Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Br J Pharmacol ; 181(1): 70-86, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37553842

RESUMEN

BACKGROUND AND PURPOSE: Diseases of raised intracranial pressure (ICP) cause severe morbidity and mortality. Multiple drugs are utilised to lower ICP including acetazolamide and topiramate. However, the evidence for their use is unclear. We aimed to assess the ICP modulatory effects and molecular effects at the choroid plexus (CP) of acetazolamide and topiramate. EXPERIMENTAL APPROACH: Female rats were implanted with telemetric ICP probes for physiological, freely moving 24/7 ICP recordings. Randomised cross-over studies were performed, where rats received acute (24 h) high doses of acetazolamide and topiramate, and chronic (10 days) clinically equivalent doses of acetazolamide and topiramate, all via oral gavage. Cerebrospinal fluid (CSF) secretion assays, and RT-qPCR and western blots on in vitro and in vivo CP, were used to investigate drug actions. KEY RESULTS: We demonstrate that acetazolamide and topiramate achieved maximal ICP reduction within 120 min of administration, and in combination doubled the ICP reduction over a 24-h period. Chronic administration of acetazolamide or topiramate lowered ICP by 25%. Topiramate decreased CSF secretion by 40%. Chronic topiramate increased the gene expression of Slc12a2 and Slc4a10 and protein expression of the sodium-dependent chloride/bicarbonate exchanger (NCBE), whereas chronic acetazolamide did not affect the expression of assessed genes. CONCLUSIONS AND IMPLICATIONS: Acetazolamide and topiramate are effective at lowering ICP at therapeutic levels. We provide the first evidence that topiramate lowers CSF secretion and that acetazolamide and topiramate may lower ICP via distinct molecular mechanisms. Thus, the combination of acetazolamide and topiramate may have utility for treating raised ICP.


Asunto(s)
Acetazolamida , Presión Intracraneal , Femenino , Ratas , Animales , Acetazolamida/farmacología , Acetazolamida/uso terapéutico , Presión Intracraneal/fisiología , Topiramato/farmacología
2.
Cerebellum ; 19(2): 165-181, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31898278

RESUMEN

Spinocerebellar ataxia type 2 (SCA2), a rare polyglutamine neurodegenerative disorder caused by a CAG repeat expansion in the ataxin-2 gene, exhibits common cellular phenotypes with other neurodegenerative disorders, including oxidative stress and mitochondrial dysfunction. Here, we show that SCA2 patient cells exhibit higher levels of caspase-8- and caspase-9-mediated apoptotic activation than control cells, cellular phenotypes that we find to be exacerbated by reactive oxygen species (ROS) and inhibition of autophagy. We also suggest that oligomerization of mutant ataxin-2 protein is likely to be the cause of the observed cellular phenotypes by causing inhibition of autophagy and by inducing ROS generation. Finally, we show that removal of ataxin-2 oligomers, either by increasing autophagic clearance or by oligomer dissolution, appears to alleviate the cellular phenotypes. Our results suggest that oligomerized ataxin-2 and oxidative stress affect autophagic clearance in SCA2 cells, contributing to the pathophysiology, and that activation of autophagy or clearance of oligomers may prove to be effective therapeutic strategies.


Asunto(s)
Apoptosis/fisiología , Ataxina-2/metabolismo , Autofagia/fisiología , Ataxias Espinocerebelosas/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Estrés Oxidativo/fisiología , Ataxias Espinocerebelosas/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA