Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Neuropharmacology ; 198: 108743, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34363811

RESUMEN

In 1981 Jeff Watkins and Dick Evans wrote what was to become a seminal review on excitatory amino acids (EAAs) and their receptors (Watkins and Evans, 1981). Bringing together various lines of evidence dating back over several decades on: the distribution in the nervous system of putative amino acid neurotransmitters; enzymes involved in their production and metabolism; the uptake and release of amino acids; binding of EAAs to membranes; the pharmacological action of endogenous excitatory amino acids and their synthetic analogues, and notably the actions of antagonists for the excitations caused by both nerve stimulation and exogenous agonists, often using pharmacological tools developed by Jeff and his colleagues, they provided a compelling account for EAAs, especially l-glutamate, as a bona fide neurotransmitter in the nervous system. The rest, as they say, is history, but far from being consigned to history, EAA research is in rude health well into the 21st Century as this series of Special Issues of Neuropharmacology exemplifies. With EAAs and their receptors flourishing across a wide range of disciplines and clinical conditions, we enter into a dialogue with two of the most prominent and influential figures in the early days of EAA research: Jeff Watkins and Dick Evans.


Asunto(s)
Aminoácidos Excitadores/fisiología , Neurotransmisores/fisiología , Receptores de Glutamato/fisiología , Animales , Aminoácidos Excitadores/farmacología , Humanos , Receptores de Glutamato/efectos de los fármacos , Sinapsis/fisiología
2.
Neuropharmacology ; 198: 108768, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34454911

RESUMEN

A series of Special Issues of Neuropharmacology celebrates the 40th anniversary of a seminal review on excitatory amino acid (EAA) receptors by two pioneers of the field - Dick Evans and Jeff Watkins. Brought together in the Department of Pharmacology at the University of Bristol in the 1970s, they forged a partnership that, through the synthetic chemistry prowess of Jeff Watkins, which provided novel agonists and antagonists for EAA receptors for Dick Evans's deft experimental studies, generated enormous insight into the multitude of actions of EAAs in the nervous system. Among many achievements from this time was not just the naming of the N-methyl-d-aspartate (NMDA) receptor, but also the demonstration of its antagonism by magnesium ions. Here, Dick and Jeff reflect upon those early halcyon days of EAA research, which, as these six1 Special Issues of Neuropharmacology demonstrate, is very much alive and kicking. Bruno G. Frenguelli, Editor-in-Chief, Neuropharmacology.


Asunto(s)
Aminoácidos Excitadores/historia , Neurofarmacología/historia , Receptores de Glutamato/historia , Animales , Antagonistas de Aminoácidos Excitadores , Historia del Siglo XX , Humanos , Receptores de Glutamato/efectos de los fármacos , Investigación , Reino Unido , Universidades
3.
Br J Pharmacol ; 147 Suppl 1: S100-8, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16402093

RESUMEN

Glutamatergic synaptic transmission in the mammalian central nervous system was slowly established over a period of some 20 years, dating from the 1950s. Realisation that glutamate and like amino acids (collectively known as excitatory amino acids (EAA)) mediated their excitatory actions via multiple receptors preceded establishment of these receptors as synaptic transmitter receptors. EAA receptors were initially classified as N-methyl-D-aspartate (NMDA) and non-NMDA receptors, the latter subdivided into quisqualate (later AMPA) and kainate receptors after agonists that appeared to activate these receptors preferentially, and by their sensitivity to a range of differentially acting antagonists developed progressively during the 1970s. NMDA receptors were definitively shown to be synaptic receptors on spinal neurones by the sensitivity of certain excitatory pathways in the spinal cord to a range of specific NMDA receptor antagonists. Importantly, specific NMDA receptor antagonists appeared to be less effective at synapses in higher centres. In contrast, antagonists that also blocked non-NMDA as well as NMDA receptors were almost universally effective at blocking synaptic excitation within the brain and spinal cord, establishing both the existence and ubiquity of non-NMDA synaptic receptor systems throughout the CNS. In the early 1980s, NMDA receptors were shown to be involved in several central synaptic pathways, acting in concert with non-NMDA receptors under conditions where a protracted excitatory postsynaptic potential was effected in response to intense stimulation of presynaptic fibres. Such activation of NMDA receptors together with non-NMDA receptors led to the phenomenon of long-term potentiation (LTP), associated with lasting changes in synaptic efficacy (synaptic plasticity) and considered to be an important process in memory and learning. During the 1980s, it was shown that certain glutamate receptors in the brain mediated biochemical changes that were not susceptible to NMDA or non-NMDA receptor antagonists. This dichotomy was resolved in the early 1990s by the techniques of molecular biology, which identified two families of glutamate-binding receptor proteins (ionotropic (iGlu) and metabotropic (mGlu) receptors). Development of antagonists binding to specific protein subunits is currently enabling precise identification of discrete iGlu or mGlu receptor subtypes that participate in a range of central synaptic processes, including synaptic plasticity.


Asunto(s)
Ácido Glutámico/historia , Neurotransmisores/historia , Receptores de Glutamato/historia , Animales , Ácido Glutámico/fisiología , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Neurotransmisores/fisiología , Receptores de Glutamato/clasificación , Receptores de Glutamato/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA