Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Chemosphere ; 364: 143301, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39251161

RESUMEN

Exposures to complex environmental chemical mixtures during pregnancy reach and target the feto-placental unit. This study investigates the influence of environmental chemical mixtures on placental bioenergetics. Recognizing the essential role of the epidermal growth factor receptor (EGFR) in placental development and its role in stimulating glycolysis and mitochondrial respiration in trophoblast cells, we explored the effects of chemicals known to disrupt EGFR signaling on cellular energy production. Human primary cytotrophoblasts (hCTBs) and a first-trimester extravillous trophoblast cell line (HTR-8/SVneo) were exposed to a mixture of EGFR-interfering chemicals, including atrazine, bisphenol S, niclosamide, PCB-126, PCB-153, and trans-nonachlor. An RNA sequencing approach revealed that the mixture altered the transcriptional signature of genes involved in cellular energetics. Next, the impact of the mixture on cellular bioenergetics was evaluated using a combination of mitochondrial and glycolytic stress tests, ATP production, glucose consumption, lactate synthesis, and super-resolution imaging. The chemical mixture did not alter basal oxygen consumption but diminished the maximum respiratory capacity in a dose-dependent manner, indicating a disruption of mitochondrial function. The respiratory capacity and ATP production were increased by EGF, while the Chem-Mix reduced both EGF- and non-EGF-mediated oxygen consumption rate in hCTBs. A similar pattern was observed in the glycolytic medium acidification, with EGF increasing the acidification, and the Chem-Mix blocking EGF-induced glycolytic acidification. Furthermore, direct stochastic optical reconstruction microscopy (dSTORM) imaging demonstrated that the Chem-Mix led to a reduction of the mitochondrial network architecture, with findings supported by a decrease in the abundance of OPA1, a mitochondrial membrane GTPase involved in mitochondrial fusion. In conclusion, we demonstrated that a mixture of EGFR-disrupting chemicals alters mitochondrial remodeling, resulting in disturbed cellular bioenergetics, reducing the capacity of human cytotrophoblast cells to generate energy. Future studies should investigate the mechanism by which mitochondrial dynamics are disrupted and the pathological significance of these findings.


Asunto(s)
Metabolismo Energético , Receptores ErbB , Mitocondrias , Trofoblastos , Humanos , Receptores ErbB/metabolismo , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Metabolismo Energético/efectos de los fármacos , Glucólisis/efectos de los fármacos , Fenoles/toxicidad , Femenino , Bifenilos Policlorados/toxicidad , Atrazina/toxicidad , Embarazo , Compuestos de Bencidrilo/toxicidad , Línea Celular , Contaminantes Ambientales/toxicidad , Sulfonas
2.
Environ Health Perspect ; 132(4): 47009, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38630605

RESUMEN

BACKGROUND: Exposure to obesogenic chemicals has been reported to result in enhanced adipogenesis, higher adipose tissue accumulation, and reduced ovarian hormonal synthesis and follicular function. We have reported that organotins [tributyltin (TBT) and triphenyltin (TPT)] dysregulate cholesterol trafficking in ovarian theca cells, but, whether organotins also exert lipogenic effects on ovarian cells remains unexplored. OBJECTIVE: We investigated if environmentally relevant exposures to organotins [TBT, TPT, or dibutyltin (DBT)] induce lipid dysregulation in ovarian theca cells and the role of the liver X receptor (LXR) in this effect. We also tested the effect of TBT on oocyte maturation and neutral lipid accumulation, and lipid-related transcript expression in cumulus cells and preimplantation embryos. METHODS: Primary theca cell cultures derived from human and ovine ovaries were exposed to TBT, TPT, or DBT (1, 10, or 50 ng/ml). The effect of these chemical exposures on neutral lipid accumulation, lipid abundance and composition, lipid homeostasis-related gene expression, and cytokine secretion was evaluated using liquid chromatography-mass spectrometry (LC-MS), inhibitor-based methods, cytokine secretion, and lipid ontology analyses. We also exposed murine cumulus-oocyte complexes to TBT and evaluated oocyte maturation, embryo development, and lipid homeostasis-related mRNA expression in cumulus cells and blastocysts. RESULTS: Exposure to TBT resulted in higher intracellular neutral lipids in human and ovine primary theca cells. In ovine theca cells, this effect was dose-dependent, independent of cell stage, and partially mediated by LXR. DBT and TPT resulted in higher intracellular neutral lipids but to a lesser extent in comparison with TBT. More than 140 lipids and 9 cytokines were dysregulated in TBT-exposed human theca cells. Expression of genes involved in lipogenesis and fatty acid synthesis were higher in theca cells, as well as in cumulus cells and blastocysts exposed to TBT. However, TBT did not impact the rates of oocyte maturation or blastocyst development. DISCUSSION: TBT induced dyslipidemia in primary human and ovine theca cells, which may be responsible for some of the TBT-induced fertility dysregulations reported in rodent models of TBT exposure. https://doi.org/10.1289/EHP13955.


