Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Dev Biol ; 8(4)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322598

RESUMEN

The development of key structures within the mature vertebrate hindbrain requires the migration of neural crest (NC) cells and motor neurons to their appropriate target sites. Functional analyses in multiple species have revealed a requirement for the transcription factor gastrulation-brain-homeobox 2 (Gbx2) in NC cell migration and positioning of motor neurons in the developing hindbrain. In addition, loss of Gbx2 function studies in mutant mouse embryos, Gbx2neo, demonstrate a requirement for Gbx2 for the development of NC-derived sensory neurons and axons constituting the mandibular branch of the trigeminal nerve (CNV). Our recent GBX2 target gene identification study identified multiple genes required for the migration and survival of NC cells (e.g., Robo1, Slit3, Nrp1). In this report, we performed loss-of-function analyses using Gbx2neo mutant embryos, to improve our understanding of the molecular and genetic mechanisms regulated by Gbx2 during anterior hindbrain and CNV development. Analysis of Tbx20 expression in the hindbrain of Gbx2neo homozygotes revealed a severely truncated rhombomere (r)2. Our data also provide evidence demonstrating a requirement for Gbx2 in the temporal regulation of Krox20 expression in r3. Lastly, we show that Gbx2 is required for the expression of Nrp1 in a subpopulation of trigeminal NC cells, and correct migration and survival of cranial NC cells that populate the trigeminal ganglion. Taken together, these findings provide additional insight into molecular and genetic mechanisms regulated by Gbx2 that underlie NC migration, trigeminal ganglion assembly, and, more broadly, anterior hindbrain development.

2.
J Dev Biol ; 8(2)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244588

RESUMEN

The molecular mechanisms regulating neurogenesis involve the control of gene expression by transcription factors. Gbx1 and Gbx2, two members of the Gbx family of homeodomain-containing transcription factors, are known for their essential roles in central nervous system development. The expression domains of mouse Gbx1 and Gbx2 include regions of the forebrain, anterior hindbrain, and spinal cord. In the spinal cord, Gbx1 and Gbx2 are expressed in PAX2+ interneurons of the dorsal horn and ventral motor neuron progenitors. Based on their shared domains of expression and instances of overlap, we investigated the functional relationship between Gbx family members in the developing spinal cord using Gbx1-/-, Gbx2-/-, and Gbx1-/-/Gbx2-/- embryos. In situ hybridization analyses of embryonic spinal cords show upregulation of Gbx2 expression in Gbx1-/- embryos and upregulation of Gbx1 expression in Gbx2-/- embryos. Additionally, our data demonstrate that Gbx genes regulate development of a subset of PAX2+ dorsal inhibitory interneurons. While we observe no difference in overall proliferative status of the developing ependymal layer, expansion of proliferative cells into the anatomically defined mantle zone occurs in Gbx mutants. Lastly, our data shows a marked increase in apoptotic cell death in the ventral spinal cord of Gbx mutants during mid-embryonic stages. While our studies reveal that both members of the Gbx gene family are involved in development of subsets of PAX2+ dorsal interneurons and survival of ventral motor neurons, Gbx1 and Gbx2 are not sufficient to genetically compensate for the loss of one another. Thus, our studies provide novel insight to the relationship harbored between Gbx1 and Gbx2 in spinal cord development.

3.
Methods Mol Biol ; 1092: 81-94, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24318815

RESUMEN

The Gbx family of transcription factors consists of two closely related proteins GBX1 and GBX2. A defining feature of the GBX family is a highly conserved 60 amino acid DNA-binding domain, which differs by just two amino acids. Gbx1 and Gbx2 are co-expressed in several areas of the developing central nervous system including the forebrain, anterior hindbrain, and spinal cord, suggesting the potential for genetic redundancy. However, there is a spatiotemporal difference in expression of Gbx1 and Gbx2 in the forebrain and spinal cord. Gbx2 has been shown to play a critical role in positioning the midbrain/hindbrain boundary and developing anterior hindbrain, whereas gene-targeting experiments in mice have revealed an essential function for Gbx1 in the spinal cord for normal locomotion. To determine if Gbx2 could potentially compensate for a loss of Gbx1 in the developing spinal cord, we performed real-time PCR to examine levels of Gbx2 expression in Gbx1(-/-) spinal cord at embryonic day (E) 13.5, a developmental stage when Gbx2 is rapidly downregulated. We demonstrate that Gbx2 expression is elevated in the spinal cord of Gbx1(-/-) embryos.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Animales , Proteínas de Homeodominio/genética , Ratones , Biología Molecular/métodos , Prosencéfalo/embriología , Rombencéfalo/embriología , Médula Espinal/embriología , Distribución Tisular
4.
PLoS One ; 8(2): e56214, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23418536

RESUMEN

The Gbx class of homeobox genes encodes DNA binding transcription factors involved in regulation of embryonic central nervous system (CNS) development. Gbx1 is dynamically expressed within spinal neuron progenitor pools and becomes restricted to the dorsal mantle zone by embryonic day (E) 12.5. Here, we provide the first functional analysis of Gbx1. We generated mice containing a conditional Gbx1 allele in which exon 2 that contains the functional homeodomain is flanked with loxP sites (Gbx1(flox)); Cre-mediated recombination of this allele results in a Gbx1 null allele. In contrast to mice homozygous for a loss-of-function allele of Gbx2, mice homozygous for the Gbx1 null allele, Gbx1(-/-), are viable and reproductively competent. However, Gbx1(-/-) mice display a gross locomotive defect that specifically affects hindlimb gait. Analysis of embryos homozygous for the Gbx1 null allele reveals disrupted assembly of the proprioceptive sensorimotor circuit within the spinal cord, and a reduction in ISL1(+) ventral motor neurons. These data suggest a functional requirement for Gbx1 in normal development of the neural networks that contribute to locomotion. The generation of this null allele has enabled us to functionally characterize a novel role for Gbx1 in development of the spinal cord.


Asunto(s)
Trastornos Neurológicos de la Marcha/fisiopatología , Miembro Posterior/fisiopatología , Proteínas de Homeodominio/fisiología , Cojera Animal/fisiopatología , Animales , Recuento de Células , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Trastornos Neurológicos de la Marcha/genética , Miembro Posterior/metabolismo , Proteínas de Homeodominio/genética , Hibridación in Situ , Cojera Animal/genética , Ratones , Ratones Noqueados , Microscopía Confocal , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Médula Espinal/anomalías , Médula Espinal/metabolismo
5.
PLoS One ; 7(11): e47366, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23144817

RESUMEN

Gbx2 encodes a DNA-binding transcription factor that plays pivotal roles during embryogenesis. Gain-and loss-of-function studies in several vertebrate species have demonstrated a requirement for Gbx2 in development of the anterior hindbrain, spinal cord, inner ear, heart, and neural crest cells. However, the target genes through which GBX2 exerts its effects remain obscure. Using chromatin immunoprecipitation coupled with direct sequencing (ChIP-Seq) analysis in a human prostate cancer cell line, we identified cis-regulatory elements bound by GBX2 to provide insight into its direct downstream targets. The analysis revealed more than 286 highly significant candidate target genes, falling into various functional groups, of which 51% are expressed in the nervous system. Several of the top candidate genes include EEF1A1, ROBO1, PLXNA4, SLIT3, NRP1, and NOTCH2, as well as genes associated with the Usher syndrome, PCDH15 and USH2A, and are plausible candidates contributing to the developmental defects in Gbx2(-/-) mice. We show through gel shift analyses that sequences within the promoter or introns of EEF1A1, ROBO1, PCDH15, USH2A and NOTCH2, are directly bound by GBX2. Consistent with these in vitro results, analyses of Gbx2(-/-) embryos indicate that Gbx2 function is required for migration of Robo1-expressing neural crest cells out of the hindbrain. Furthermore, we show that GBX2 activates transcriptional activity through the promoter of EEF1A1, suggesting that GBX2 could also regulate gene expression indirectly via EEF1A. Taken together, our studies show that GBX2 plays a dynamic role in development and diseases.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Factor 1 de Elongación Peptídica/genética , Activación Transcripcional , Síndromes de Usher/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular Tumoral , Biología Computacional , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factor 1 de Elongación Peptídica/metabolismo , Regiones Promotoras Genéticas , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Alineación de Secuencia , Transfección , Proteínas Roundabout
6.
Dev Dyn ; 240(4): 828-38, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21360792

RESUMEN

The amino acid sequence across the DNA-binding homeodomain of Gbx2 is highly conserved across multiple species. In mice, Gbx2 is essential for establishment of the midbrain-hindbrain boundary (MHB), and in development of anterior hindbrain structures, rhombomeres (r) 1-r3, and the r2/r3-derived cranial nerve V. In contrast, studies in zebrafish have implicated gbx1 in establishment of the MHB. Therefore, we tested potential roles for gbx2 in anterior hindbrain development in zebrafish. gbx2 knockdown with antisense morpholino results in increased cell death in r2, r3, and r5 and a truncation of the anterior hindbrain, similar to the defect in Gbx2(-/-) mice. Moreover, there is abnormal clustering of cranial nerve V cell bodies in r2 and r3 indicative of defects in aspects of anterior hindbrain patterning. These phenotypes can be rescued by expression of the mouse GBX2 protein. These results suggest that gbx2/Gbx2 has an evolutionarily conserved role in anterior hindbrain development.


Asunto(s)
Evolución Biológica , Proteínas de Homeodominio/fisiología , Rombencéfalo/embriología , Rombencéfalo/metabolismo , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Muerte Celular/genética , Muerte Celular/fisiología , Proliferación Celular , Secuencia Conservada/fisiología , Embrión de Mamíferos , Embrión no Mamífero , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Rombencéfalo/fisiología , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
Development ; 133(10): 1991-2000, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16651541

RESUMEN

Gbx2 is a homeobox gene that plays a crucial role in positioning the mid/hindbrain organizer (isthmus), which regulates midbrain and cerebellar development primarily through the secreted factor FGF8. In Gbx2 null homozygotes, rhombomeres (r) 1-3 fail to develop and the isthmic expression of Fgf8 is reduced and disorganized. These mutants fail to form a cerebellum, as it is derived from r1. Here, we analyze mice homozygous for a Gbx2 hypomorphic allele (Gbx2(neo)). Quantitative RT-PCR and RNA in situ analyses indicate that the presence of a neo-resistance cassette impairs normal Gbx2 splicing thus reducing wild-type Gbx2 mRNA levels to 6-10% of normal levels in all domains and stages examined. In Gbx2 hypomorphic mutants, gene marker and neuronal patterning analyses indicate that reduced Gbx2 expression is sufficient to support the development of r3 but not r2. The posterior region of r1, from which the lateral cerebellum develops, is unaffected in these mutants. However, the anterior region of r1 is converted to an isthmus-like tissue. Hence, instead of expressing r1 markers, this region displays robust expression of Fgf8 and Fgf17, as well as the downstream FGF targets Spry1 and Spry4. Additionally, we demonstrate that the cell division regulator cyclin D2 is downregulated, and that cellular proliferation is reduced in both the normal isthmus and in the mutant anterior r1. As a result of this transformation, the cerebellar midline fails to form. Thus, our studies demonstrate different threshold requirements for the level of Gbx2 gene product in different regions of the hindbrain.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Proteínas de Homeodominio/genética , Rombencéfalo/embriología , Proteínas Adaptadoras Transductoras de Señales , Alelos , Animales , Tipificación del Cuerpo/genética , Cerebelo/embriología , Ciclina D2 , Ciclinas/metabolismo , Factor 8 de Crecimiento de Fibroblastos/química , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Marcadores Genéticos , Proteínas de Homeodominio/fisiología , Homocigoto , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Organizadores Embrionarios/embriología , Fosfoproteínas/metabolismo , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Rombencéfalo/citología , Rombencéfalo/metabolismo
8.
J Exp Med ; 199(2): 255-64, 2004 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-14718514

RESUMEN

In lupus-prone NZM2328 mice, a locus Cgnz1 on chromosome 1 was linked to chronic glomerulonephritis, severe proteinuria, and early mortality in females. A locus Adnz1 on chromosome 4 was linked to antinuclear antibody (ANA) and anti-double stranded DNA (dsDNA) antibody (Ab) production. In this investigation, two congenic strains, NZM2328.C57L/Jc1 (NZM.C57Lc1) and NZM2328.C57L/Jc4 (NZM.C57Lc4), were generated by replacing the respective genetic intervals containing either Cgnz1 or Adnz1 with those from C57L/J, a nonlupus-prone strain. The NZM.C57Lc1 females had markedly reduced incidence of chronic glomerulonephritis and severe proteinuria. NZM.C57Lc4 females had chronic glomerulonephritis and severe proteinuria without circulating ANA, anti-dsDNA, and antinucleosome Ab. These data confirm the linkage analysis. Unexpectedly, NZM.C57Lc1 females had little anti-dsDNA and related Ab, suggesting the presence of a second locus Adnz2 on chromosome 1. The diseased NZM.C57Lc4 kidneys had immune complexes by immunofluorescence and electron microscopy. The eluates from these kidneys did not contain ANA, anti-dsDNA, and antinucleosome Ab, indicative of the presence of non-anti-dsDNA nephritogenic Ab. Thus, breaking tolerance to dsDNA and chromatin is not required for the pathogenesis of lupus nephritis. These results reaffirm that anti-dsDNA and related Ab production and chronic glomerulonephritis are under independent genetic control. These findings have significant implications in the pathogenesis of systemic lupus erythematosus.


Asunto(s)
ADN/inmunología , Nefritis Lúpica/etiología , Nefritis Lúpica/inmunología , Nucleosomas/inmunología , Autotolerancia , Animales , Animales Congénicos , Anticuerpos Antinucleares/biosíntesis , Autoantígenos , Núcleo Celular/inmunología , Femenino , Nefritis Lúpica/genética , Ratones , Ratones Endogámicos C57BL , Modelos Inmunológicos , Autotolerancia/genética
9.
Gene Expr Patterns ; 3(3): 313-7, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12799077

RESUMEN

We report the cloning of a cDNA encoding the complete mouse Gbx1 coding region as well as a comparative expression analysis of Gbx1 and Gbx2 during murine development. Gbx1 is expressed first during gastrulation and later in a dynamic pattern in the central nervous system, including rhombomeres 3 and 5, optic vesicles, and the medial ganglionic eminence. Gbx1 expression is not upregulated in Gbx2 null homozygotes. Therefore, the only regions of potential genetic redundancy are where Gbx1 and 2 are normally coexpressed: the primitive streak, regions of the ventricular zone of the neural tube and the medial ganglionic eminence. Finally, we demonstrate that neither Gbx1 nor Gbx2 require FGF8 for expression during gastrulation, contrary to previous published reports.


Asunto(s)
Embrión de Mamíferos/metabolismo , Proteínas de Homeodominio/genética , Secuencia de Aminoácidos , Animales , Clonación Molecular , Perfilación de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/metabolismo , Humanos , Hibridación in Situ , Ratones , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción Otx , Transactivadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA