RESUMEN
Alzheimer's disease (AD) is a progressive neurodegenerative disease, and accumulating evidence suggested that proteostatic imbalance is a key feature of the disease. Traditional Chinese medicine exhibits a multi-target therapeutic effect, making it highly suitable for addressing protein homeostasis imbalance in AD. Dendrobium officinale is a traditional Chinese herbs commonly used as tonic agent in China. In this study, we investigated protection effects of D. officinale phenolic extract (SH-F) and examined its underlying mechanisms by using transgenic Caenorhabditis elegans models. We found that treatment with SH-F (50 µg/mL) alleviated Aß and tau protein toxicity in worms, and also reduced aggregation of polyglutamine proteins to help maintain proteostasis. RNA sequencing results showed that SH-F treatment significantly affected the proteolytic process and autophagy-lysosomal pathway. Furthermore, we confirmed that SH-F showing maintainance of proteostasis was dependent on bec-1 by qRT-PCR analysis and RNAi methods. Finally, we identified active components of SH-F by LC-MS method, and found the five major compounds including koaburaside, tyramine dihydroferulate, N-p-trans-coumaroyltyramine, naringenin and isolariciresinol are the main bioactive components responsible for the anti-AD activity of SH-F. Our findings provide new insights to develop a treatment strategy for AD by targeting proteostasis, and SH-F could be an alternative drug for the treatment of AD.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Autofagia , Caenorhabditis elegans , Dendrobium , Modelos Animales de Enfermedad , Extractos Vegetales , Proteostasis , Animales , Caenorhabditis elegans/efectos de los fármacos , Enfermedad de Alzheimer/tratamiento farmacológico , Dendrobium/química , Proteostasis/efectos de los fármacos , Autofagia/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Extractos Vegetales/farmacología , Animales Modificados Genéticamente , Proteínas tau/metabolismo , Fenoles/farmacología , Fenoles/aislamiento & purificación , Flavanonas/farmacología , Medicamentos Herbarios Chinos/farmacología , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificaciónRESUMEN
Coix seed oil (CSO) has many beneficial effects, but there is limited research on its influence on the processes and mechanisms related to senescence. Here, we used Caenorhabditis elegans as an in vivo model to investigate CSO's bioeffects on longevity. CSO (1 mg/mL) significantly extended the mean lifespan of C. elegans by over 22.79% and markedly improved stress resistance. Gene-specific mutant studies showed that the CSO-mediated increase in life expectancy was dependent on mev-1, hsf-1 and daf-16, but not daf-2. Furthermore, CSO significantly upregulated stress-inducible genes, including daf-16 and its downstream genes (sod-3, hsp-16.2 and gst-4). In addition, four major fatty acids, linoleic, oleic, palmitic and stearic, played leading roles in C. elegans' extended lifespan. Thus, CSO increased the life expectancy of, and enhanced the stress resistance in, C. elegans mainly through daf-16 and its downstream genes, but not through the insulin/insulin-like growth factor 1 signaling pathway.
Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Coix , Longevidad/efectos de los fármacos , Aceites de Plantas/administración & dosificación , Semillas , Estrés Fisiológico/efectos de los fármacos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Coix/química , Citocromos b/genética , Citocromos b/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Aceites de Plantas/aislamiento & purificación , Semillas/química , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Cistanche deserticola has been found to exert protection against aging and age-related diseases, but mechanisms underlying its longevity effects remain largely unclear. Here, the multicellular model organism Caenorhabditis elegans was employed to identify lifespan extending and protective effects against ß-amyloid (Aß) induced toxicity by echinacoside (ECH), a phenylethanoid glycoside isolated from C. deserticola. Our results showed that ECH extends the mean lifespan of worms and increases their survival under oxidative stress. Levels of intracellular reactive oxygen species and fat accumulation were also significantly suppressed by ECH. Moreover, ECH-mediated lifespan extension was found to be dependent on mev-1, eat-2, daf-2, and daf-16, but not sir-2.1 or hsf-1 genes. Furthermore, ECH triggered DAF-16 nuclear localization and upregulated two of its downstream targets, sod-3 and hsp-16.2. In addition, ECH significantly improved the survival of CL4176 worms in response to proteotoxic stress induced by Aß protein aggregation. Collectively, these findings suggested that reactive oxygen species scavenging, dietary restriction, and insulin/insulin-like growth factor signaling pathways could be partly involved in ECH-mediated lifespan extension. Thus, ECH may target multiple longevity mechanisms to extend lifespan and have a potency to prevent Alzheimer's disease progression.