Asunto(s)
Compuestos Orgánicos de Estaño , Células Tecales , Compuestos de Trialquiltina , Femenino , Humanos , Animales , Ovinos , Ratones , Células Tecales/metabolismo , Compuestos de Trialquiltina/metabolismo , Compuestos de Trialquiltina/farmacología , Lípidos/farmacología , Citocinas/metabolismo
3.
Toxicol Appl Pharmacol ; 483: 116804, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38185387

RESUMEN

Pregnant women are exposed to complex chemical mixtures, many of which reach the placenta. Some of these chemicals interfere with epidermal growth factor receptor (EGFR) activation, a receptor tyrosine kinase that modulates several placenta cell functions. We hypothesized that a mixture of chemicals (Chem-Mix) known to reduce EGFR activation (polychlorinated biphenyl (PCB)-126, PCB-153, atrazine, trans-nonachlor, niclosamide, and bisphenol S) would interfere with EGFR-mediated trophoblast cell functions. To test this, we determined the chemicals' EGFR binding ability, EGFR and downstream effectors activation, and trophoblast functions (proliferation, invasion, and endovascular differentiation) known to be regulated by EGFR in extravillous trophoblasts (EVTs). The Chem-Mix competed with EGF for EGFR binding, however only PCB-153, niclosamide, trans-nonachlor, and BPS competed for binding as single chemicals. The effects of the Chem-Mix on EGFR phosphorylation were tested by exposing the placental EVT cell line, HTR-8/SVneo to control (0.1% DMSO), Chem-Mix (1, 10, or 100 ng/ml), EGF (30 ng/ml), or Chem-Mix + EGF. The Chem-Mix - but not the individual chemicals - reduced EGF-mediated EGFR phosphorylation in a dose dependent manner, while no effect was observed in its downstream effectors (AKT and STAT3). None of the individual chemicals affected EVT cell invasion, but the Chem-Mix reduced EVT cell invasion independent of EGF. In support of previous studies that have explored chemicals targeting a specific pathway (estrogen/androgen receptor), current findings indicate that exposure to a chemical mixture that targets the EGFR pathway can result in a greater impact compared to individual chemicals in the context of placental cell functions.


Asunto(s)
Factor de Crecimiento Epidérmico , Hidrocarburos Clorados , Placenta , Bifenilos Policlorados , Humanos , Femenino , Embarazo , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Placenta/metabolismo , Niclosamida , Trofoblastos/metabolismo , Receptores ErbB/metabolismo , Movimiento Celular
4.
Chemosphere ; 302: 134806, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35504463

RESUMEN

Bisphenol A (BPA) is an endocrine disrupting chemical known to promote adipose tissue mass in vivo and adipogenesis in vitro. Whether BPA can affect and reprogram early adipogenic differentiation signals that trigger adipogenic differentiation, remains unknown. We hypothesized that gestational BPA exposure results in a preadipocyte phenotype that leads to accelerated adipogenic differentiation, and that this phenotype is sex specific. Primary ovine fetal preadipocytes were derived from control (C) and BPA-exposed during pregnancy and differentiated in vitro. Gestational BPA enhanced lipid accumulation at early stages of differentiation (48 h) and this was evident in females but not male-derived fetal preadipocytes. After an RNA sequencing approach, samples were compared as follows: 2 groups (C vs. BPA); 2 sexes (female (F) vs. male (M)); and 2 time points (0 h vs. 48 h). Before differentiation, 15 genes were differentially expressed between the C and the BPA-exposed preadipocytes within sex. In BPA-F, extracellular matrix remodeling genes cathepsin K and collagen 5α3 were upregulated compared to C-F. At 48 h, BPA-F had 154 genes differentially expressed vs. C-F and BPA-M had 487 genes differentially expressed vs. C-M. Triglyceride and glycerophospholipid metabolism were the most upregulated pathways in BPA-F. Downregulated pathways were associated with extracellular matrix organization in BPA-exposed preadipocytes. These findings are among the first to demonstrate that gestational BPA can modify the fate of adipocyte precursors by altering pathways associated to extracellular matrix components, an often-disregarded, but required aspect of adipogenic differentiation. This work highlights the need to investigate early adipogenic differentiation changes in other obesogenic chemicals.


Asunto(s)
Adipogénesis , Compuestos de Bencidrilo , Adipocitos/metabolismo , Animales , Compuestos de Bencidrilo/metabolismo , Compuestos de Bencidrilo/toxicidad , Diferenciación Celular , Células Cultivadas , Matriz Extracelular , Femenino , Masculino , Fenoles , Embarazo , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA