Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Medicine (Baltimore) ; 103(27): e38794, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968484

RESUMEN

BACKGROUND: Extracranial metastases occur in <2% of cases of glioblastoma (GBM). When metastases do occur, bone is the most common destination. Herein, we review clinical characteristics of GBM patients with osseous metastases and evaluate both potential risk factors and prognostic significance. METHODS: Using an institutional database, we identified and retrospectively analyzed 6 patients with both GBM and osseous metastases. We collected data on patient demographics, tumor genetics, clinical courses, and outcomes. Given the rarity of metastatic GBM, we conducted historical comparisons using previously published literature. RESULTS: Five patients with osseous metastases (83%) were male, with a median age of 46 years at GBM diagnosis (range: 20-84). All patients had IDH-wildtype, MGMT promoter unmethylated GBM and 5 (83%) had alterations in TP53. All patients underwent surgical resection for GBM followed by radiation with concurrent and adjuvant temozolomide. Four patients (67%) received bevacizumab prior to bone metastasis diagnosis. Bone metastases were discovered at a median of 12.2 months (range: 5.3-35.2) after GBM diagnosis and 4.8 months after starting bevacizumab (range: 3.5-13.2). Three patients (50%) received immunotherapy. After osseous metastasis diagnosis, the median survival was 25 days (range: 13-225). CONCLUSION: In our cohort, most patients were male and young at the time of GBM diagnosis. All patients had IDH-wildtype, MGMT promoter unmethylated GBM, and most had alterations in TP53, which may be important for osseous metastasis. Most patients received bevacizumab, which has been associated with earlier metastasis. Osseous metastases of GBM occur and portend a dismal prognosis in an already aggressive malignancy.


Asunto(s)
Neoplasias Óseas , Neoplasias Encefálicas , Glioblastoma , Humanos , Masculino , Glioblastoma/genética , Glioblastoma/secundario , Glioblastoma/patología , Glioblastoma/terapia , Persona de Mediana Edad , Femenino , Adulto , Estudios Retrospectivos , Neoplasias Óseas/secundario , Neoplasias Óseas/genética , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Anciano , Anciano de 80 o más Años , Adulto Joven , Pronóstico , Bevacizumab/uso terapéutico , Proteína p53 Supresora de Tumor/genética , Enzimas Reparadoras del ADN/genética , Metilasas de Modificación del ADN , Proteínas Supresoras de Tumor
2.
Nat Commun ; 15(1): 5442, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937436

RESUMEN

Although patients benefit from immune checkpoint inhibition (ICI) therapy in a broad variety of tumors, resistance may arise from immune suppressive tumor microenvironments (TME), which is particularly true of hepatocellular carcinoma (HCC). Since oncolytic viruses (OV) can generate a highly immune-infiltrated, inflammatory TME, OVs could potentially restore ICI responsiveness via recruitment, priming, and activation of anti-tumor T cells. Here we find that on the contrary, an oncolytic vesicular stomatitis virus, expressing interferon-ß (VSV-IFNß), antagonizes the effect of anti-PD-L1 therapy in a partially anti-PD-L1-responsive model of HCC. Cytometry by Time of Flight shows that VSV-IFNß expands dominant anti-viral effector CD8 T cells with concomitant relative disappearance of anti-tumor T cell populations, which are the target of anti-PD-L1. However, by expressing a range of HCC tumor antigens within VSV, combination OV and anti-PD-L1 therapeutic benefit could be restored. Our data provide a cautionary message for the use of highly immunogenic viruses as tumor-specific immune-therapeutics by showing that dominant anti-viral T cell responses can inhibit sub-dominant anti-tumor T cell responses. However, through encoding tumor antigens within the virus, oncolytic virotherapy can generate anti-tumor T cell populations upon which immune checkpoint blockade can effectively work.


Asunto(s)
Antígenos de Neoplasias , Antígeno B7-H1 , Linfocitos T CD8-positivos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Viroterapia Oncolítica , Virus Oncolíticos , Microambiente Tumoral , Virus Oncolíticos/genética , Virus Oncolíticos/inmunología , Animales , Viroterapia Oncolítica/métodos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/inmunología , Microambiente Tumoral/inmunología , Ratones , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/inmunología , Humanos , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/inmunología , Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Interferón beta/metabolismo , Interferón beta/inmunología , Ratones Endogámicos C57BL , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Linfocitos T/inmunología , Femenino , Vesiculovirus/inmunología , Vesiculovirus/genética
3.
J Immunother Precis Oncol ; 7(2): 97-110, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38721406

RESUMEN

Glioblastoma (GBM) is the most prevalent malignant tumor of the central nervous system. The prognosis of GBM is grim, with a median overall survival of 14.6 months and only 6.9% of patients surviving 5 years after the initial diagnosis. Despite poor outcomes, standard therapy of surgical resection, radiotherapy, chemotherapy, and tumor-treating fields has remained largely unchanged. The introduction of immune checkpoint inhibitors (ICI) has been a paradigm shift in oncology, with efficacy across a broad spectrum of cancer types. Nonetheless, investigations of ICIs in both newly diagnosed and recurrent GBM have thus far been disappointing. This lack of clinical benefit has been largely attributed to the highly immunosuppressive nature of GBM. However, immunotherapy still holds promise for the treatment of GBM, with combinatorial strategies offering hope for potentially overcoming these current limitations. In this review, we discuss the outcomes of clinical trials employing ICIs in patients with GBM. Afterward, we review ICI combination strategies and how these combinations may overcome the immunosuppressive microenvironment of GBM in the context of preclinical/clinical evidence and ongoing clinical trials.

4.
Curr Oncol Rep ; 26(4): 377-390, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38488990

RESUMEN

PURPOSE OF REVIEW: This review aims to discuss recent research regarding the biomolecules explored in liquid biopsies and their potential clinical uses for adult-type diffuse gliomas. RECENT FINDINGS: Evaluation of tumor biomolecules via cerebrospinal fluid (CSF) is an emerging technology in neuro-oncology. Studies to date have already identified various circulating tumor DNA, extracellular vesicle, micro-messenger RNA and protein biomarkers of interest. These biomarkers show potential to assist in multiple avenues of central nervous system (CNS) tumor evaluation, including tumor differentiation and diagnosis, treatment selection, response assessment, detection of tumor progression, and prognosis. In addition, CSF liquid biopsies have the potential to better characterize tumor heterogeneity compared to conventional tissue collection and CNS imaging. Current imaging modalities are not sufficient to establish a definitive glioma diagnosis and repeated tissue sampling via conventional biopsy is risky, therefore, there is a great need to improve non-invasive and minimally invasive sampling methods. CSF liquid biopsies represent a promising, minimally invasive adjunct to current approaches which can provide diagnostic and prognostic information as well as aid in response assessment.


Asunto(s)
Neoplasias del Sistema Nervioso Central , ADN Tumoral Circulante , Glioma , MicroARNs , Adulto , Humanos , Biomarcadores de Tumor/genética , Glioma/diagnóstico , Glioma/genética , Biopsia Líquida/métodos , Neoplasias del Sistema Nervioso Central/diagnóstico , ADN Tumoral Circulante/líquido cefalorraquídeo
5.
CNS Oncol ; 12(3): CNS101, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37491842

RESUMEN

Leptomeningeal disease (LMD) remains a challenging condition with a dismal prognosis. In this case study, we report partial response of LMD in a patient with metastatic large cell neuroendocrine carcinoma following treatment with proton craniospinal irradiation (CSI), bevacizumab, and pembrolizumab. Two years after the initial diagnosis, he presented with LMD. He underwent proton CSI with bevacizumab followed by combination therapy with pembrolizumab and bevacizumab. He had a partial disease response with progression-free survival after LMD diagnosis of 4.6 months. He unfortunately developed pembrolizumab induced hypophysitis, after which he experienced rapid neurologic clinical progression. Overall, this novel combination led to a durable partial response which warrants prospective evaluation.


Patients with leptomeningeal disease have few therapeutic options and poor treatment outcomes. Single-agent therapies have not yet been as successful in improving patient survival. In this paper, we discuss how combination therapy with proton craniospinal irradiation, bevacizumab, and pembrolizumab led to neurological improvement and disease regression. These results show that this novel combination may lead to a significant benefit not seen previously with these individual drugs given alone. We hope to lay a foundation for a novel therapeutic approach in a critically high need disease which has previously been thought to be resistant to radiotherapy or immunotherapy.


Asunto(s)
Irradiación Craneoespinal , Protones , Masculino , Humanos , Bevacizumab/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico
6.
J Neurooncol ; 164(1): 239-247, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37450072

RESUMEN

PURPOSE: Belzutifan is a selective inhibitor of hypoxia-inducible factor 2 alpha (HIF-2a) that has emerged as a targeted therapy option for Von Hippel-Lindau (VHL) syndrome-associated tumors with recent FDA approval. There is limited real-world evidence regarding safety and efficacy in CNS hemangioblastoma. Our objective was to report on our clinical experience with belzutifan in adult patients with VHL-associated CNS hemangioblastoma. METHODS: We retrospectively reviewed our institutional experience of belzutifan in adult patients (> 18 years of age at time of therapy) with VHL and craniospinal CNS hemangioblastomas not amenable to surgical resection. The period for study review was October 2021 to March 2023. RESULTS: 4 patients (all female) with a median age of 36 years at time of belzutifan initiation were included. Median duration of therapy at last follow-up was 11 months (6-17 months). All patients had radiographic response to therapy after a median of 3 months (2-5 months), with maximal response to therapy after a median of 8 months (3-17 months). Therapy was well tolerated, with the most common adverse effect being anemia. No patients had treatment pauses or dose adjustments due to belzutifan-related toxicity. No patients experienced hypoxia. CONCLUSION: We showed that belzutifan is safe and well-tolerated with strong disease response for CNS hemangioblastoma in adults with VHL, supporting continued use of belzutifan in this patient population. Future studies should assess duration of treatment, effects of cessation after long-term use, and markers of therapeutic response.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Hemangioblastoma , Enfermedad de von Hippel-Lindau , Adulto , Humanos , Femenino , Hemangioblastoma/patología , Estudios Retrospectivos , Enfermedad de von Hippel-Lindau/complicaciones , Enfermedad de von Hippel-Lindau/tratamiento farmacológico , Enfermedad de von Hippel-Lindau/patología , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Neoplasias del Sistema Nervioso Central/complicaciones , Sistema Nervioso Central/patología , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau
7.
Pharmaceuticals (Basel) ; 16(6)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37375742

RESUMEN

Despite decades of research and numerous clinical trials, the prognosis of patients diagnosed with glioblastoma (GBM) remains dire with median observed survival at 8 months. There is a critical need for novel treatments for GBM, which is the most common malignant primary brain tumor. Major advances in cancer therapeutics such as immune checkpoint inhibitors and chimeric antigen receptor (CAR) T-cell therapy have not yet led to improved outcomes for GBM. Conventional therapy of surgery followed by chemoradiation with or without tumor treating fields remains the standard of care. One of the many approaches to GBM therapy currently being explored is viral therapies. These typically work by selectively lysing target neoplastic cells, called oncolysis, or by the targeted delivery of a therapeutic transgene via a viral vector. In this review, we discuss the underlying mechanisms of action and describe both recent and current human clinical trials using these viruses with an emphasis on promising viral therapeutics that may ultimately break the field's current stagnant paradigm.

8.
Mol Ther Oncolytics ; 29: 129-142, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37313455

RESUMEN

In multiple models of oncolytic virotherapy, it is common to see an early anti-tumor response followed by recurrence. We have previously shown that frontline treatment with oncolytic VSV-IFN-ß induces APOBEC proteins, promoting the selection of specific mutations that allow tumor escape. Of these mutations in B16 melanoma escape (ESC) cells, a C-T point mutation in the cold shock domain-containing E1 (CSDE1) gene was present at the highest frequency, which could be used to ambush ESC cells by vaccination with the mutant CSDE1 expressed within the virus. Here, we show that the evolution of viral ESC tumor cells harboring the escape-promoting CSDE1C-T mutation can also be exploited by a virological ambush. By sequential delivery of two oncolytic VSVs in vivo, tumors which would otherwise escape VSV-IFN-ß oncolytic virotherapy could be cured. This also facilitated the priming of anti-tumor T cell responses, which could be further exploited using immune checkpoint blockade with the CD200 activation receptor ligand (CD200AR-L) peptide. Our findings here are significant in that they offer the possibility to develop oncolytic viruses as highly specific, escape-targeting viro-immunotherapeutic agents to be used in conjunction with recurrence of tumors following multiple different types of frontline cancer therapies.

9.
Pharmaceutics ; 15(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37111620

RESUMEN

Glioblastoma (GBM) is the most common malignant primary brain tumor and confers a dismal prognosis. With only two FDA-approved therapeutics showing modest survival gains since 2005, there is a great need for the development of other disease-targeted therapies. Due, in part, to the profound immunosuppressive microenvironment seen in GBMs, there has been a broad interest in immunotherapy. In both GBMs and other cancers, therapeutic vaccines have generally yielded limited efficacy, despite their theoretical basis. However, recent results from the DCVax-L trial provide some promise for vaccine therapy in GBMs. There is also the potential that future combination therapies with vaccines and adjuvant immunomodulating agents may greatly enhance antitumor immune responses. Clinicians must remain open to novel therapeutic strategies, such as vaccinations, and carefully await the results of ongoing and future trials. In this review of GBM management, the promise and challenges of immunotherapy with a focus on therapeutic vaccinations are discussed. Additionally, adjuvant therapies, logistical considerations, and future directions are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA