Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Front Plant Sci ; 15: 1405168, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39145191

RESUMEN

Agarwood is a valuable traditional medicine and fragrance. The production process is a typical injury-induced defense response. Currently, there are approximately 22 known species in the genus Aquilaria Lam., all of which can produce agarwood, whereas there are only two legal species of traditional Chinese medicinal agarwood, Aquilaria sinensis (Lour.) Spreng. and Aquilaria agallocha (Lour.) Roxb. The Taiwan herbal Pharmacopoeia of China stipulates that the medicinal agarwood species are A. sinensis and its relatives in the same genus. Moreover, there are five species of agarwood available for clinical medicinal use in Japan, including A. agallocha and A. sinensis, which are often confused with each other or used in a mixed way in the trade process. Therefore, accurate identification of traditional Chinese medicinal agarwood species is important to ensure the authenticity of traditional medicines and to guide the safety of clinical medication. In this study, 59 specific single-nucleotide polymorphism loci were screened and obtained from the chloroplast genomes of 12 species of the genus Aquilaria Lam. We established an identification method for traditional Chinese medicinal agarwood using mini-barcoding combined with high-resolution melting (HRM) and designed and validated 10 pairs of primers from the psbM-trnD, psbA, rps16, petN, ndhE-psaC, rps4, atpE, ycf1, rps15-trnN, and matK regions. The amplification products were all less than 200 bp, with a high success rate of amplification. The method was applied to successfully identify traditional Chinese medicinal agarwood species from commercial agarwood samples. Overall, the sensitivity of this method was sufficient to detect 1% of adulterants in medicinal agarwood products, proving that mini-barcoding HRM is a powerful and flexible tool. This method can be used as a fast and effective high-throughput method for authenticity testing of traditional Chinese medicinal agarwood and its raw materials containing agarwood-containing proprietary Chinese medicines and is recommended for industrial applications.

2.
Plant Physiol Biochem ; 214: 108922, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39038384

RESUMEN

The LATERAL ORGAN BOUNDARIES DOMAIN (LBD) protein, named for its LATERAL ORGAN BOUNDARIES (LOB) domain, is a member of a class of specific transcription factors commonly found in plants and is absent from all other groups of organisms. LBD TFs have been systematically identified in about 35 plant species and are involved in regulating various aspects of plant growth and development. However, research on the signaling network and regulatory functions of LBD TFs is insufficient, and only a few members have been studied. Moreover, a comprehensive review of these existing studies is lacking. In this review, the structure, regulatory mechanism and function of LBD TFs in recent years were reviewed in order to better understand the role of LBD TFs in plant growth and development, and to provide a new perspective for the follow-up study of LBD TFs.


Asunto(s)
Proteínas de Plantas , Factores de Transcripción , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Dominios Proteicos , Desarrollo de la Planta , Plantas/metabolismo , Plantas/genética
3.
Front Plant Sci ; 15: 1437105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070916

RESUMEN

Obtained from Aquilaria Lam. and Gyrinops Gaertn., agarwood is a prestigious perfume and medicinal material in the world. Its primary chemical constituents and indicators of agarwood's development are 2-(2-phenylethyl)chromones (PECs). However, how PECs affect its quality, accumulation, and transformation pattern is still unclear. The present study investigated this issue by monitoring resin filling in agarwood generated by the whole-tree agarwood-inducing technique over a span of a year, observing the ethanol extract concentration at different sampling times, and statistically examining PECs in agarwood from each sampling period. In agarwood, the resin accumulated over time, except during the 4th-6th month due to the creation of a barrier layer. The relative content of total PECs demonstrated an overall increase throughout the year but a decrease from the 4th month to the 6th month, and the relative content of 19 PECs that persisted throughout the year was positively correlated with the content of ethanol extracts. In addition, the process of chromone accumulation was accompanied by the production and transformation of different types of chromones, with flindersia type 2-(2-phenylethyl)chromones, epoxy-2-(2-phenylethyl)chromones, and diepoxy-2-(2-phenylethyl)chromones being the major chromone components; in addition, the content of 5,6,7,8-tetrahydro-2-(2-phenylethyl)chromones kept increasing after 6 months of agarwood formation. Three main trends were identified from 58 analogs of PECs, each with notable variation. The first type had the highest content at the beginning of resin formation. The second type had the highest content at 6 months and then started to decrease, and the third type had a slowly increasing content. As a whole, this study systematically investigated the accumulation of PECs during injury-induced agarwood production in A. sinensis, which is of scientific significance in resolving the transformation of PECs and revealing the secret of agarwood formation.

4.
Molecules ; 29(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38893436

RESUMEN

Volatile oil serves as a traditional antipyretic component of Bupleuri Radix. Bupleurum marginatum var. stenophyllum (Wolff) Shan et Y. Li belongs to the genus Bupleurum and is distinguished for its high level of saikosaponins and volatile oils; nonetheless, prevailing evidence remains inconclusive regarding its viability as an alternative resource of other official species. This study aims to systematically compare the volatile oil components of both dried and fresh roots of B. marginatum var. stenophyllum and the four legally available Bupleurum species across their chemical, molecular, bionics, and anatomical structures. A total of 962 compounds were determined via GC-MS from the dried roots; B. marginatum var. stenophyllum showed the greatest differences from other species in terms of hydrocarbons, esters, and ketones, which was consistent with the results of fresh roots and the e-nose analysis. A large number of DEGs were identified from the key enzyme family of the monoterpene synthesis pathway in B. marginatum var. stenophyllum via transcriptome analysis. The microscopic observation results, using different staining methods, further showed the distinctive high proportion of phloem in B. marginatum var. stenophyllum, the structure which produces volatile oils. Together, these pieces of evidence hold substantial significance in guiding the judicious development and utilization of Bupleurum genus resources.


Asunto(s)
Bupleurum , Aceites Volátiles , Raíces de Plantas , Aceites Volátiles/química , Bupleurum/química , Raíces de Plantas/química , Cromatografía de Gases y Espectrometría de Masas , Plantas Medicinales/química
6.
Front Plant Sci ; 15: 1394587, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779067

RESUMEN

Gynostemma pentaphyllum (Thunb.) Makino is an important producer of dammarene-type triterpenoid saponins. These saponins (gypenosides) exhibit diverse pharmacological benefits such as anticancer, antidiabetic, and immunomodulatory effects, and have major potential in the pharmaceutical and health care industries. Here, we employed single-cell RNA sequencing (scRNA-seq) to profile the transcriptomes of more than 50,000 cells derived from G. pentaphyllum shoot apexes and leaves. Following cell clustering and annotation, we identified five major cell types in shoot apexes and four in leaves. Each cell type displayed substantial transcriptomic heterogeneity both within and between tissues. Examining gene expression patterns across various cell types revealed that gypenoside biosynthesis predominantly occurred in mesophyll cells, with heightened activity observed in shoot apexes compared to leaves. Furthermore, we explored the impact of transposable elements (TEs) on G. pentaphyllum transcriptomic landscapes. Our findings the highlighted the unbalanced expression of certain TE families across different cell types in shoot apexes and leaves, marking the first investigation of TE expression at the single-cell level in plants. Additionally, we observed dynamic expression of genes involved in gypenoside biosynthesis and specific TE families during epidermal and vascular cell development. The involvement of TE expression in regulating cell differentiation and gypenoside biosynthesis warrant further exploration. Overall, this study not only provides new insights into the spatiotemporal organization of gypenoside biosynthesis and TE activity in G. pentaphyllum shoot apexes and leaves but also offers valuable cellular and genetic resources for a deeper understanding of developmental and physiological processes at single-cell resolution in this species.

7.
Front Pharmacol ; 15: 1357381, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774207

RESUMEN

Introduction: Agarwood is a traditional aromatic southern medicine. It has a long history of being used in traditional Chinese aromatherapy to treat insomnia, anxiety and depression. Due to the scarcity of wild resources, people have planted trees successfully and begun to explore various agarwood-inducing techniques. This study comparative analysis of volatile metabolites in agarwood produced by various inducing techniques and its potential sleep-promoting, anti-anxiety and anti-depressant network pharmacological activities. Methods: A total of 23 batches of two types of agarwood were collected, one of which was produced by artificial techniques, including 6 batches of TongTi (TT) agarwood produced by "Agar-Wit" and 6 batches of HuoLao (HL) agarwood produced by "burning, chisel and drilling", while the other was collected from the wild, including 6 batches of BanTou (BT) agarwood with trunks broken due to natural or man-made factors and 5 batches of ChongLou (CL) agarwood with trunks damaged by moth worms. The study employed metabolomics combined with network analysis to compare the differences in volatile metabolites of agarwood produced by four commonly used inducing techniques, and explored their potential roles and possible action targets in promoting sleep, reducing anxiety, and alleviating depression. Results: A total of 147 volatile metabolites were detected in agarwood samples, mainly including small aromatic hydrocarbons, sesquiterpenes and 2-(2-phenylethyl) chromone and their pyrolysis products. The results showed composition of metabolites was minimally influenced by the agarwood induction method. However, their concentrations exhibited significant variations, with 17 metabolites showing major differences. The two most distinct metabolites were 6-methoxy-2-(2-phenylethyl) chromone and 6,7-dimethoxy-2-(2-phenylethyl) chromone. Among the volatile metabolites, 142 showed promising potential in treating insomnia, anxiety, and depression, implicating various biological and signaling pathways, predominantly ALB and TNF targets. The top three active metabolites identified were 2-(2-phenylethyl) chromone, 1,5-diphenylpent-1-en-3-one, and 6-methoxy-2-[2-(4'-methoxyphenyl) ethyl] chromone, with their relative content in the four types of agarwood being TT>HL>CL>BT. Conclusion: The differences in the content of 2-(2-phenylethyl) chromones suggest that they may be responsible for the varying therapeutic activities observed in different types of agarwood aromatherapy. This study offers theoretical support for the selection of agarwood in aromatherapy practices.

8.
Sci Rep ; 14(1): 6165, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486003

RESUMEN

Dragon's blood, the red resin derived from the wounded Dracaena, is a precious traditional medicine used by different culture. Dracaena cochinchinensis is one of the main species of Dracaena, and is the endangered medicinal plants in China. The vulnerable status severely limits the medicinal value and wide application of dragon's blood. Therefore, it's essential to analyze the mechanisms that form dragon's blood in order to increase artificial production. To clarify the mechanisms forming dragon's blood, understanding gene expression in the flavonoid biosynthesis pathway is the foundation. However, reference genes of D. cochinchinensis haven't been analyzed. In this study, expression profiles of seven commonly used housekeeping genes (Actin, α-EF, UBC, ß-tubulin, 18S, GAPDH, His) were evaluated by using quantitative real-time PCR combined with the algorithms geNorm, NormFinder, BestKeeper, and RefFinder. On the basis of overall stability ranking, the best reference genes were the combinations ß-tubulin +UBC for wounded stems and α-EF +18S + Actin for different organs. Reliability of the recommended reference genes was validated by normalizing relative expression of two key enzyme genes PAL1 and CHI1 in the flavonoid biosynthesis pathway. The results provide a foundation to study gene expression in future research on D. cochinchinensis or other Dracaena.


Asunto(s)
Actinas , Dracaena , Tubulina (Proteína) , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Extractos Vegetales , Flavonoides
9.
J Sep Sci ; 47(1): e2300614, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38066409

RESUMEN

The purpose of this research was to investigate the cardioprotective effects and pharmacokinetics of Dalbergia odorifera flavonoids. The cardioprotective effects were detected by hematoxylin-eosin staining histopathological observations and the detection of myocardial enzymes by kits in serum, peroxidation and antioxidant levels and ATPase activities by kits in the homogenate supernatant, and antioxidant and apoptosis-related protein expression in heart tissue by immunohistochemistry. The pharmacokinetics parameters of the flavonoids in rat plasma were investigated by ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. Molecular docking of the compounds absorbed by the blood with specific proteins was carried out. D. odorifera flavonoids significantly reduced the levels of creatinine kinase, alanine transaminase, nitric oxide, and Hydrogen peroxide, elevated the levels of glutathione, superoxide dismutase, and ATPase, significantly reduced the pathological degree of heart tissue and had obvious anti-myocardial ischemia efficacy. Nine out of the 17 flavonoids were detected in rat plasma. The peak concentration and the area under the plasma concentration-time curve values of 3'-O-methylviolanone and sativanone were significantly higher than those of other ingredients. The peak time of most flavonoids (except for Genistein and Pruneion) was lower than 2 h, while the half-life of elimination of the nine flavonoids ranged from 3.32 to 21.5 h. The molecular docking results showed that daidzein, dalbergin, formononetin, and genistein had the potential to bind to the target proteins. The results of the study provide an important basis for understanding the cardioprotective effects and clinical application of D. odorifera.


Asunto(s)
Dalbergia , Flavonoides , Ratas , Animales , Flavonoides/farmacología , Flavonoides/química , Dalbergia/química , Simulación del Acoplamiento Molecular , Genisteína , Antioxidantes/farmacología , Adenosina Trifosfatasas
10.
Plant Dis ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38037199

RESUMEN

Artemisia capillaris (Asteraceae) is an annual herb found in ˃10 provinces in China. It is cultivated on ˃670 ha, with annual production around 2,500 tons. Its shoot is used in traditional Chinese medicine (Liu et al. 2021). From April to May 2023, Sclerotinia rot symptoms were seen at the Institute of Medicinal Plant Development (40.04°N, 116.28°E), Beijing, China. Disease incidence was up to 10% in the field through investigation of 300 plants. Initial symptoms were irregular tan-brown lesions (0.5 to 5.0 mm) that expended to circumferential necrosis on the roots and basal stem, aerial mycelia and sclerotia were developed on them. The leaves and stem tips were withered and droopy in severe cases. Twelve symptomatic primary roots of 12 plants from two sites were cut into 5 × 5 mm pieces, surface sterilized with 75% ethanol for 30 s and 5% NaClO for 60 s, rinsed with distilled water for three times, dried with sterile filter paper, put on potato dextrose agar (PDA), and incubated at 25°C in the dark for 2 days. Two Sclerotinia-like isolates were obtained using the hyphaltip method. White aerial mycelia were sparse and appressed for isolate YC1-3 and dense for isolate YC1-7. After incubated at 25°C in the dark for 15 days, 10 to 25 sclerotia were developed near the colony margin. Sclerotia of isolate YC1-3 were 1.0 to 3.9 × 1.2 to 4.5 (mean 1.8 × 2.2) mm (n = 60), ovoid or arc-shaped. Sclerotia of isolate YC1-7 were 1.5 to 3.4 × 2.7 to 9.2 (mean 2.3 × 4.3) mm (n = 60), ovoid, dumbbell shaped or curved. The isolates were identified as Sclerotinia sclerotiorum based on morphology (Maas 1998). To further identify the pathogens, molecular identification was performed with isolates YC1-3 and YC1-7. DNA of the two isolates were extracted by the cetyltrimethylammonium bromide (CTAB) method. Polymerase chain reaction was performed with primers ITS1/ITS4 for the internal transcribed spacer (ITS) region (Choi et al. 2020; White et al. 1990) and primers G3PDHfor/G3PDHrev for the glyceraldehyde 3-phosphate dehydrogenase (G3PDH) gene (Garfinkel. 2021). BLAST search analysis revealed that the ITS sequence (GenBank OR229758 and OR229762) was ≥99% similar to S. sclerotiorum (MN099281, MZ379265, KX781301, etc.), and the G3PDH sequence (OR778388 and OR761975) was too (MZ493894, JQ036048, OQ790148, etc.). Phylogenetic trees were computed with ITS and G3PDH sequences using the Maximum Likelihood in MEGA 11. Nine two-month-old seedlings of A. capillaris were used to test pathogenicity. The epidermis layer of each primary root was slightly wounded (2 × 2 mm, 1 mm deep) using a sterile dissecting blade. Three plants were inoculated with mycelial plugs (5 mm in diameter) of YC1-3 and YC1-7 that cultured on PDA for 7 days. Control plants were inoculated with sterile PDA plugs. All seedlings were then incubated at 25oC and 90% relative humidity. After isolate YC1-7 inoculation 3 days and isolate YC1-3 inoculation 5 days, inoculated roots had symptoms like those in the field, controls had no symptoms. S. sclerotiorum was consistently re-isolated from diseased roots, fulfilling Koch's postulates. Diseases caused by S. sclerotiorum have been reported threatens several important economical crops (Marin and Peres 2020; Guan et al. 2022). To our knowledge, this is the first report of S. sclerotiorum causes Sclerotinia rot on A. capillaris. To avoid of significant economic losses, it is urgent to establish an effective disease-management strategy.

11.
PLoS One ; 18(11): e0294358, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37972007

RESUMEN

The endangered tree species of the Aquilaria genus produce agarwood, a high value material produced only after wounding; however, conservation of Aquilaria seeds is difficult. The B3 transcription factor family has diverse important functions in plant development, especially in seed development, although their functions in other areas, such as stress responses, remain to be revealed. Here germination tests proved that the seeds of A. sinensis were recalcitrant seeds. To provide insights into the B3 superfamily, the members were identified and characterized by bioinformatic approaches and classified by phylogenetic analysis and domain structure. In total, 71 members were identified and classified into four subfamilies. Each subfamily not only had similar domains, but also had conserved motifs in their B3 domains. For the seed-related LAV subfamily, the B3 domain of AsLAV3 was identical to that of AsVALs but lacked a typical zf-CW domain such as VALs. AsLAV5 lacks a typical PHD-L domain present in Arabidopsis VALs. qRT-PCR expression analysis showed that the LEC2 ortholog AsLAV4 was not expressed in seeds. RAVs and REMs induced after wound treatment were also identified. These findings provide insights into the functions of B3 genes and seed recalcitrance of A. sinensis and indicate the role of B3 genes in wound response and agarwood formation.This is the first work to investigate the B3 family in A. sinensis and to provide insights of the molecular mechanism of seed recalcitrance.This will be a valuable guidance for studies of B3 genes in stress responses, secondary metabolite biosynthesis, and seed development.


Asunto(s)
Thymelaeaceae , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Filogenia , Thymelaeaceae/genética , Regulación de la Expresión Génica de las Plantas , Semillas/genética , Semillas/metabolismo , Valsartán
12.
Org Lett ; 25(42): 7745-7750, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37843414

RESUMEN

A rhodium-catalyzed carbene N-H insertion protocol for simultaneously controlling the C-N axial and spiro-central chiralities is disclosed, resulting in the rapid assembly of enantiopure N-arylindolinone-spiroacetal derivatives in high yields with excellent enantioselectivities. This promising strategy features the chiral C-N axis, spiro-central chirality, functional group tolerance, and late-stage diversification. DFT calculations indicate that the N-H insertion is the axial-chirality-determining step and that the 1,5-H shift step is regiospecifically caused by the spirocycle.

13.
Exp Appl Acarol ; 91(3): 381-403, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37882995

RESUMEN

Phoresy is one of the most distinctive relationships between mites and insects, and the off-host interaction between phoretic mites and their carriers is the most critical factor sustaining the phoretic association. As phoretic associations commonly occur in temporary habitats, little is known about off-host interactions between phoronts and carriers. However, an off-host interaction has been reported, in which the plant-mediated competition between a phoretic gall mite, Aceria pallida, and its psyllid vector, Bactericera gobica, after detachment decreases leaf abscission caused by B. gobica and then directly facilitates their phoretic association. In this obligate phoresy, A. pallida seasonally attaches to B. gobica for overwinter survival and they share the same host plant, Lycium barbarum, during the growing season. It is unknown how the host plant responds to these two herbivores and what plant metabolites are involved in their interspecific interaction. Here, effects of A. pallida and B. gobica on the host plant's transcriptome and metabolome, and on enzymes involved in plant defence, at various infestation stages were studied by inoculating A. pallida and B. gobica either separately or simultaneously on leaves of L. barbarum. Our results showed that (a) A. pallida significantly promoted primary and secondary metabolite accumulation, (b) B. gobica markedly inhibited primary and secondary metabolite accumulation and had little influence on defence enzyme activity, and (c) under simultaneous A. pallida and B. gobica infestation, an intermediate response was predicted. These findings indicate that A. pallida and B. gobica have different effects on host plants, A. pallida inhibits B. gobica mainly by increasing the secondary metabolism of L. barbarum, whereas B. gobica inhibits A. pallida mainly by decreasing the primary metabolism of L. barbarum. In conjunction with our previous research, we speculate that this trade-off in host plant metabolite response between A. pallida and B. gobica after detachment promotes a stable phoretic association.


Asunto(s)
Hemípteros , Ácaros , Animales , Ácaros/fisiología
14.
Mol Med Rep ; 28(5)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37772395

RESUMEN

Alcoholic fatty liver disease (AFLD) is a disease with a high incidence rate among individuals who drink alcohol. Our previous study found that agarwood alcohol extracts (AAEs) have a protective effect against drug­induced liver damage via anti­inflammatory and antioxidant mechanisms. Therefore, we hypothesized that agarwood may have a protective effect against AFLD. The present study assessed the potential protective effects and the underlying mechanism of action of AAEs for the treatment of an AFL in vivo model. The AFLD mouse model was established by continuous high fat diet and alcohol gavage in C57 mice. After treatment with AAEs, blood was collected, liver and adipose tissues were removed and liver and adipose indexes were analyzed. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG) and cholesterol (CHO) in serum were detected. The liver tissue was assessed using pathological sections. Biochemical methods were used to detect the levels of oxidative stress in the supernatant of liver tissue homogenate. The levels of pro­inflammatory cytokines in the serum were detected by ELISA. The protein expression levels of nuclear erythroid 2­related factor 2 (Nrf2) and nuclear factor kappa­B (NF­κB) in liver tissues were detected using western blotting. AAE treatment decreased the liver and adipose indexes, reduced the levels of AST, ALT, TG and CHO, improved the liver pathological characteristics and enhanced antioxidant and anti­inflammatory activities. In addition, AAEs increased the protein expression level of Nrf2 and decreased the protein expression level of NF­κB compared with AFL mice. AAE­treated animals exhibited reduced metabolic enzyme and blood lipid levels, demonstrated improved liver function and relieved the pathological damage of AFLD induced by consuming a high fat and alcohol diet. AAEs have potential protective effects in AFLD via antioxidant and anti­inflammatory mechanisms.


Asunto(s)
Hígado Graso Alcohólico , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Hígado Graso Alcohólico/tratamiento farmacológico , Hígado Graso Alcohólico/metabolismo , Antioxidantes/metabolismo , FN-kappa B/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Etanol/farmacología , Colesterol/metabolismo , Triglicéridos/metabolismo , Obesidad/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/metabolismo
15.
PeerJ ; 11: e15818, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37663295

RESUMEN

Sesquiterpenes are characteristic components and important quality criterions for agarwood. Although sesquiterpenes are well-known to be biosynthesized by sesquiterpene synthases (TPSs), to date, only a few TPS genes involved in agarwood formation have been reported. Here, two new TPS genes, namely, TPS9 and TPS12, were isolated from Aquilaria sinensis (Lour.) Gilg, and their functions were examined in Escherichia coli BL21(DE3), with farnesyl pyrophosphate (FPP) and geranyl pyrophosphate (GPP) as the substrate of the corresponding enzyme activities. They were both identified as a multiproduct enzymes. After incubation with FPP, TPS9 liberated ß-farnesene and cis-sesquisabinene hydrate as main products, with cedrol and another unidentified sesquiterpene as minor products. TPS12 catalyzes the formation of ß-farnesene, nerolidol, γ-eudesmol, and hinesol. After incubation with GPP, TPS9 generated citronellol and geraniol as main products, with seven minor products. TPS12 converted GPP into four monoterpenes, with citral as the main product, and three minor products. Both TPS9 and TPS12 showed much higher expression in the two major tissues emitting floral volatiles: flowers and agarwood. Further, RT-PCR analysis showed TPS9 and TPS12 are typical genes mainly expressed during later stages of stress response, which is better known than that of chromone derivatives. This study will advance our understanding of agarwood formation and provide a solid theoretical foundation for clarifying its mechanism in A. sinensis.


Asunto(s)
Sesquiterpenos , Thymelaeaceae , Óxido Nítrico Sintasa , Thymelaeaceae/genética , Escherichia coli/genética
16.
Molecules ; 28(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37446680

RESUMEN

Astragalus membranaceus (A. membranaceus), a well-known traditional herbal medicine, has been widely used in ailments for more than 2000 years. The main bioactive compounds including flavonoids, triterpene saponins and polysaccharides obtained from A. membranaceus have shown a wide range of biological activities and pharmacological effects. These bioactive compounds have a significant role in protecting the liver, immunomodulation, anticancer, antidiabetic, antiviral, antiinflammatory, antioxidant and anti-cardiovascular activities. The flavonoids are initially synthesized through the phenylpropanoid pathway, followed by catalysis with corresponding enzymes, while the triterpenoid saponins, especially astragalosides, are synthesized through the universal upstream pathways of mevalonate (MVA) and methylerythritol phosphate (MEP), and the downstream pathway of triterpenoid skeleton formation and modification. Moreover, the Astragalus polysaccharide (APS) possesses multiple pharmacological activities. In this review, we comprehensively discussed the biosynthesis pathway of flavonoids and triterpenoid saponins, and the structural features of polysaccharides in A. membranaceus. We further systematically summarized the pharmacological effects of bioactive ingredients in A. membranaceus, which laid the foundation for the development of clinical candidate agents. Finally, we proposed potential strategies of heterologous biosynthesis to improve the industrialized production and sustainable supply of natural products with pharmacological activities from A. membranaceus, thereby providing an important guide for their future development trend.


Asunto(s)
Saponinas , Triterpenos , Astragalus propinquus/química , Flavonoides/química , Triterpenos/química , Saponinas/química , Polisacáridos/química
17.
Int J Mol Sci ; 24(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37372986

RESUMEN

Galls have become the best model for exploring plant-gall inducer relationships, with most studies focusing on gall-inducing insects but few on gall mites. The gall mite Aceria pallida is a major pest of wolfberry, usually inducing galls on its leaves. For a better understanding of gall mite growth and development, the dynamics of the morphological and molecular characteristics and phytohormones of galls induced by A. pallida were studied by histological observation, transcriptomics and metabolomics. The galls developed from cell elongation of the epidermis and cell hyperplasia of mesophylls. The galls grew quickly, within 9 days, and the mite population increased rapidly within 18 days. The genes involved in chlorophyll biosynthesis, photosynthesis and phytohormone synthesis were significantly downregulated in galled tissues, but the genes associated with mitochondrial energy metabolism, transmembrane transport, carbohydrates and amino acid synthesis were distinctly upregulated. The levels of carbohydrates, amino acids and their derivatives, and indole-3-acetic acid (IAA) and cytokinins (CKs), were markedly enhanced in galled tissues. Interestingly, much higher contents of IAA and CKs were detected in gall mites than in plant tissues. These results suggest that galls act as nutrient sinks and favor increased accumulation of nutrients for mites, and that gall mites may contribute IAA and CKs during gall formation.


Asunto(s)
Lycium , Ácaros , Animales , Lycium/genética , Ácaros/metabolismo , Transcriptoma , Reguladores del Crecimiento de las Plantas/metabolismo , Citocininas , Metaboloma , Tumores de Planta/genética , Hojas de la Planta/metabolismo
18.
Molecules ; 28(11)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37298861

RESUMEN

Apiaceae plants have been widely used in traditional Chinese medicine (TCM) for the removing dampness, relieving superficies, and dispelling cold, etc. In order to exploit potential applications as well as improve the yield and quality of Apiaceae medicinal plants (AMPs), the traditional use, modern pharmacological use, phytochemistry, effect of bolting and flowering (BF), and approaches for controlling BF were summarized. Currently, about 228 AMPs have been recorded as TCMs, with 6 medicinal parts, 79 traditional uses, 62 modern pharmacological uses, and 5 main kinds of metabolites. Three different degrees (i.e., significantly affected, affected to some extent, and not significantly affected) could be classed based on the yield and quality. Although the BF of some plants (e.g., Angelica sinensis) could be effectively controlled by standard cultivation techniques, the mechanism of BF has not yet been systemically revealed. This review will provide useful references for the reasonable exploration and high-quality production of AMPs.


Asunto(s)
Angelica sinensis , Apiaceae , Plantas Medicinales , Medicina Tradicional China , China , Fitoquímicos/farmacología , Etnofarmacología , Extractos Vegetales/farmacología
19.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37175675

RESUMEN

The medicinal plant Cistanche deserticola Ma (Orobanchaceae) is a holoparasitic angiosperm that takes life-essential materials from Haloxylon ammodendron (C. A. Mey.) Bunge (Amaranthaceae) roots. Although many experiments have been conducted to improve the quality of C. deserticola, little attention has been paid to the host's influence on metabolite accumulation. In this study, transcriptomic and metabolomic analyses were performed to unveil the host's role in C. deserticola's metabolite accumulation, especially of phenylethanoid glycosides (PhGs). The results indicate that parasitism by C. deserticola causes significant changes in H. ammodendron roots in relation to metabolites and genes linked to phenylalanine metabolism, tryptophan metabolism and phenylpropanoid biosynthesis pathways, which provide precursors for PhGs. Correlation analysis of genes and metabolites further confirms that C. deserticola's parasitism affects PhG biosynthesis in H. ammodendron roots. Then we found specific upregulation of glycosyltransferases in haustoria which connect the parasites and hosts. It was shown that C. deserticola absorbs PhG precursors from the host and that glycosylation takes place in the haustorium. We mainly discuss how the host resists C. deserticola parasitism and how this medicinal parasite exploits its unfavorable position and takes advantage of host-derived metabolites. Our study highlights that the status of the host plant affects not only the production but also the quality of Cistanches Herba, which provides a practical direction for medicinal plant cultivation.


Asunto(s)
Cistanche , Plantas Medicinales , Cistanche/genética , Cistanche/metabolismo , Perfilación de la Expresión Génica , Glicósidos/metabolismo , Transcriptoma , Plantas Medicinales/genética , Metaboloma
20.
Chemistry ; 29(40): e202300562, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37052289

RESUMEN

A novel approach to chemoselective synthesis of biologically important CF3 -subsituted pyrazolines was developed via a Lewis base catalyzed intermolecular triazene cycloaddition reaction of an array of terminal/internal alkenes with CF3 CHN2 . This strategy features a catalytic amount of 1,8-diazabicyclo[5.4.0]undec-7-ene, high yields (up to 95 %), wide substrate scope and excellent functional group tolerance (54 examples). Importantly, we preformed scaffold diversification of a panel of known pharmaceuticals, natural products, and bioactive heterocycles to generate the corresponding pyrazoline derivatives with potential broad bioactivities for further development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA