Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
RSC Adv ; 13(8): 5013-5026, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36777948

RESUMEN

For the last several decades, semiconducting materials and nanocomposites have received a lot of interest in generating highly efficient photocatalysts to destroy organic pollutants and eradicate bacteria. This study uses a simple deposition and precipitation approach at ambient temperature to create a unique and efficient AgI-CdO heterojunction. DRS, IR, SEM, EDS, XRD, EIS, and TEM were utilized to identify the material. SEM and TEM investigation depict the completely spherical, hexagonal forms and zigzag cubes for synthesized AgI-CdO. The EDX spectra reveal the presence of Ag, I, Cd, and O elements without impurity peaks showing that the prepared samples are highly pure. The activity of the synthesized materials was tested by degrading two different chromophoric dyes and a drug derivative (paracetamol) in an aqueous suspension under visible light. In addition, the activity of the most active catalyst was compared with Degussa P25, Fenton's reagent, and under sunlight for degradation of MB and RhB under similar conditions. Photolysis of paracetamol was also looked at using HPLC to identify intermediates formed in the photo-oxidation process. In addition, antibacterial activity was also investigated with the synthesized CdO-AgI nanocomposite in vitro against human pathogenic bacterial strains and compared with that of pure materials like AgI and standard ampicillin. The results showed excellent activity with the composite material, which could be due to the higher surface areas and the interactions between AgI and CdO nanoparticles. Quenching investigations revealed O2˙- and holes are principal reactive species. A viable photocatalytic degradation mechanism for organic pollutant elimination over the AgI-CdO nanocomposite has been sketched out based on the obtained results.

2.
ACS Omega ; 7(34): 30171-30183, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36061726

RESUMEN

The preparation of visible light-responsive efficient photocatalysts for removing organic contaminants from water and killing cancer cells has gotten a lot of attention due to the growing global concern. In this study, we have successfully fabricated an efficient AgBr/ß-MnO2 nanocomposite via a facile deposition and precipitation method at room temperature. Techniques such as XRD, SEM-EDS, TEM, DRS, PL, EIS, ESR, and FTIR were used to determine the crystalline, structural, morphological, optical, and other properties. The SEM and TEM analyses reveal that AgBr NPs are decorated on the surface of ß-MnO2, which possesses rods with a sphere-like structure for AgBr/ß-MnO2. The EDX analysis confirms the existence of Mn, O, Ag, and Br elements in the nanocomposites without an extra peak, indicating that the synthesized samples are highly pure. The high photocatalytic performance of AgBr/ß-MnO2 could be attributed to the formation of Ag NPs and the construction of the Z-scheme heterojunction between AgBr and ß-MnO2. This may enhance fast light absorption and efficient photogenerated (e-/h+) pairs, as indicated by EIS and photoluminescence measurements, which in turn achieved high activity for the decomposition of MB (97%, in 12 min), RhB (98.9%, in 9 min), and paracetamol (80%, in 180 min), respectively. The kinetic model study proposed that the first-order model showed a better fit than the zero- and second-order for the photocatalytic decolorization of RhB dye. XRD analysis of 0.2 AgBr/ß-MnO2 before and after recycling confirms the high stability of the catalyst. HPLC results showed that no detectable by-products are produced through the decomposition of paracetamol. Interestingly, 0.2 AgBr/ß-MnO2 nanocomposites showed visible light-induced anticancer activity against A549 cancer cell lines. The mechanistic degradation pathway has been proposed using the involvement of active species like superoxide radicals (-•O2) and photoinduced holes (h+). The proposed work focuses on synthesizing effective photocatalysts in a less hazardous environment with superior biological activity.

3.
Langmuir ; 36(33): 9719-9727, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32787064

RESUMEN

Recently, the preparation of visible-light-sensitive catalysts for the decomposition of organics has been of great interest. Herein, we report a single-step facile co-polymerization via the calcination process to produce a phenyl-modified-g-C3N4 semiconducting material. The product was characterized using standard analytical techniques. The UV/vis-DRS study indicates a shift of 23 nm toward higher wavelengths, whereas transmission electron microscopy analysis indicates the presence of phenyl group incorporation. The H1 NMR of Ph-g-C3N4 showed a shift of aromatic proton toward down-field as compared with benzamide protons. The prepared products showed efficient performance for the removal of a dye and a drug derivative in water with light and air. The marked activity might be due to efficient light absorption and photoseparated (e--h+) pair. The work embodied represents the construction of catalysts for the removal of organics in water with light.

4.
Arch Pharm (Weinheim) ; 353(11): e2000164, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32776355

RESUMEN

A series of new 1,2,3-triazole-tethered coumarin conjugates linked by N-phenylacetamide was efficiently synthesized via the click chemistry approach in excellent yields. The synthesized conjugates were evaluated for their in vitro antifungal and antioxidant activities. Antifungal activity determination was carried out against fungal strains such as Candida albicans, Fusarium oxysporum, Aspergillus flavus, Aspergillus niger and Cryptococcus neoformans. Compounds 7b, 7d, 7e, 8b and 8e displayed higher potency than the standard drug miconazole, with lower minimum inhibitory concentration values. Also, compound 7a exhibited potential radical scavenging activity as compared with the standard antioxidant butylated hydroxytoluene. In addition, a molecular docking study of the newly synthesized compounds was carried out, and the results showed a good binding mode at the active site of the fungal (C. albicans) P450 cytochrome lanosterol 14α-demethylase enzyme. Furthermore, the synthesized compounds were also tested for ADME properties, and they demonstrated potential as good candidates for oral drugs.


Asunto(s)
Antifúngicos/farmacología , Antioxidantes/farmacología , Cumarinas/farmacología , Hongos/efectos de los fármacos , Simulación del Acoplamiento Molecular , Triazoles/farmacología , Administración Oral , Antifúngicos/administración & dosificación , Antifúngicos/síntesis química , Antioxidantes/administración & dosificación , Antioxidantes/síntesis química , Disponibilidad Biológica , Química Clic , Cumarinas/administración & dosificación , Cumarinas/síntesis química , Diseño de Fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad , Triazoles/administración & dosificación , Triazoles/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA