Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Molecules ; 29(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38731597

RESUMEN

Fibrosis is a ubiquitous pathology, and prior studies have indicated that various artemisinin (ART) derivatives (including artesunate (AS), artemether (AM), and dihydroartemisinin (DHA)) can reduce fibrosis in vitro and in vivo. The medicinal plant Artemisia annua L. is the natural source of ART and is widely used, especially in underdeveloped countries, to treat a variety of diseases including malaria. A. afra contains no ART but is also antimalarial. Using human dermal fibroblasts (CRL-2097), we compared the effects of A. annua and A. afra tea infusions, ART, AS, AM, DHA, and a liver metabolite of ART, deoxyART (dART), on fibroblast viability and expression of key fibrotic marker genes after 1 and 4 days of treatment. AS, DHA, and Artemisia teas reduced fibroblast viability 4 d post-treatment in up to 80% of their respective controls. After 4 d of treatment, AS DHA and Artemisia teas downregulated ACTA2 up to 10 fold while ART had no significant effect, and AM increased viability by 10%. MMP1 and MMP3 were upregulated by AS, 17.5 and 32.6 fold, respectively, and by DHA, 8 and 51.8 fold, respectively. ART had no effect, but A. annua and A. afra teas increased MMP3 5 and 16-fold, respectively. Although A. afra tea increased COL3A1 5 fold, MMP1 decreased >7 fold with no change in either transcript by A. annua tea. Although A. annua contains ART, it had a significantly greater anti-fibrotic effect than ART alone but was less effective than A. afra. Immunofluorescent staining for smooth-muscle α-actin (α-SMA) correlated well with the transcriptional responses of drug-treated fibroblasts. Together, proliferation, qPCR, and immunofluorescence results show that treatment with ART, AS, DHA, and the two Artemisia teas yield differing responses, including those related to fibrosis, in human dermal fibroblasts, with evidence also of remodeling of fibrotic ECM.


Asunto(s)
Artemisia , Artemisininas , Fibroblastos , Fibrosis , Humanos , Artemisininas/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Artemisia/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Supervivencia Celular/efectos de los fármacos , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 3 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/genética , Actinas/metabolismo , Actinas/genética , Artesunato/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Arteméter/farmacología , Piel/efectos de los fármacos , Piel/metabolismo , Piel/patología
2.
bioRxiv ; 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37873198

RESUMEN

Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is a deadly and debilitating disease globally affecting millions annually. Emerging drug-resistant Mtb strains endanger the efficacy of the current combination therapies employed to treat tuberculosis; therefore, there is an urgent need to develop novel drugs to combat this disease. Artemisia afra is used traditionally in southern Africa to treat malaria and recently has shown anti tuberculosis activity. This genus synthesizes a prodigious number of phytochemicals, many of which have demonstrated human health effects. Transcriptomic analysis revealed that A. afra exerts different effects on Mtb compared to A. annua or the well-known antimalarial artemisinin, suggesting other phytochemicals present in A. afra with unique modes of action. A biochemometric study of A. afra resulted in the isolation of a methoxylated flavone (1), which displayed considerable activity against Mtb strain mc26230. Compound 1 had an MIC of 312.5 µg/mL and yielded no viable colonies after 6 days of treatment. In addition, 1 was effective in killing hypoxic Mtb cultures, with no viable cultures after 2 days of treatment. This suggested that A. afra is a source of potentially powerful anti-Mtb phytochemicals with novel mechanisms of action.

3.
Pathogens ; 12(2)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36839499

RESUMEN

Mycobacterium tuberculosis (Mtb) is a deadly pathogen and causative agent of human tuberculosis, causing ~1.5 million deaths every year. The increasing drug resistance of this pathogen necessitates novel and improved treatment strategies. A crucial aspect of the host-pathogen interaction is bacterial nutrition. In this study, Artemisia annua and Artemisia afra dichloromethane extracts were tested for bactericidal activity against Mtb strain mc26230 under hypoxia and various infection-associated carbon sources (glycerol, glucose, and cholesterol). Both extracts showed significant bactericidal activity against Mtb, regardless of carbon source. Based on killing curves, A. afra showed the most consistent bactericidal activity against Mtb for all tested carbon sources, whereas A. annua showed the highest bactericidal activity in 7H9 minimal media with glycerol. Both extracts retained their bactericidal activity against Mtb under hypoxic conditions. Further investigations are required to determine the mechanism of action of these extracts and identify their active constituent compounds.

4.
Nat Prod Rep ; 40(7): 1158-1169, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-36541391

RESUMEN

Covering: up to 2017-2022Many small molecule drugs are first discovered in nature, commonly the result of long ethnopharmacological use by people, and then characterized and purified from their biological sources. Traditional medicines are often more sustainable, but issues related to source consistency and efficacy present challenges. Modern medicine has focused solely on purified molecules, but evidence is mounting to support some of the more traditional uses of medicinal biologics. When is a more traditional delivery of a therapeutic appropriate and warranted? What studies are required to establish validity of a traditional medicine approach? Artemisia annua and A. afra are two related but unique medicinal plant species with long histories of ethnopharmacological use. A. annua produces the sesquiterpene lactone antimalarial drug, artemisinin, while A. afra produces at most, trace amounts of the compound. Both species also have an increasing repertoire of modern scientific and pharmacological data that make them ideal candidates for a case study. Here accumulated recent data on A. annua and A. afra are reviewed as a basis for establishing a decision tree for querying their therapeutic use, as well as that of other medicinal plant species.


Asunto(s)
Antimaláricos , Artemisia annua , Artemisininas , Plantas Medicinales , Humanos , Artemisininas/farmacología , Antimaláricos/farmacología
5.
J Ethnopharmacol ; 298: 115587, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35934190

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Chinese medicinal herb, Artemisia annua L., has been used for >2,000 yr as traditional tea infusions to treat a variety of infectious diseases including malaria, and its use is spreading globally (along with A. afra Jacq. ex Willd.) mainly through grassroots efforts. AIM OF THE STUDY: Artemisinin is more bioavailable delivered from the plant, Artemisia annua L. than the pure drug, but little is known about how delivery via a hot water infusion (tea) alters induction of hepatic CYP2B6 and CYP3A4 that metabolize artemisinin. MATERIALS AND METHODS: HepaRG cells were treated with 10 µM artemisinin or rifampicin (positive control), and teas (10 g/L) of A. annua SAM, and A. afra SEN and MAL with 1.6, 0.05 and 0 mg/g DW artemisinin in the leaves, respectively; qPCR and Western blots were used to measure CYP2B6 and CYP3A4 responses. Enzymatic activity of these P450s was measured using human liver microsomes and P450-Glo assays. RESULTS: All teas inhibited activity of CYP2B6 and CYP3A4. Artemisinin and the high artemisinin-containing tea infusion (SAM) induced CYP2B6 and CYP3A4 transcription, but artemisinin-deficient teas, MAL and SEN, did not. Artemisinin increased CYP2B6 and CYP3A4 protein levels, but none of the three teas did, indicating a post-transcription inhibition by all three teas. CONCLUSIONS: This study showed that Artemisia teas inhibit activity and artemisinin autoinduction of CYP2B6 and CYP3A4 post transcription, a response likely the effect of other phytochemicals in these teas. Results are important for understanding Artemisia tea posology.


Asunto(s)
Artemisia annua , Artemisia , Artemisininas , Artemisininas/farmacología , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP3A/genética , Humanos , Extractos Vegetales/farmacología ,
6.
Plant Cell Tissue Organ Cult ; 149(1-2): 105-111, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35345535

RESUMEN

Few therapeutic specialty molecules from in vitro cultures beyond paclitaxel have come to market and although other more complex products like ginseng have also appeared, success has been limited. Often it is not the science that is limiting, but rather regulatory issues that limit considerations of potential products mainly because of costs in getting the product to market. Here we discuss broader thinking of such specialty molecules in the form of dietary supplements, nutraceuticals, herbal medicines, botanical drugs, and pure molecules along with potential complex products from a regulatory standpoint and especially within the realm of approved botanical drugs, e.g., Veregen and Fulyzaq, that have new drug applications (NDAs). The United States food and drug administration (US FDA) regulatory categories are used to provide examples of alternative product options that could prove useful for taking specialty molecules to market.

7.
Planta ; 254(2): 29, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34263417

RESUMEN

MAIN CONCLUSION: This review analyses the most recent scientific research conducted for the purpose of enhancing artemisinin production. It may help to devise better artemisinin enhancement strategies, so that its production becomes cost effective and becomes available to masses. Malaria is a major threat to world population, particularly in South-East Asia and Africa, due to dearth of effective anti-malarial compounds, emergence of quinine resistant malarial strains, and lack of advanced healthcare facilities. Artemisinin, a sesquiterpene lactone obtained from Artemisia annua L., is the most potent drug against malaria and used in the formulation of artemisinin combination therapies (ACTs). Artemisinin is also effective against various types of cancers, many other microbes including viruses, parasites and bacteria. However, this specialty metabolite and its derivatives generally occur in low amounts in the source plant leading to its production scarcity. Considering the importance of this drug, researchers have been working worldwide to develop novel strategies to augment its production both in vivo and in vitro. Due to complex chemical structure, its chemical synthesis is quite expensive, so researchers need to devise synthetic protocols that are economically viable and also work on increasing the in-planta production of artemisinin by using various strategies like use of phytohormones, stress signals, bioinoculants, breeding and transgenic approaches. The focus of this review is to discuss these artemisinin enhancement strategies, understand mechanisms modulating its biosynthesis, and evaluate if roots play any role in artemisinin production. Furthermore, we also have a critical analysis of various assays used for artemisinin measurement. This may help to develop better artemisinin enhancement strategies which lead to decreased price of ACTs and increased profit to farmers.


Asunto(s)
Antimaláricos , Artemisia annua , Artemisininas , Artemisia annua/genética , Fitomejoramiento
8.
Longhua Chin Med ; 42021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34316676

RESUMEN

BACKGROUND: Artemisia annua L.is a well-established medicinal herb used for millennia to treat parasites and fever-related ailments caused by various microbes. Although effective against many infectious agents, the plant is not a miracle cure and there are infections where it has proved ineffective or limited. It is important to report those failures. METHODS: Here artemisinin, artesunate and dried leaf slurries of A. annua were used daily for 6 days in vivo against Babesia microti in mice 2 days post infection at 100 µg artemisinin/kg body weight. Parasitemia was measure before and 15 days days post treatment. Artemisinin and extracts of A. annua also were tested in vitro against six Candida sp. at artemisinin concentrations up to 180 µM and growth measured after cultures were fed drugs once at different stages of growth and also after repeated dosing. RESULTS: A. annua, artesunate, and artemisinin were ineffective in reducing or eliminating parasitemia in B. microti-infected mice treated at 100 µg artemisinin/kg body weight. Although the growth of exponential cultures of many of the tested Candida sp. was inhibited, the response was not sustained and both artemisinin and Artemisia were essentially ineffective at concentrations of artemisinin at up to 180 µM of artemisinin. CONCLUSIONS: Together these results show that artemisinin, its derivatives, and A. annua are ineffective against B. microti and at least six species of Candida.

9.
Acta Pharm Sin B ; 11(2): 322-339, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33643815

RESUMEN

Fibrosis is a pathological reparative process that can occur in most organs and is responsible for nearly half of deaths in the developed world. Despite considerable research, few therapies have proven effective and been approved clinically for treatment of fibrosis. Artemisinin compounds are best known as antimalarial therapeutics, but they also demonstrate antiparasitic, antibacterial, anticancer, and anti-fibrotic effects. Here we summarize literature describing anti-fibrotic effects of artemisinin compounds in in vivo and in vitro models of tissue fibrosis, and we describe the likely mechanisms by which artemisinin compounds appear to inhibit cellular and tissue processes that lead to fibrosis. To consider alternative routes of administration of artemisinin for treatment of internal organ fibrosis, we also discuss the potential for more direct oral delivery of Artemisia plant material to enhance bioavailability and efficacy of artemisinin compared to administration of purified artemisinin drugs at comparable doses. It is our hope that greater understanding of the broad anti-fibrotic effects of artemisinin drugs will enable and promote their use as therapeutics for treatment of fibrotic diseases.

10.
PLoS One ; 16(3): e0240874, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33651845

RESUMEN

Dried-leaf Artemisia annua L. (DLA) antimalarial therapy was shown effective in prior animal and human studies, but little is known about its mechanism of action. Here IC50s and ring-stage assays (RSAs) were used to compare extracts of A. annua (DLAe) to artemisinin (ART) and its derivatives in their ability to inhibit and kill Plasmodium falciparum strains 3D7, MRA1252, MRA1240, Cam3.11 and Cam3.11rev in vitro. Strains were sorbitol and Percoll synchronized to enrich for ring-stage parasites that were treated with hot water, methanol and dichloromethane extracts of DLA, artemisinin, CoArtem™, and dihydroartemisinin. Extracts of A. afra SEN were also tested. There was a correlation between ART concentration and inhibition of parasite growth. Although at 6 hr drug incubation, the RSAs for Cam3.11rev showed DLA and ART were less effective than high dose CoArtem™, 8 and 24 hr incubations yielded equivalent antiparasitic results. For Cam3.11, drug incubation time had no effect. DLAe was more effective on resistant MRA-1240 than on the sensitive MRA-1252 strain. Because results were not as robust as observed in animal and human studies, a host interaction was suspected, so sera collected from adult and pediatric Kenyan malaria patients was used in RSA inhibition experiments and compared to sera from adults naïve to the disease. The sera from both age groups of malaria patients inhibited parasite growth ≥ 70% after treatment with DLAe and compared to malaria naïve subjects suggesting some host interaction with DLA. The discrepancy between these data and in-vivo reports suggested that DLA's effects require an interaction with the host to unlock their potential as an antimalarial therapy. Although we showed there are serum-based host effects that can kill up to 95% of parasites in vitro, it remains unclear how or if they play a role in vivo. These results further our understanding of how DLAe works against the malaria parasite in vitro.


Asunto(s)
Antimaláricos/farmacología , Artemisia annua/química , Extractos Vegetales/farmacología , Plasmodium falciparum/efectos de los fármacos , Adulto , Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antiprotozoarios/inmunología , Antimaláricos/química , Artemisia annua/metabolismo , Artemisininas/farmacología , Niño , Humanos , Estadios del Ciclo de Vida/efectos de los fármacos , Extractos Vegetales/química , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/inmunología
11.
J Ethnopharmacol ; 268: 113638, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33271239

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisia annua has a long history of use in Southeast Asia where it was used to treat "fever", and A. afra has a similar history in southern Africa. Since their discovery, A. annua use, in particular, has expanded globally with millions of people using the plant in therapeutic tea infusions, mainly to treat malaria. AIM OF THE STUDY: In this study, we used in vitro studies to query if and how A. annua and A. afra tea infusions being used across the globe affect asexual Plasmodium falciparum parasites, and their sexual gametocytes. MATERIALS AND METHODS: P. falciparumstrain NF54 was grown in vitro, synchronized, and induced to form gametocytes using N-acetylglucosamine. Cultures during asexual, early, and late stage gametocytogenesis were treated with artemisinin, methylene blue, and A. annua and A. afra tea infusions (5 g DW/L) using cultivars that contained 0-283 µM artemisinin. Asexual parasitemia and gametocytemia were analyzed microscopically. Gametocyte morphology also was scored. Markers of early (PfGEXP5) and late stage (Pfs25) gametocyte gene expression also were measured using RT-qPCR. RESULTS: Both A. annua and A. afra tea infusions reduced gametocytemia in vitro, and the effect was mainly artemisinin dependent. Expression levels of both marker genes were reduced and also occurred with the effect mainly attributed to artemisinin content of four tested Artemisia cultivars. Tea infusions of both species also inhibited asexual parasitemia and although mainly artemisinin dependent, there was a weak antiparasitic effect from artemisinin-deficient A. afra. CONCLUSIONS: These results showed that A. annua and to a lesser extent, A. afra, inhibited parasitemia and gametocytemia in vitro.


Asunto(s)
Artemisia , Artemisininas/farmacología , Extractos Vegetales/farmacología , Plasmodium falciparum/efectos de los fármacos , , Artemisininas/aislamiento & purificación , Células Germinativas/efectos de los fármacos , Células Germinativas/fisiología , Extractos Vegetales/aislamiento & purificación , Plasmodium falciparum/fisiología
15.
J Ethnopharmacol ; 262: 113191, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32730878

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Emergence of drug-resistant and multidrug-resistant Mycobacterium tuberculosis (Mtb) strains is a major barrier to tuberculosis (TB) eradication, as it leads to longer treatment regimens and in many cases treatment failure. Thus, there is an urgent need to explore new TB drugs and combinations, in order to shorten TB treatment and improve outcomes. Here, we evaluated the potential of two Asian and African traditional medicinal plants, Artemisia annua, a natural source of artemisinin (AN), and Artemisia afra, as sources of novel antitubercular agents. AIM OF THE STUDY: Our goal was to measure the activity of A. annua and A. afra extracts against Mtb as potential natural and inexpensive therapies for TB treatment, or as sources of compounds that could be further developed into effective treatments. MATERIALS AND METHODS: The minimum inhibitory concentrations (MICs) of A. annua and A. afra dichloromethane extracts were determined, and concentrations above the MICs were used to evaluate their ability to kill Mtb and Mycobacterium abscessus in vitro. RESULTS: Previous studies showed that A. annua and A. afra inhibit Mtb growth. Here, we show for the first time that Artemisia extracts have a strong bactericidal activity against Mtb. The killing effect of A. annua was much stronger than equivalent concentrations of pure AN, suggesting that A. annua extracts kill Mtb through a combination of AN and additional compounds. A. afra, which produces very little AN, displayed bactericidal activity against Mtb that was substantial but weaker than that of A. annua. In addition, we measured the activity of Artemisia extracts against Mycobacterium abscessus. Interestingly, we observed that while A. annua is not bactericidal, it inhibits growth of M. abscessus, highlighting the potential of this plant in combinatory therapies to treat M. abscessus infections. CONCLUSION: Our results indicate that Artemisia extracts have an enormous potential for treatment of TB and M. abscessus infections, and that these plants contain bactericidal compounds in addition to AN. Combination of extracts with existing antibiotics may not only improve treatment outcomes but also reduce the emergence of resistance to other drugs.


Asunto(s)
Antituberculosos/farmacología , Artemisia , Mycobacterium tuberculosis/efectos de los fármacos , Extractos Vegetales/farmacología , Antituberculosos/aislamiento & purificación , Artemisia annua , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Mycobacterium tuberculosis/fisiología , Extractos Vegetales/aislamiento & purificación
16.
Biomolecules ; 10(2)2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32046156

RESUMEN

Artemisia annua L. and artemisinin, have been used for millennia to treat malaria. We used human liver microsomes (HLM) and rats to compare hepatic metabolism, tissue distribution, and inflammation attenuation by dried leaves of A. annua (DLA) and pure artemisinin. For HLM assays, extracts, teas, and phytochemicals from DLA were tested and IC50 values for CYP2B6 and CYP3A4 were measured. For tissue distribution studies, artemisinin or DLA was orally delivered to rats, tissues harvested at 1 h, and blood, urine and feces over 8 h; all were analyzed for artemisinin and deoxyartemisinin by GC-MS. For inflammation, rats received an intraperitoneal injection of water or lipopolysaccharide (LPS) and 70 mg/kg oral artemisinin as pure drug or DLA. Serum was collected over 8 h and analyzed by ELISA for TNF-α, IL-6, and IL-10. DLA-delivered artemisinin distributed to tissues in higher concentrations in vivo, but elimination remained mostly unchanged. This seemed to be due to inhibition of first-pass metabolism by DLA phytochemicals, as demonstrated by HLM assays of DLA extracts, teas and phytochemicals. DLA was more effective than artemisinin in males at attenuating proinflammatory cytokine production; the data were less conclusive in females. These results suggest that the oral consumption of artemisinin as DLA enhances the bioavailability and anti-inflammatory potency of artemisinin.


Asunto(s)
Artemisia annua/metabolismo , Artemisininas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Animales , Artemisininas/administración & dosificación , Disponibilidad Biológica , Inhibidores Enzimáticos del Citocromo P-450/metabolismo , Inhibidores Enzimáticos del Citocromo P-450/uso terapéutico , Sistema Enzimático del Citocromo P-450/efectos de los fármacos , Femenino , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Malaria/tratamiento farmacológico , Malaria/metabolismo , Masculino , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Extractos Vegetales/farmacología , Hojas de la Planta/metabolismo , Ratas , Ratas Sprague-Dawley
19.
Phytomedicine ; 57: 49-56, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30668322

RESUMEN

BACKGROUND AND OBJECTIVE: Prior small-scale clinical trials showed that Artemisia annua and Artemisia afra infusions, decoctions, capsules, or tablets were low cost, easy to use, and efficient in curing malaria infections. In a larger-scale trial in Kalima district, Democratic Republic of Congo, we aimed to show A. annua and/or A. afra infusions were superior or at least equivalent to artesunate-amodiaquine (ASAQ) against malaria. METHODS: A double blind, randomized clinical trial with 957 malaria-infected patients had two treatment arms: 472 patients for ASAQ and 471 for Artemisia (248 A. annua, 223 A. afra) remained at end of the trial. ASAQ-treated patients were treated per manufacturer posology, and Artemisia-treated patients received 1 l/d of dry leaf/twig infusions for 7 d; both arms had 28 d follow-up. Parasitemia and gametocytes were measured microscopically with results statistically compared among arms for age and gender. RESULTS: Artemisinin content of A. afra was negligible, but therapeutic responses of patients were similar to A. annua-treated patients; trophozoites cleared after 24  h, but took up to 14 d to clear in ASAQ-treated patients. D28 cure rates defined as absence of parasitemia were for pediatrics 82, 91, and 50% for A. afra, A. annua and ASAQ; while for adults cure rates were 91, 100, and 30%, respectively. Fever clearance took 48  h for ASAQ, but 24  h for Artemisia. From D14-28 no Artemisia-treated patients had microscopically detectable gametocytes, while 10 ASAQ-treated patients remained gametocyte carriers at D28. More females than males were gametocyte carriers in the ASAQ arm but were unaffected in the Artemisia arms. Hemoglobin remained constant at 11 g/dl for A. afra after D1, while for A. annua and ASAQ it decreased to 9-9.5  g/dl. Only 5.0% of Artemisia-treated patients reported adverse effects, vs. 42.8% for ASAQ. CONCLUSION: A. annua and A. afra infusions are polytherapies with better outcomes than ASAQ against malaria. In contrast to ASAQ, both Artemisias appeared to break the cycle of malaria by eliminating gametocytes. This study merits further investigation for possible inclusion of Artemisia tea infusions as an alternative for fighting and eradicating malaria.


Asunto(s)
Amodiaquina/uso terapéutico , Antimaláricos/uso terapéutico , Artemisia , Artemisininas/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Preparaciones de Plantas/uso terapéutico , Adolescente , Adulto , Amodiaquina/efectos adversos , Artemisia annua , Artemisininas/efectos adversos , Niño , Método Doble Ciego , Combinación de Medicamentos , Femenino , Fiebre/tratamiento farmacológico , Hemoglobinas/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Parasitemia/tratamiento farmacológico , Preparaciones de Plantas/efectos adversos , Plantas Medicinales , Resultado del Tratamiento
20.
Phytomedicine ; 52: 247-253, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30599905

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) is a major subtype of lung cancer with poor prognosis. Artemisinin (AN), produced naturally in Artemisia annua L., has anti-cancer activity. Artemisinin delivered as dried leaf Artemisia (DLA) showed efficacy against malaria in rodents and humans. HYPOTHESIS/PURPOSE: DLA is posited as being at least as efficacious as artesunate (AS) in its ability to induce cytotoxicity in NSCLC cells and also inhibit tumor growth in a NSCLC xenograft murine model. STUDY DESIGN: Three NSCLC cell lines were used, a non-cancerous human fibroblast line, and xenograft murine models to compare efficacy of artemisinin delivered p.o. via DLA, DLA extracts (DLAe), and AS. METHODS: DLAe was compared to AS using NSCLC cell lines A549, H1299 and PC9 as well as non-cancerous human dermal fibroblasts (HDF) CCD-1108Sk line. Cell viability, cell migration and cell cycle were compared for AS and DLAe. Westerns measured activated caspases-3, -8 and -9 to determine involvement of intrinsic and/or extrinsic apoptotic pathways. Xenograft murine models of A549 and PC9 cells were used to measure tumor growth inhibition by AS or DLA, with tumor volume the primary endpoint. RESULTS: Both DLAe and AS suppressed A549, H1299 and PC9 cell viability with no inhibition of non-cancerous HDF CCD-1108Sk cells. Caspases-3, -8 and -9 were activated, suggesting cell death was stimulated through both intrinsic and/or extrinsic apoptotic pathways. Both drugs induced G2/M or mitotic arrest in PC9 and H1299 cells, and DLAe induced G1 arrest in A549 cells. AS and DLAe induced DNA damage as double stranded breaks evidenced by phosphorylation of histone H2AX. DLAe inhibited migration of PC9 and A549 cells. In A549 xenografted animals, p.o. AS and DLA inhibited relative tumor growth by 40% and 50%, respectively, compared to controls. AS was ineffective at inhibiting PC9-induced tumor growth, but DLA inhibited relative tumor growth by ∼50% compared to controls. CONCLUSION: This is the first study demonstrating efficacy of DLA and mechanistic differences of DLAe vs. AS, against NSCLC cells. Compared to AS, DLA possesses qualities of a novel therapeutic for patients with NSCLC.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Artemisia annua/química , Artemisininas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Células A549 , Animales , Apoptosis/efectos de los fármacos , Artesunato/farmacología , Caspasas/metabolismo , Ciclo Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/efectos de los fármacos , Roturas del ADN de Doble Cadena , Femenino , Humanos , Ratones , Ratones Desnudos , Hojas de la Planta/química , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA