Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Cell ; 107(2): 133-6, 2001 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-11672521

RESUMEN

The conversion of a ribosomal RNA transcript to a cytoplasmic ribosome requires hundreds of accessory RNA and protein factors. Two papers published recently in Molecular Cell provide first looks at the association of these processing factors with the intermediates in ribosome synthesis (Harnpicharnchai et al., 2001; Bassler et al., 2001).


Asunto(s)
ARN/metabolismo , Ribosomas/metabolismo , Ribosomas/fisiología , Citoplasma/metabolismo , Modelos Biológicos , Modelos Genéticos , Saccharomyces cerevisiae/metabolismo
3.
J Biol Chem ; 276(36): 33821-5, 2001 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-11451953

RESUMEN

The smallest known open reading frame encodes the ribosomal protein L41, which in yeast is composed of only 24 amino acids, 17 of which are arginine or lysine. Because of the unique problems that might attend the translation of such a short open reading frame, we have investigated the properties and the translation of the mRNAs encoding L41. In Saccharomyces cerevisiae L41 is encoded by two linked genes, RPL41A and RPL41B. These genes give rise to mRNAs that have short 5' leaders of 18 and 22 nucleotides and rather long 3' leaders of 203 and 210 nucleotides not including their poly(A) tails. The mRNAs are translated exclusively on monosomes, suggesting that ribosomes do not remain attached to the mRNA after termination of translation. Calculations based on the abundance of ribosomes and of L41 mRNA indicate that the entire translation event, from initiation through termination, must occur in approximately 2 s. Termination of translation after only 25 codons does not subject the mRNAs encoding L41 to nonsense-mediated decay. Surprisingly, despite the L41 ribosomal protein being conserved from the archaea through the mammalia, S. cerevisiae can grow relatively normally after deletion of both RPL41A and RPL41B.


Asunto(s)
Proteínas Ribosómicas/química , Regiones no Traducidas 3' , Aminoácidos/química , Arginina/química , Secuencia de Bases , Northern Blotting , Southern Blotting , ADN Complementario/metabolismo , Eliminación de Gen , Lisina/química , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Polirribosomas/metabolismo , Biosíntesis de Proteínas , Señales de Clasificación de Proteína , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo
4.
Mol Cell Biol ; 21(5): 1453-62, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11238882

RESUMEN

Eukaryotic translation initiation factor 6 (eIF6), a monomeric protein of about 26 kDa, can bind to the 60S ribosomal subunit and prevent its association with the 40S ribosomal subunit. In Saccharomyces cerevisiae, eIF6 is encoded by a single-copy essential gene. To understand the function of eIF6 in yeast cells, we constructed a conditional mutant haploid yeast strain in which a functional but a rapidly degradable form of eIF6 fusion protein was synthesized from a repressible GAL10 promoter. Depletion of eIF6 from yeast cells resulted in a selective reduction in the level of 60S ribosomal subunits, causing a stoichiometric imbalance in 60S-to-40S subunit ratio and inhibition of the rate of in vivo protein synthesis. Further analysis indicated that eIF6 is not required for the stability of 60S ribosomal subunits. Rather, eIF6-depleted cells showed defective pre-rRNA processing, resulting in accumulation of 35S pre-rRNA precursor, formation of a 23S aberrant pre-rRNA, decreased 20S pre-rRNA levels, and accumulation of 27SB pre-rRNA. The defect in the processing of 27S pre-rRNA resulted in the reduced formation of mature 25S and 5.8S rRNAs relative to 18S rRNA, which may account for the selective deficit of 60S ribosomal subunits in these cells. Cell fractionation as well as indirect immunofluorescence studies showed that c-Myc or hemagglutinin epitope-tagged eIF6 was distributed throughout the cytoplasm and the nuclei of yeast cells.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/fisiología , Fosfoproteínas , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Western Blotting , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Epítopos , Técnica del Anticuerpo Fluorescente Indirecta , Galactosa/metabolismo , Glucosa/metabolismo , Hemaglutininas/metabolismo , Cinética , Modelos Genéticos , Mutagénesis , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN/metabolismo , ARN Ribosómico/metabolismo , ARN Ribosómico 23S , Proteínas Ribosómicas , Fracciones Subcelulares/metabolismo , Factores de Tiempo
6.
Mol Cell ; 5(4): 761-6, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10882112

RESUMEN

Ribosomal protein L30 of Saccharomyces cerevisiae binds to a distinct RNA structure to inhibit the splicing and the translation of its own transcript. Remarkably, the ortholog of L30 from the archaeon Sulfolobus acidocaldarius binds specifically to the same RNA fragment and inhibits splicing both in vitro and in vivo. Indeed, expression of Sulfolobus L30 in yeast severely reduces growth by limiting production of the endogenous L30. This conservation of binding specificity implies that the target of regulation in the RPL30 transcript mimics a site in the rRNA that has been conserved for more than a billion years. We identify this site, whose location suggests that L30, which has no apparent eubacterial ortholog, is responsible for establishing the orientation of a key bridge between the large and small ribosomal subunits.


Asunto(s)
Secuencia Conservada , Empalme del ARN , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Secuencia de Bases , Sitios de Unión , Evolución Molecular , Proteínas Fúngicas/metabolismo , Regulación de la Expresión Génica , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae , Homología de Secuencia de Aminoácido , Sulfolobus acidocaldarius/genética
7.
Mol Cell Biol ; 20(11): 3843-51, 2000 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10805727

RESUMEN

The transcription of ribosomal DNA, ribosomal protein (RP) genes, and 5S and tRNA genes by RNA polymerases (Pols) I, II, and III, respectively, is rapidly and coordinately repressed upon interruption of the secretory pathway in Saccharomyces cerevisiae. We find that repression of ribosome and tRNA synthesis in secretion-defective cells involves activation of the cell integrity pathway. Transcriptional repression requires the upstream components of this pathway, including the Wsc family of putative plasma membrane sensors and protein kinase C (PKC), but not the downstream Bck1-Mkk1/2-Slt2 mitogen-activated protein kinase cascade. These findings reveal a novel PKC effector pathway that controls more than 85% of nuclear transcription. It is proposed that the coordination of ribosome and tRNA synthesis with cell growth may be achieved, in part, by monitoring the turgor pressure of the cell.


Asunto(s)
ARN de Transferencia/biosíntesis , Ribosomas/metabolismo , Transducción de Señal , Proteínas de Unión al ADN/metabolismo , Proteína Quinasa C/metabolismo , ARN Polimerasa II/metabolismo , ARN Polimerasa III/metabolismo , ARN de Transferencia/genética , Proteínas Ribosómicas/genética
8.
RNA ; 6(12): 1773-80, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11142377

RESUMEN

The transcript of the Saccharomyces cerevisiae gene, RPL30, is subject to regulated splicing and regulated translation, due to a structure that interacts with its own product, ribosomal protein L30. We have followed the fate of the regulated RPL30 transcripts in vivo. Initially, these transcripts abortively enter the splicing pathway, forming an unusually stable association with U1 snRNP. A large proportion of the unspliced molecules, however, are found in the cytoplasm. Most of these are still bound by L30, as only a small fraction are engaged in translation. Eventually, the unspliced RPL30 transcripts escape the grasp of L30, associate with ribosomes, and fall prey to nonsense mediated decay.


Asunto(s)
Proteínas Fúngicas/genética , Procesamiento Postranscripcional del ARN , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Biosíntesis de Proteínas , Empalme del ARN , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Saccharomyces cerevisiae/genética , Empalmosomas , Transcripción Genética
9.
Trends Biochem Sci ; 24(11): 437-40, 1999 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-10542411

RESUMEN

In a rapidly growing yeast cell, 60% of total transcription is devoted to ribosomal RNA, and 50% of RNA polymerase II transcription and 90% of mRNA splicing are devoted to ribosomal proteins (RPs). Coordinate regulation of the approximately 150 rRNA genes and 137 RP genes that make such prodigious use of resources is essential for the economy of the cell. This is entrusted to a number of signal transduction pathways that can abruptly induce or silence the ribosomal genes, leading to major implications for the expression of other genes as well.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Genes de ARNr/genética , Proteínas Ribosómicas/biosíntesis , Proteínas Ribosómicas/genética , Ribosomas/química , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Transcripción Genética/genética
10.
Mol Cell Biol ; 19(8): 5393-404, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10409730

RESUMEN

The ribosomal proteins (RPs) of Saccharomyces cerevisiae are encoded by 137 genes that are among the most transcriptionally active in the genome. These genes are coordinately regulated: a shift up in temperature leads to a rapid, but temporary, decline in RP mRNA levels. A defect in any part of the secretory pathway leads to greatly reduced ribosome synthesis, including the rapid loss of RP mRNA. Here we demonstrate that the loss of RP mRNA is due to the rapid transcriptional silencing of the RP genes, coupled to the naturally short lifetime of their transcripts. The data suggest further that a global inhibition of polymerase II transcription leads to overestimates of the stability of individual mRNAs. The transcription of most RP genes is activated by two Rap1p binding sites, 250 to 400 bp upstream from the initiation of transcription. Rap1p is both an activator and a silencer of transcription. The swapping of promoters between RPL30 and ACT1 or GAL1 demonstrated that the Rap1p binding sites of RPL30 are sufficient to silence the transcription of ACT1 in response to a defect in the secretory pathway. Sir3p and Sir4p, implicated in the Rap1p-mediated repression of silent mating type genes and of telomere-proximal genes, do not influence such silencing of RP genes. Sir2p, implicated in the silencing both of the silent mating type genes and of genes within the ribosomal DNA locus, does not influence the repression of either RP or rRNA genes. Surprisingly, the 180-bp sequence of RPL30 that lies between the Rap1p sites and the transcription initiation site is also sufficient to silence the Gal4p-driven transcription in response to a defect in the secretory pathway, by a mechanism that requires the silencing region of Rap1p. We conclude that for Rap1p to activate the transcription of an RP gene it must bind to upstream sequences; yet for Rap1p to repress the transcription of an RP gene it need not bind to the gene directly. Thus, the cell has evolved a two-pronged approach to effect the rapid extinction of RP synthesis in response to the stress imposed by a heat shock or by a failure of the secretory pathway. Calculations based on recent transcriptome data and on the half-life of the RP mRNAs suggest that in a rapidly growing cell the transcription of RP mRNAs accounts for nearly 50% of the total transcriptional events initiated by RNA polymerase II. Thus, the sudden silencing of the RP genes must have a dramatic effect on the overall transcriptional economy of the cell.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Proteínas Fúngicas/fisiología , Regulación Fúngica de la Expresión Génica , Proteínas Represoras/fisiología , Proteínas Ribosómicas/biosíntesis , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae , Proteínas de Unión a Telómeros , Factores de Transcripción , Secuencia de Bases , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , ARN de Hongos/biosíntesis , ARN Mensajero/biosíntesis , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/metabolismo , Complejo Shelterina , Transactivadores/fisiología , Transcripción Genética
11.
J Biol Chem ; 274(19): 13235-41, 1999 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-10224082

RESUMEN

The balanced growth of a cell requires the integration of major systems such as DNA replication, membrane biosynthesis, and ribosome formation. An example of such integration is evident from our recent finding that, in Saccharomyces cerevisiae, any failure in the secretory pathway leads to severe repression of transcription of both rRNA and ribosomal protein genes. We have attempted to determine the regulatory circuit(s) that connects the secretory pathway with the transcription of ribosomal genes. Experiments show that repression does not occur through the circuit that responds to misfolded proteins in the endoplasmic reticulum, nor does it occur through circuits known to regulate ribosome synthesis, e.g. the stringent response, or the cAMP pathway. Rather, it appears to depend on a stress response at the plasma membrane that is transduced through protein kinase C (PKC). Deletion of PKC1 relieves the repression of both ribosomal protein and rRNA genes that occurs in response to a defect in the secretory pathway. We propose that failure of the secretory pathway prevents the synthesis of new plasma membrane. As protein synthesis continues, stress develops in the plasma membrane. This stress is monitored by Pkc1p, which initiates a signal transduction pathway that leads to repression of transcription of the rRNA and ribosomal protein genes. The importance of the transcription of the 137 ribosomal protein genes to the economy of the cell is apparent from the existence of at least three distinct pathways that can effect the repression of this set of genes.


Asunto(s)
Proteína Quinasa C/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/enzimología , Membrana Celular/metabolismo , Activación Enzimática , Saccharomyces cerevisiae/ultraestructura , Transducción de Señal , Transcripción Genética
12.
Yeast ; 14(10): 915-22, 1998 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9717237

RESUMEN

Ypt6p, the yeast homologue of human RAB6, is required for protein trafficking at elevated temperatures. Biochemical data provide evidence that Ypt6p plays a role in an early step(s) of the secretory pathway: from ER to Golgi, or from cis to medial Golgi, or both. Here we show that overexpression of YPT1 suppresses the growth and secretion defects of a ypt6 temperature-sensitive (ts) strain. SLY1-20, encoding a dominant mutant allele that suppresses the lethal effect of YPT1, also suppresses the growth defect of a ypt6 ts strain. Conversely, SSD1, isolated as a suppressor of ypt6 ts, can suppress the growth defect of a ypt1 ts allele. These data suggest that Ypt6p has some redundant function with Ypt1p. However, overexpression of Ypt6p is toxic to a ypt1 ts strain, although it does not affect the growth of wild-type cells, suggesting that Ypt6p may sequester proteins shared with Ypt1p. This genetic evidence confirms the conclusion that Ypt6p is involved in an early step of the secretory pathway.


Asunto(s)
GTP Fosfohidrolasas/genética , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP Monoméricas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Unión al GTP rab , Transporte Biológico/genética , Retículo Endoplásmico/metabolismo , Proteínas Fúngicas/metabolismo , Aparato de Golgi/metabolismo , Mutación , Supresión Genética
13.
Mol Cell Biol ; 18(7): 4368-76, 1998 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9632820

RESUMEN

Reb1p is a DNA binding protein of Saccharomyces cerevisiae that has been implicated in the activation of transcription by polymerase (Pol) II, in the termination of transcription by Pol I, and in the organization of nucleosomes. Studies of the transcriptional control of the REB1 gene have led us to identify three Reb1p binding sites in the 5' region of the its gene, termed A, B, and C, at positions -110, -80, and +30 with respect to transcription initiation. In vitro, Reb1p binds to the three sites with the relative affinity of A >/= C > B. Kinetic parameters suggest that when both A and C sites are present on the same DNA molecule, the C site may recruit Reb1p for the A site. In vivo the A and B sites each contribute to the transcription activity of REB1 in roughly additive fashion. Mutation of both A and B sites abolishes transcription. On the other hand, the C site is a negative element, reducing transcription by 40%. In cells overexpressing Reb1p, the C site reduces transcription by more than 80%. This effect can be transposed to another transcription unit, demonstrating that the effect of Reb1p binding at the C site does not depend on interaction with upstream Reb1p molecules. Relocation of the C site to a position 105 bp downstream of the transcription initiation site abolishes its effect, suggesting that it does not act as a conventional attenuator of transcription. We conclude that binding of Reb1p at the C site hinders formation of the initiation complex. This arrangement of Reb1p binding sites provides a positive and negative mechanism to autoregulate the expression of REB1. Such an arrangement could serve to dampen the inevitable fluctuation in Rep1p levels caused by the intermittent presence of its mRNA within an individual cell.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Homeostasis , Saccharomyces cerevisiae/genética , Transcripción Genética , Secuencia de Bases , Sitios de Unión , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción
15.
Nucleic Acids Res ; 26(4): 1063-9, 1998 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-9461469

RESUMEN

We have previously shown that a functional secretory pathway is essential for continued ribosome synthesis in Saccharomyces cerevisiae. When a temperature-sensitive mutant defective in the secretory pathway is transferred to the non-permissive temperature, transcription of both rRNA genes and ribosomal protein genes is nearly abolished. In order to define the cis -acting element(s) of ribosomal protein genes sensitive to a defect in the secretory pathway, we have constructed a series of fusion genes containing the CYH2 promoter region, with various deletions, fused to lacZ. Each fusion gene for which transcription is detected is subject to the repression. Rap1p is the transcriptional activator for most ribosomal protein genes, as well as having an important role in silencing in the vicinity of telomeres and at the silent mating-type loci. To assess its role in the repression of transcription by the defect in the secretory pathway, we have introduced rap1 mutations. The replacement of wild-type Rap1p by Rap1p truncated at the C-terminal region caused substantial attenuation of the repression. Furthermore, we have demonstrated that the Rap1p-truncation affects the repression of TCM1 , encoding ribosomal protein L3, which has no Rap1p-binding site in its upstream regulatory region. These results suggest that the repression of transcription of ribosomal protein genes by a secretory defect is mediated through Rap1p, but does not require a Rap1p-binding site within the UAS.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas de Unión al GTP/genética , Genes Fúngicos , Genes del Tipo Sexual de los Hongos , Proteínas Ribosómicas/genética , Fusión Artificial Génica , Sitios de Unión/genética , Calor , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia , Proteínas de Unión al GTP rap
16.
Nucleic Acids Res ; 26(2): 655-61, 1998 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-9421530

RESUMEN

The 80S ribosome from Saccharomyces cerevisiae has been reconstructed from cryo electron micrographs to a resolution of 35 A. It is strikingly similar to the 70S ribosome from Escherichia coli, while displaying the characteristic eukaryotic features familiar from reconstructions of ribosomes from higher eukaryotes. Aside from the elaboration of a number of peripherally located features on the two subunits and greater overall size, the largest difference between the yeast and E.coli ribosomes is in a mass increase on one side of the large (60S) subunit. It thus appears more elliptical than the characteristically globular 50S subunit from E.coli. The interior of the 60S subunit reveals a variable diameter tunnel spanning the subunit between the interface canyon and a site on the lower back of the subunit, presumably the exit site through which the nascent polypeptide chain emerges from the ribosome.


Asunto(s)
Ribosomas/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Escherichia coli/ultraestructura , Procesamiento de Imagen Asistido por Computador , Microscopía Electrónica
17.
Electrophoresis ; 18(8): 1347-60, 1997 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9298649

RESUMEN

Two-dimensional (2-D) gel electrophoresis can now be coupled with protein identification techniques and genome sequence information for direct detection, identification, and characterization of large numbers of proteins from microbial organisms. 2-D electrophoresis, and new protein identification techniques such as amino acid composition, are proteome research techniques in that they allow direct characterization of many proteins at the same time. Another new tool important for yeast proteome research is the Yeast Protein Database (YPD), which provides the sequence-derived protein properties needed for spot identification and tabulations of the currently known properties of the yeast proteins. Studies presented here extend the yeast 2-D protein map to 169 identified spots based upon the recent completion of the yeast genome sequence, and they show that methods of spot identification based on predicted isoelectric point, predicted molecular mass, and determination of partial amino acid composition from radiolabeled gels are powerful enough for the identification of at least 80% of the spots representing abundant proteins. Comparison of proteins predicted by YPD to be detectable on 2-D gels based on calculated molecular mass, isoelectric point and codon bias (a predictor of abundance) with proteins identified in this study suggests that many glycoproteins and integral membrane proteins are missing from the 2-D gel patterns. Using the 2-D gel map and the information available in YDP, 2-D gel experiments were analyzed to characterize the yeast proteins associated with: (i) an environmental change (heat shock), (ii) a temperature-sensitive mutation (the prp2 mRNA splicing mutant), (iii) a mutation affecting post-translational modification (N-terminal acetylation), and (iv) a purified subcellular fraction (the ribosomal proteins). The methods used here should allow future extension of these studies to many more proteins of the yeast proteome.


Asunto(s)
Electroforesis en Gel Bidimensional/métodos , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Genoma Fúngico , Mapeo Peptídico/métodos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Bases de Datos Factuales , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/aislamiento & purificación , Punto Isoeléctrico , Peso Molecular , Mutación , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/aislamiento & purificación , Saccharomyces cerevisiae/crecimiento & desarrollo
18.
Chromosoma ; 105(7-8): 444-51, 1997 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-9211972

RESUMEN

The ribosomal RNA (rRNA) genes of most eukaryotic organisms are arranged in one or more tandem arrays, often termed nucleolar organizer regions. The biological implications of this tandem organization are not known. We have tested the requirement for such a chromosomal organization by directly comparing the transcription and processing of rRNA in isogenic strains of Saccharomyces cerevisiae that differ only in the organization of their rRNA genes. Strain L-1489 carries the RDN locus, consisting of 100-150 copies of the rRNA genes in a tandem array on chromosome XII. Strain L-1521 has a complete deletion of the RDN array, but carries many copies of a plasmid that includes a single rRNA gene. While this strain grows reasonably well, the average transcriptional activity of the plasmid genes is substantially less than that of the chromosomal copies. However, there is little difference in the processing of the 35S pre-rRNA to the mature 25S:5.8S and 18S products. Thus, neither a chromosomal location nor a tandem repeat of the rRNA genes is important for the assembly and function of the many protein and RNA molecules necessary for the processing of the rRNA transcripts. We investigated the consequence of a dispersed gene arrangement on nucleolar structure. Immunofluorescence microscopy revealed that in strain L-1521 the yeast fibrillarin, Nop1p, rather than being confined to a defined nucleolus at the edge of the nucleus as it is in cells with the normal arrangement of rRNA genes, is spread throughout the nucleus. This observation implies that each plasmid rRNA gene can serve as a nucleolar organizer. Finally, data from pulse-labeling experiments show that the repression of rRNA transcription due to failure of the secretory pathway is independent of whether the rRNA genes are at the RDN locus on chromosome XII or on plasmids. This result suggests that the regulation of rRNA transcription occurs at the level of soluble factors rather than chromatin structure.


Asunto(s)
Nucléolo Celular/fisiología , ADN Ribosómico/genética , Saccharomyces cerevisiae/genética , ADN de Hongos/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Metionina/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Región Organizadora del Nucléolo/genética , Plásmidos/genética , Precursores del ARN , Procesamiento Postranscripcional del ARN , ARN Ribosómico/genética , Transducción de Señal , Transcripción Genética
19.
Mol Cell Biol ; 17(4): 1959-65, 1997 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-9121443

RESUMEN

Ribosomal protein L32 of Saccharomyces cerevisiae binds to and regulates the splicing and the translation of the transcript of its own gene. Selecting for mutants deficient in the regulation of splicing, we have identified a mutant form of L32 that no longer binds to the transcript of RPL32 and therefore does not regulate its splicing. The mutation is the deletion of an isoleucine residue from a highly conserved hydrophobic domain near the middle of L32. The mutant protein supports growth, at a reduced rate, and is found at normal levels in mature ribosomes. However, in cells homozygous for the mutant gene, the rate of processing of the ribosomal RNA component of the 60S ribosomal subunit is severely reduced, leading to an insufficiency of 60S subunits. L32 must be considered a remarkable protein. Composed of only 104 amino acids, it appears to interact with three distinct RNA molecules to influence three different elements of RNA processing and function in three different locations of the cell: the processing of pre-rRNA in the nucleolus, the splicing of the RPL32 transcript in the nucleus, and the translation of the spliced RPL32 mRNA in the cytoplasm.


Asunto(s)
Proteínas Fúngicas/metabolismo , Empalme del ARN , ARN de Hongos/metabolismo , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas Fúngicas/genética , Genes Fúngicos , Datos de Secuencia Molecular , Procesamiento Postranscripcional del ARN , ARN de Hongos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico/genética , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/genética , Eliminación de Secuencia , Homología de Secuencia de Aminoácido
20.
Gene ; 187(2): 171-8, 1997 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-9099877

RESUMEN

We isolated a temperature-sensitive mutant of Saccharomyces cerevisiae in which transcription both of ribosomal protein genes and of ribosomal RNA is defective at the non-permissive temperature. Temperature-sensitivity for growth is recessive and segregates 2:2. The wild type gene, termed RIC1 (for ribosome control) was cloned by complementation of the temperature-sensitive phenotype from a genomic DNA library based on the CEN plasmid. RIC1 encodes a protein of 1056 amino acid (aa) residues including a putative nuclear localization sequence. Data base searches revealed that RIC1 is a novel gene and predicted aa sequence share some sequence similarity with viral transcriptional regulatory proteins.


Asunto(s)
Proteínas Fúngicas/genética , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Mapeo Cromosómico , Clonación Molecular , ADN de Hongos , Genes Fúngicos , Glicósido Hidrolasas/metabolismo , Factores de Intercambio de Guanina Nucleótido , Proteínas de la Membrana , Datos de Secuencia Molecular , Mutación , Señales de Localización Nuclear , Proteínas Nucleares/genética , ARN Ribosómico/biosíntesis , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Temperatura , Transcripción Genética , beta-Fructofuranosidasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA