Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Adv Biosyst ; 4(12): e2000003, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32815321

RESUMEN

Extracellular vesicles (EVs)-nanoscale phospholipid vesicles secreted by cells-present new opportunities for molecular diagnosis from non-invasive liquid biopsies. Single EV protein analysis can be extremely valuable in studying EVs as circulating cancer biomarkers, but it is technically challenging due to weak detection signals associated with limited amounts of epitopes and small surface areas for antibody labeling. Here, a new, simple method that enables multiplexed analyses of EV markers with improved sensitivities is reported. Specifically, plasmon-enhanced fluorescence detection is implemented that amplifies fluorescence signals using surface plasmon resonances excited by periodic gold nanohole structures. It is shown that fluorescence signals in multiple channels are amplified by one order of magnitude, and both transmembrane and intravesicular markers can be detected at the single EV level. This approach can offer additional insight into understanding subtypes, heterogeneity, and production dynamics of EVs during disease development and progression.


Asunto(s)
Biomarcadores de Tumor , Vesículas Extracelulares , Resonancia por Plasmón de Superficie/métodos , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/química , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Humanos , Células MCF-7 , Neoplasias/sangre , Neoplasias/diagnóstico , Espectrometría de Fluorescencia
2.
Anal Chem ; 90(16): 9975-9982, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30044615

RESUMEN

Using compact desktop NMR systems for rapid characterization of relaxation properties directly after synthesis can expedite the development of functional magnetic nanoparticles. Therefore, an automated system that combines a miniaturized NMR relaxometer and a flow-based microreactor for online synthesis and characterization of magnetic iron oxide nanoparticles is constructed and tested. NMR relaxation properties are quantified online with a 0.5 T permanent magnet for measurement of transverse ( T2) and longitudinal ( T1) relaxation times. Nanoparticles with a primary particle size of about 25 nm are prepared by coprecipitation in a tape-based microreactor that utilizes 3D hydrodynamic flow focusing to avoid channel clogging. Cluster sizes are expeditiously optimized for maximum transverse relaxivity of 115.5 mM s-1. The compact process control system is an efficient tool that speeds up synthesis optimization and product characterization of magnetic nanoparticles for nanomedical, theranostic, and NMR-based biosensing applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA