Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sports Med ; 53(11): 2267-2280, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37747665

RESUMEN

INTRODUCTION: In 2022, the European Space Agency (ESA) held the first astronaut selection since the beginning of space flight that allowed physically impaired astronaut candidates to be selected in an inclusive European astronaut corp. The main objective of the 'parastronaut feasibility project' is to investigate if physical performance tests (PPTs) should be part of future astronaut recruitments for an inclusive ESA astronaut corps to test their flight readiness. The objectives of this study are (1) to assess if future (para-)astronaut recruitment campaigns should include PPTs to ensure flight readiness, safety, and mission success; (2) if so, which areas of physical performance should be tested to mimic nominal and off-nominal crew activities during all phases of a space mission; and (3) to assess whether PPTs are compatible with the ethical principles of equal opportunity for an inclusive pool of astronaut candidates. METHODS: 58 subject matter experts with specialisations in space physiology, operational human space flight, space medicine, medical ethics or parasports were interviewed in two rounds using the Delphi method. Both qualitative and quantitative data were obtained, analysed, categorised, and visualised using the qualitative research tool NVivo and Excel. RESULTS: Two thirds of the experts were in favour of adding PPTs to future astronaut selections and recommended to implement them for both physically unimpaired and physically impaired astronaut candidates. The main physical skills that should be examined are space-related, mission-specific coordination skills of the upper extremities, followed by endurance performance and stamina, dexterity of the upper extremities, motor learning ability and mobility. CONCLUSION: Based on this study, it is clear that PPTs should be part of future astronaut selection campaigns. However, the content of these PPTs must be carefully evaluated and validated using existing data on crew activities before, during, and after space flight, while considering equal opportunities in the context of human space flight. Historical considerations have influenced current astronaut requirements, but this study's findings indicate a need to reassess these requirements for future inclusive selection campaigns, as their validity and necessity remain uncertain.

2.
Sci Rep ; 13(1): 5950, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37045858

RESUMEN

Employing a methodology reported in a recent theoretical study on male astronauts, this study estimated the effects of body size and aerobic countermeasure (CM) exercise in a four-person, all-female crew composed of individuals drawn from a stature range (1.50- to 1.90-m) representative of current space agency requirements (which exist for stature, but not for body mass) upon total energy expenditure (TEE), oxygen (O2) consumption, carbon dioxide (CO2) and metabolic heat (Hprod) production, and water requirements for hydration, during space exploration missions. Assuming geometric similarity across the stature range, estimates were derived using available female astronaut data (mean age: 40-years; BMI: 22.7-kg·m-2; resting VO2 and VO2max: 3.3- and 40.5-mL·kg-1·min-1) on 30- and 1080-day missions, without and with, ISS-like countermeasure exercise (modelled as 2 × 30-min aerobic exercise at 75% VO2max, 6-day·week-1). Where spaceflight-specific data/equations were not available, terrestrial equivalents were used. Body size alone increased 24-h TEE (+ 30%), O2 consumption (+ 60%), CO2 (+ 60%) and Hprod (+ 60%) production, and water requirements (+ 17%). With CM exercise, the increases were + 25-31%, + 29%, + 32%, + 38% and + 17-25% across the stature range. Compared to the previous study of theoretical male astronauts, the effect of body size on TEE was markedly less in females, and, at equivalent statures, all parameter estimates were lower for females, with relative differences ranging from -5% to -29%. When compared at the 50th percentile for stature for US females and males, these differences increased to - 11% to - 41% and translated to larger reductions in TEE, O2 and water requirements, and less CO2 and Hprod during 1080-day missions using CM exercise. Differences between female and male theoretical astronauts result from lower resting and exercising O2 requirements (based on available astronaut data) of female astronauts, who are lighter than male astronauts at equivalent statures and have lower relative VO2max values. These data, combined with the current move towards smaller diameter space habitat modules, point to a number of potential advantages of all-female crews during future human space exploration missions.


Asunto(s)
Dióxido de Carbono , Vuelo Espacial , Humanos , Masculino , Femenino , Adulto , Citocromo P-450 CYP2B1 , Astronautas , Ejercicio Físico , Tamaño Corporal , Oxígeno , Agua
3.
Radiat Environ Biophys ; 60(2): 213-231, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33929575

RESUMEN

An alternative approach that is particularly suitable for the radiation health risk assessment (HRA) of astronauts is presented. The quantity, Radiation Attributed Decrease of Survival (RADS), representing the cumulative decrease in the unknown survival curve at a certain attained age, due to the radiation exposure at an earlier age, forms the basis for this alternative approach. Results are provided for all solid cancer plus leukemia incidence RADS from estimated doses from theoretical radiation exposures accumulated during long-term missions to the Moon or Mars. For example, it is shown that a 1000-day Mars exploration mission with a hypothetical mission effective dose of 1.07 Sv at typical astronaut ages around 40 years old, will result in the probability of surviving free of all types of solid cancer and leukemia until retirement age (65 years) being reduced by 4.2% (95% CI 3.2; 5.3) for males and 5.8% (95% CI 4.8; 7.0) for females. RADS dose-responses are given, for the outcomes for incidence of all solid cancer, leukemia, lung and female breast cancer. Results showing how RADS varies with age at exposure, attained age and other factors are also presented. The advantages of this alternative approach, over currently applied methodologies for the long-term radiation protection of astronauts after mission exposures, are presented with example calculations applicable to European astronaut occupational HRA. Some tentative suggestions for new types of occupational risk limits for space missions are given while acknowledging that the setting of astronaut radiation-related risk limits will ultimately be decided by the Space Agencies. Suggestions are provided for further work which builds on and extends this new HRA approach, e.g., by eventually including non-cancer effects and detailed space dosimetry.


Asunto(s)
Neoplasias Inducidas por Radiación/epidemiología , Enfermedades Profesionales/epidemiología , Medición de Riesgo/métodos , Vuelo Espacial , Adulto , Anciano , Anciano de 80 o más Años , Astronautas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Teóricos , Exposición Profesional , Exposición a la Radiación , Protección Radiológica
4.
Exp Physiol ; 106(5): 1149-1158, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33704837

RESUMEN

NEW FINDINGS: What is the central question of this study? Recently, an internal jugular venous thrombus was identified during spaceflight: does microgravity induce venous and/or coagulation pathophysiology, and thus an increased risk of venous thromboembolism (VTE)? What is the main finding and its importance? Whilst data are limited, this systematic review suggests that microgravity and its analogues may induce an enhanced coagulation state due to venous changes most prominent in the cephalad venous system, as a consequence of changes in venous flow, distension, pressures, endothelial damage and possibly hypercoagulability in microgravity and its analogues. However, whether such changes precipitate an increased VTE risk in spaceflight remains to be determined. ABSTRACT: Recently, an internal jugular venous thrombus was identified during spaceflight, but whether microgravity induces venous and/or coagulation pathophysiology, and thus, an increased risk of venous thromboembolism (VTE) is unclear. Therefore, a systematic (Cochrane compliant) review was performed of venous system or coagulation parameters in actual spaceflight (microgravity) or ground-based analogues in PubMed, MEDLINE, Ovid EMBASE, Cochrane Library, European Space Agency, National Aeronautics and Space Administration, and Deutsches Zentrum für Luft-und Raumfahrt databases. Seven-hundred and eight articles were retrieved, of which 26 were included for evaluation with 21 evaluating venous, and five coagulation parameters. Nine articles contained spaceflight data, whereas the rest reported ground-based analogue data. There is substantial variability in study design, objectives and outcomes. Yet, data suggested cephalad venous system dilatation, increased venous pressures and decreased/reversed flow in microgravity. Increased fibrinogen levels, presence of thrombin generation markers and endothelial damage were also reported. Limited human venous and coagulation system data exist in spaceflight, or its analogues. Nevertheless, data suggest spaceflight may induce an enhanced coagulation state in the cephalad venous system, as a consequence of changes in venous flow, distension, pressures, endothelial damage and possibly hypercoagulability. Whether such changes precipitate an increased VTE risk in spaceflight remains to be determined.


Asunto(s)
Vuelo Espacial , Trombosis , Ingravidez , Coagulación Sanguínea , Humanos , Venas Yugulares/fisiología , Ingravidez/efectos adversos
5.
Aerosp Med Hum Perform ; 92(2): 129-134, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33468296

RESUMEN

INTRODUCTION: In the 1990s, Canada, member states of the European Space Agency, Japan, the Russian Federation, and the United States entered into an international agreement Concerning Cooperation on the Civil International Space Station. Among the many unique infrastructure challenges, partners were to develop a comprehensive international medical system and related processes to enable crew medical certification and medical support for all phases of missions, in a framework to support a multilateral space program of unprecedented size, scope, and degree of integration. During the Shuttle/Mir Program, physicians and specialized experts from the United States and Russia studied prototype systems and developed and operated collaborative mechanisms. The 1998 NASA Memoranda of Understanding with each of the other four partners established the Multilateral Medial Policy Board, the Multilateral Space Medicine Board, and the Multilateral Medical Operations Panel as medical authority bodies to ensure International Space Station (ISS) crew health and performance. Since 1998, the medical system of the ISS Program has ensured health and excellent performance of the international crewsan essential prerequisite for the construction and operation of the ISSand prevented mission-impacting medical events and adverse health outcomes. As the ISS is completing its second decade of crewed operation, it is prudent to appraise its established medical framework for its utility moving forward in new space exploration initiatives. Not only the ISS Program participants, but other nations and space agencies as well, concomitant with commercial endeavors in human spaceflight, can benefit from this evidence for future human exploration programs.Doarn CR, Polk JD, Grigoriev A, Comtois J-M, Shimada K, Weerts G, Dervay JP, Taddeo TA, Sargsyan A. A framework for multinational medical support for the International Space Station: a model for exploration. Aerosp Med Hum Perform. 2021; 92(2):129134.


Asunto(s)
Medicina Aeroespacial , Astronautas , Vuelo Espacial , Nave Espacial , Canadá , Europa (Continente) , Humanos , Cooperación Internacional , Japón , Federación de Rusia , Estados Unidos
6.
Spine J ; 21(3): 477-491, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32966906

RESUMEN

BACKGROUND CONTEXT: One of the primary changes in the neuromuscular system in response to microgravity is skeletal muscle atrophy, which occurs especially in muscles that maintain posture while being upright on Earth. Reduced size of paraspinal and abdominal muscles has been documented after spaceflight. Exercises are undertaken on the International Space Station (ISS) during and following space flight to remediate these effects. Understanding the adaptations which occur in trunk muscles in response to microgravity could inform the development of specific countermeasures, which may have applications for people with conditions on Earth such as low back pain (LBP). PURPOSE: The aim of this study was to examine the changes in muscle size and function of the lumbar multifidus (MF) and anterolateral abdominal muscles (1) in response to exposure to 6 months of microgravity on the ISS and (2) in response to a 15-day reconditioning program on Earth. DESIGN: Prospective longitudinal series. PATIENT SAMPLE: Data were collected from five astronauts who undertook seven long-duration missions on the ISS. OUTCOME MEASURES: For the MF muscle, measures included cross-sectional area (CSA) and linear measures to assess voluntary isometric contractions at vertebral levels L2 to L5. For the abdominal muscles, the thickness of the transversus abdominis (TrA), obliquus internus abdominis (IO) and obliquus externus abdominis (EO) muscles at rest and on contraction were measured. METHODS: Ultrasound imaging of trunk muscles was conducted at four timepoints (preflight, postflight, mid-reconditioning, and post reconditioning). Data were analyzed using multilevel linear models to estimate the change in muscle parameters of interest across three time periods. RESULTS: Beta-coefficients (estimates of the expected change in the measure across the specified time period, adjusted for the baseline measurement) indicated that the CSA of the MF muscles decreased significantly at all lumbar vertebral levels (except L2) in response to exposure to microgravity (L3=12.6%; L4=6.1%, L5=10.3%; p<.001), and CSAs at L3-L5 vertebral levels increased in the reconditioning period (p<.001). The thickness of the TrA decreased by 34.1% (p<.017), IO decreased by 15.4% (p=.04), and the combination of anterolateral abdominal muscles decreased by 16.2% (p<.001) between pre- and postflight assessment and increased (TrA<0.008; combined p=.035) during the postreconditioning period. Results showed decreased contraction of the MF muscles at the L2 (from 12.8% to 3.4%; p=.007) and L3 (from 12.2% to 5%; p=.032) vertebral levels following exposure to microgravity which increased (L2, p=.046) after the postreconditioning period. Comparison with preflight measures indicated that there were no residual changes in muscle size and function after the postreconditioning period, apart from CSA of MF at L2, which remained 15.3% larger than preflight values (p<.001). CONCLUSIONS: In-flight exercise countermeasures mitigated, but did not completely prevent, changes in the size and function of the lumbar MF and anterolateral abdominal muscles. Many of the observed changes in size and control of the MF and abdominal muscles that occurred in response to prolonged exposure to microgravity paralleled those seen in people with LBP or exposed to prolonged bed rest on Earth. Daily individualized postflight reconditioning, which included both motor control training and weight-bearing exercises with an emphasis on retraining strength and endurance to re-establish normal postural alignment with respect to gravity, restored the decreased size and control of the MF (at the L3-L5 vertebral levels) and anterolateral abdominal muscles. Drawing parallels between changes which occur to the neuromuscular system in microgravity and which exercises best recover muscle size and function could help health professionals tailor improved interventions for terrestrial populations. Results suggested that the principles underpinning the exercises developed for astronauts following prolonged exposure to microgravity (emphasizing strength and endurance training to re-establish normal postural alignment and distribution of load with respect to gravity) can also be applied for people with chronic LBP, as the MF and anterolateral abdominal muscles were affected in similar ways in both populations. The results may also inform the development of new astronaut countermeasures targeting the MF and abdominal muscles.


Asunto(s)
Dolor de la Región Lumbar , Ingravidez , Músculos Abdominales/diagnóstico por imagen , Humanos , Dolor de la Región Lumbar/diagnóstico por imagen , Músculos Paraespinales/diagnóstico por imagen , Estudios Prospectivos , Ingravidez/efectos adversos
7.
Sci Rep ; 10(1): 13836, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32796944

RESUMEN

The purpose of this theoretical study was to estimate the effects of body size and countermeasure (CM) exercise in an all-male crew composed of individuals drawn from a height range representative of current space agency requirements upon total energy expenditure (TEE), oxygen (O2) consumption, carbon dioxide (CO2) and metabolic heat (Hprod) production, and water requirements for hydration, during space exploration missions. Using a height range of 1.50- to 1.90-m, and assuming geometric similarity across this range, estimates were derived for a four-person male crew (age: 40-years; BMI: 26.5-kg/m2; resting VO2 and VO2max: 3.3- and 43.4-mL/kg/min) on 30- to 1,080-d missions, without and with, ISS-like CM exercise (modelled as 2 × 30-min aerobic exercise at 75% VO2max, 6-d/week). Where spaceflight-specific data/equations were not available, terrestrial data/equations were used. Body size alone increased 24-h TEE (+ 44%), O2 consumption (+ 60%), CO2 (+ 60%) and Hprod (+ 60%) production, and water requirements (+ 19%). With CM exercise, the increases were + 29 to 32%, + 31%, + 35%, + 42% and + 23 to 33% respectively, across the height range. Compared with a 'small-sized' (1.50-m) crew without CM exercise, a 'large-sized' (1.90-m) crew exercising would require an additional 996-MJ of energy, 52.5 × 103-L of O2 and 183.6-L of water, and produce an additional 44.0 × 103-L of CO2 and 874-MJ of heat each month. This study provides the first insight into the potential implications of body size and the use of ISS-like CM exercise upon the provision of life-support during exploration missions. Whilst closed-loop life-support (O2, water and CO2) systems may be possible, strategies to minimize and meet crew metabolic energy needs, estimated in this study to increase by 996-MJ per month with body size and CM exercise, are required.


Asunto(s)
Tamaño Corporal/fisiología , Ingestión de Líquidos/fisiología , Metabolismo Energético/fisiología , Ejercicio Físico/fisiología , Estado de Hidratación del Organismo/fisiología , Consumo de Oxígeno/fisiología , Vuelo Espacial , Adulto , Dióxido de Carbono/metabolismo , Humanos , Masculino
8.
Musculoskelet Sci Pract ; 27 Suppl 1: S15-S22, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28173928

RESUMEN

Spaceflight and exposure to microgravity have wide-ranging effects on many systems of the human body. At the European Space Agency (ESA), a physiotherapist plays a key role in the multidisciplinary ESA team responsible for astronaut health, with a focus on the neuro-musculoskeletal system. In conjunction with a sports scientist, the physiotherapist prepares the astronaut for spaceflight, monitors their exercise performance whilst on the International Space Station (ISS), and reconditions the astronaut when they return to Earth. This clinical commentary outlines the physiotherapy programme, which was developed over nine long-duration missions. Principles of physiotherapy assessment, clinical reasoning, treatment programme design (tailored to the individual) and progression of the programme are outlined. Implications for rehabilitation of terrestrial populations are discussed. Evaluation of the reconditioning programme has begun and challenges anticipated after longer missions, e.g. to Mars, are considered.


Asunto(s)
Astronautas , Enfermedades Neuromusculares/etiología , Enfermedades Neuromusculares/rehabilitación , Modalidades de Fisioterapia , Vuelo Espacial , Medidas contra la Ingravidez , Ingravidez/efectos adversos , Adulto , Europa (Continente) , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA