovarian tumors revealed PDE10A overexpression was associated with significantly worse overall survival for patients. PDE10A expression also positively correlated with the upregulation of oncogenic and inflammatory signaling pathways. Using small molecule inhibitors, Pf-2545920 and a novel NSAID-derived PDE10A inhibitor, MCI-030, we show that PDE10A inhibition leads to decreased ovarian cancer cell growth and induces cell cycle arrest and apoptosis. We demonstrate these pro-apoptotic properties occur through PKA and PKG signaling by using specific inhibitors to block their activity. PDE10A genetic knockout in ovarian cancer cells through CRISP/Cas9 editing lead to decreased cell proliferation, colony formation, migration and invasion, and in vivo tumor growth. We also demonstrate that PDE10A inhibition leads to decreased Wnt-induced ß-catenin nuclear translocation, as well as decreased EGF-mediated activation of RAS/MAPK and AKT pathways in ovarian cancer cells. These findings implicate PDE10A as novel target for ovarian cancer chemoprevention and treatment.
Asunto(s)
Neoplasias Ováricas , beta Catenina , Femenino , Humanos , Antiinflamatorios no Esteroideos/farmacología , beta Catenina/genética , beta Catenina/metabolismo , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Proteínas ras/metabolismoRESUMEN
Organochlorine compounds (OC) include synthetic insecticides previously used throughout the world before being banned for their adverse effects and environmental persistence; DDT (dichlorodiphenyltrichloroethane) was one of the most widely used. Epidemiological evidence suggests that higher levels of some OC, including metabolites of DDT, such as dichlorodiphenyldichloroethylene (DDE), are associated with type 2 diabetes mellitus (T2D). DDE exposure may affect pancreatic cellular functions associated with glucose control and possibly cause beta cell dysfunction. The in vitro effect of DDE exposure on pancreatic beta cell insulin secretion was investigated using Beta-Tumor Cell-6 (B-TC-6) murine pancreatic beta cells. DDE exposure significantly increased insulin secretion suggesting a role for DDE in altering insulin synthesis and secretion. Reactive oxygen species (ROS) levels were not significantly increased indicating that oxidative stress is not responsible for the DDE-induced insulin secretion. Pancreatic and duodenal homeobox factor-1 (PDX-1) levels were not significantly increased suggesting that DDE exposure does not alter insulin transcription, but prohormone convertase (PC) levels were increased suggesting a role for DDE in altering insulin translation. Based on these in vitro results, DDE may play a role in beta cell dysfunction by affecting mechanisms that regulate insulin secretion but it is not likely to be the major mechanism behind the DDE/T2D epidemiological association.
Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animales , DDT , Diabetes Mellitus Tipo 2/inducido químicamente , Diclorodifenil Dicloroetileno/toxicidad , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , RatonesRESUMEN
Approximately 30% of human cancers harbor a gain-in-function mutation in the RAS gene, resulting in constitutive activation of the RAS protein to stimulate downstream signaling, including the RAS-mitogen activated protein kinase pathway that drives cancer cells to proliferate and metastasize. RAS-driven oncogenesis also promotes immune evasion by increasing the expression of programmed cell death ligand-1, reducing the expression of major histocompatibility complex molecules that present antigens to T-lymphocytes and altering the expression of cytokines that promote the differentiation and accumulation of immune suppressive cell types such as myeloid-derived suppressor cells, regulatory T-cells, and cancer-associated fibroblasts. Together, these changes lead to an immune suppressive tumor microenvironment that impedes T-cell activation and infiltration and promotes the outgrowth and metastasis of tumor cells. As a result, despite the growing success of checkpoint immunotherapy, many patients with RAS-driven tumors experience resistance to therapy and poor clinical outcomes. Therefore, RAS inhibitors in development have the potential to weaken cancer cell immune evasion and enhance the antitumor immune response to improve survival of patients with RAS-driven cancers. This review highlights the potential of RAS inhibitors to enhance or broaden the anti-cancer activity of currently available checkpoint immunotherapy.
RESUMEN
Organochlorine compounds (OC), such as the legacy insecticides, were widespread environmental contaminants. OC including dichlorodiphenyldichloroethylene (DDE), a metabolite of the insecticide DDT, have an epidemiological association with type 2 diabetes mellitus (T2D) and may play a role in risk factors that contribute to T2D such as dyslipidemia. The liver, a potential target for DDE, plays a role in dyslipidemia. The in vitro effect of DDE on hepatocyte lipid metabolism and secretion was investigated using McArdle-RH7777 (McA) rodent hepatoma liver cells. When stimulated by the free fatty acid oleic acid (OA), DDE increased the secretion of apolipoprotein B (ApoB) suggesting a role for DDE in increasing lipid secretion. Intracellular protein levels of microsomal triglyceride transfer protein (MTP) were increased while sortilin-1 (Sort-1) levels were decreased suggesting a role for DDE in increasing lipid transport and decreasing lipid degradation. Neutral lipids such as intracellular triglycerides (TG) were decreased suggesting that DDE may alter lipid accumulation in liver cells. DDE may play a role in dyslipidemia by affecting mechanisms that regulate lipid metabolism and secretion. These in vitro results on biochemical markers of liver cell dyslipidemia support the concept that DDE exposure may play a role in the dyslipidemia frequently observed in T2D.
Asunto(s)
Diclorodifenil Dicloroetileno/toxicidad , Hepatocitos/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Apolipoproteínas B/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Diabetes Mellitus Tipo 2/metabolismo , Dislipidemias/metabolismo , Hepatocitos/metabolismo , Insecticidas/toxicidad , Ratas , Riesgo , Triglicéridos/metabolismoRESUMEN
The endogenous cannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA) play vital roles during nervous system development. The degradation of 2-AG and AEA is mediated by monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), respectively. These enzymes are inhibited following developmental chlorpyrifos (CPF) exposure. To investigate whether this inhibition is persistent or whether accumulation of endocannabinoids in the brain occurs, 10-day-old rat pups were orally exposed daily for 7 days to either corn oil or increasing dosages of CPF (1, 2.5, or 5mg/kg), and forebrains were collected at 4, 12, 24, and 48h following the last administration. All dosages inhibited cholinesterase (ChE), FAAH, and MAGL, and elevated AEA and 2-AG levels with the greatest effect occurring at 12h with ChE, FAAH, AEA, and 2-AG and at 4h with MAGL. With the high dosage, return to control levels occurred with 2-AG (48h) only. With the medium dosage, return to control levels occurred with MAGL, 2-AG, and AEA (48h) but not with ChE or FAAH. With the low dosage, return to control levels occurred with MAGL (12h), ChE and 2-AG (24h), and AEA (48h) but not with FAAH. With the lowest dosage, peak inhibition of FAAH (52%) is greater than that of ChE (24%) and that level of FAAH inhibition is sufficient to induce a persistent pattern of elevated AEA. It is possible that this pattern of elevation could alter the appropriate development of neuronal brain circuits.